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Abstract

Rationality and common belief of rationality (RCBR) is a standard benchmark in game theory.

Yet, a body of experimental research points to departures from RCBR. These RCBR departures

are typically viewed as an artifact of limits in the ability to engage in interactive reasoning, i.e.,

to reason through sentences of the form “I think, you think, I think, etc . . .” We provide a

novel identification strategy to test the hypothesis that RCBR departures are determined by

limits in interactive reasoning. It benefits from not relying on auxiliary measures of “ability” or

“sophistication” that can capture distinct concepts. We conduct an experiment based on this

identification strategy and show that at least 60% of subjects have RCBR departures that are

not an artifact of limited ability to engage in interactive reasoning. Moreover, the experiment

provides insight into how subjects reason when they depart from RCBR. The results suggest

that subjects’ reasoning depends on certain natural heuristics.

The standard approach to game theory implicitly takes as given that players are strategically

sophisticated. In epistemic game theory, this is traditionally formalized as rationality and common

belief of rationality (RCBR): Players choose an action that is a best response given their belief

about the play of the game; they believe others do the same; etc. While RCBR is an important

theoretical benchmark, lab experiments have pointed to departures from RCBR. In particular,

experiments suggest that there is “bounded reasoning about rationality.” See Stahl and Wilson

(1995), Costa-Gomes, Crawford, and Broseta (2001), and Costa-Gomes and Crawford (2006).1

Why do we observe such departures from RCBR? A common rationale appeals to the difficulties

of engaging in interactive reasoning. For Ann to engage in RCBR, she must specify what she thinks

about Bob’s play, what she thinks Bob thinks about her play, etc. Thus, it requires Ann to reason

through infinite-length sentences of the form “I think that you think that I think. . . .” Yet there is

evidence from cognitive psychology that subjects are limited in their ability to engage in interactive
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reasoning. (See, e.g., Kinderman, Dunbar, and Bentall, 1998; Stiller and Dunbar, 2007, among

others.) In particular, subjects find it difficult to specify these sentences beyond a certain finite

length—even if such sentences do not refer to the rationality of others.

But, at least in principle, there can be bounded reasoning about rationality even if players do

not face limitations in their ability to engage in interactive reasoning. For instance, consider two

attorneys, Ann and Bob, who have a history of interacting on cases. Given this past interaction,

Ann may not be prepared to believe that Bob is rational. Or, she may believe that Bob is rational,

but may not believe that Bob believes that she is rational, etc. Such departures from RCBR are not

driven by limited ability, but are nonetheless departures that would impact how Ann strategizes

about the current case.

Are departures from RCBR driven by limitations on players’ ability to engage in interactive

reasoning? Or are there systematic departures from RCBR that cannot be explained by these

limitations? The answer has important implications for predicted behavior and for how solution

concepts are defined. If the bounds on reasoning about rationality are determined by limits in

the ability to engage in interactive reasoning, then there is no room for players to reason beyond

how they reason about rationality. (This is by definition.) However, if bounded reasoning about

rationality is not determined by limits in the ability to engage in interactive reasoning, then players

may well engage in forms of interactive reasoning distinct from reasoning about rationality. This

leaves room for the possibility of novel solution concepts, which have not been explored in the

literature. Our main contribution is to provide a definitive answer to this question. In so doing,

we can learn whether it is or is not valuable to explore such alternative notions of reasoning (or

solution concepts). A secondary contribution is to explore what such reasoning may look like; we

do so in the context of what we will call a heuristic beliefs model, discussed below.

Let us start with the basic question: Are departures from RCBR driven by limitations on players’

ability to engage in interactive reasoning? One might hope to address the question directly, by

eliciting subjects’ hierarchies of beliefs. However, the very act of attempting to elicit the subjects’

hierarchies may cause them to engage in higher levels of interactive reasoning than they may

otherwise do. In turn, this can suggest evidence that departures from RCBR are not driven by

limited ability to engage in interactive reasoning, even if they are. This points to a central difficulty:

An attempt to measure the ability to reason interactively may alter how players reason. As such,

it is difficult to take a direct approach to address the question. Section 6.B discusses why other

techniques from the literature—ones that also don’t involve directly measuring the ability to reason

interactively—do not suffice for the question raised here.

Instead, we take an indirect approach. We develop a conceptual framework that allows us to

test the hypothesis that departures from RCBR are determined by limited ability to engage in

interactive reasoning. Importantly, the test will allow us to do so by only making use of choice

data—without having to rely on belief elicitation. Moreover, the test will provide insight into how

players’ do reason when their reasoning departs from RCBR.

The key innovation behind the test is the distinction between rational behavior and what we call
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strategic behavior. A player is rational if she plays a best response given her subjective belief about

how the game is played—put differently, if she maximizes her expected utility given her subjective

belief about how the game is played.2 A player is strategic if she has some theory (or method) for

how to play the game. One example of such a theory is maximizing subjective expected utility;

thus, a player who is rational is also strategic. However, a player may be strategic and irrational;

that is, a player may have a decision criterion for playing the game that departs from subjective

expected utility. (So, a rational player conforms to the “textbook notion of rationality,” while a

strategic player conforms to a “generalized notion of rationality.”)

We will distinguish between reasoning about rationality and strategic reasoning. Loosely:

• Reasoning About Rationality: Ann has a rationality bound of m if she is rational, believes

that Bob is rational, believes that Bob believes that she is rational, and so on, up to the

statement that includes the word “rational” m times, but no further.

• Strategic Reasoning: Ann has a strategic bound of k if she is strategic, believes that Bob is

strategic, believes that Bob believes that she is strategic and so on, up to the statement that

includes the word “strategic” k times, but no further.

Because a rational player is strategic, Ann’s strategic bound k must be at least as high as her

rationality bound m—i.e., k ≥ m.

Strategic reasoning requires an ability to engage in interactive reasoning. Thus, a subject’s

“ability bound” must be at least as high as her strategic bound. If a subject’s strategic bound

is strictly higher than her rationality bound—that is, if k > m—then the subject’s ability bound

is also strictly higher than her rationality bound. In this case, a departure from RCBR is not an

artifact of an inability to engage in interactive reasoning.

In light of this, to identify a gap between the rationality bound and the ability bound, it suffices

to identify a gap between the rationality bound and the strategic bound. However, doing so poses

a second challenge: identifying the strategic bound. In principle, strategic reasoning is a broad

concept; it is not obvious what (if any) observable implications arise from strategic reasoning. In

Sections 1-2, we point to observable implications in a particular class of games: permuted ring

games (Kneeland, 2015). That is, in permuted ring games, we can identify the strategic bounds as

distinct from the rationality bounds.

We conduct an experiment based on this identification strategy. The experiment contains two

treatments, each based on a permuted ring game. The two ring games are equivalent from the

perspective of RCBR, but are not equivalent from the perspective of strategic reasoning. In fact,

players do systematically behave differently across these games. (See Section 4.2.) The two games

illustrate that players do have a gap between their rationality bounds and their strategic bounds.

In particular, 60% of subjects have a rationality bound that is strictly lower than their strategic

bound. (Section 5.5 argues that the cross-treatment differences suggest this gap may well be

2This terminology is consistent with the use in epistemic game theory. See, e.g., Brandenburger, 2007, Dekel and
Siniscalchi, 2014, and Battigalli, Friedenberg, and Siniscalchi, 2021.
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higher.) Moreover, on average, subjects with a gap between their rationality and strategic bounds

have higher average earnings than their no-gap counterparts. As we will discuss in Section 4.1, this

may reflect a deliberate decision to not engage in common belief of rationality.

From the perspective of the identification strategy, we impose few assumptions on the nature of

strategic reasoning. This is an important and deliberate feature of our analysis. A more restrictive

model of strategic reasoning would have the benefit of yielding a tighter set of predictions; but, it

would come at the cost of imposing auxiliary assumptions about reasoning and beliefs—assumptions

that would require verification separate from the identification strategy. That said, there are specific

assumptions about strategic reasoning that are, arguably, intuitive. Those assumptions take the

following form: If Ann believes Bob is strategic, she assigns probability p ∈ [0, 1] to Bob being

rational and probability (1− p) to Bob playing according to a simple belief-independent heuristic.

Moreover, the “heuristic part” of Ann’s beliefs is driven by three rules-of-thumb. (These rules-

of-thumb correspond to Bob having a theory that maximizes the maximum payoff, the minimum

payoff, or the sum of payoffs.) We refer to this model as the heuristic beliefs model. The model

provides refined predictions of behavior in our two treatments.

Ultimately, the data will either refute the heuristic beliefs model or provide evidence in favor

of the model. We show that 88% of subjects play in accordance with the model. Moreover, under

the heuristic beliefs model, we would expect the two treatments to differ in their distribution of

rationality bounds in exactly the way that they do differ. Section 5.6 augments these results, by

looking at ring game data from other studies; it points out that the data in those studies are also

consistent with the heuristic beliefs model.

This last fact points to a more general takeaway. Consider a player with a rationality bound of

m. If that bound is determined by limited ability to engage in interactive reasoning, then our pre-

diction would be any m-undominated strategy—i.e., any strategy that survives m rounds of deletion

of iterated strong dominance. (This follows from standard results, e.g., Tan and da Costa Wer-

lang, 1988.) However, if not, the player may well engage in higher levels of strategic reasoning

and that may rule out certain m-undominated strategies. This would suggest a refinement of the

m-undominated strategies. In pointing to certain heuristic beliefs that are supported by the data,

the results here take a first step toward understanding the nature of that refinement. So, the results

can be seen as an integral step in showing how players strategically reason when they depart from

the RCBR benchmark.

This paper fits into a growing literature that uses ring games to identify aspects of players’

reasoning. (These games were introduced in Kneeland, 2015.) Importantly, this paper’s identifica-

tion strategy is novel and is used to address a distinct question from the literature. In particular,

Kneeland’s original use ruled out strategic reasoning in an attempt to identify the exact level of

reasoning about rationality consistent with the data.3 For our purposes, it suffices to identify the

maximum level of reasoning about rationality consistent with the data. See Section 2.1. Our paper

and identification strategy point out why ring games—as a tool—may be useful for identifying

3Specifically, Kneeland’s exclusion restriction rules out non-rational strategic reasoning.
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forms of interactive reasoning, even when the researcher is not attempting to identify an exact level

of reasoning about rationality. In this sense, it provides a methodological contribution.

This paper also asks a question distinct from that in Sprenger and Zhao (2021). (See Section

6.D.) In particular, Sprenger and Zhao propose a specific model of strategic reasoning—one that is

more restrictive than our heuristic beliefs model. That said, the rationale behind their model has

features similar to the heuristics beliefs model. (Specifically, it allows Ann to either believe that

Bob is rational or believe that Bob uses a heuristic based on the maximum sum of payoffs he can

obtain.) Section 5.6 discusses the differences between the two models and how they are manifested

in the data.

The paper proceeds as follows. Section 1 introduces the idea behind the identification strategy

and an important comparative static. Section 2 describes the identification strategy more com-

pletely. Section 3-4 describe the experimental design and main results. Section 5 introduces the

heuristic beliefs model and revisits the experimental results from the perspective of that model.

Section 6 fills in some important discussions. Those include connections to level-k and cognitive hi-

erarchy models (6.A), other potential—but ultimately lacking—approaches to identification (6.B),

connections to the literature on reasoning across games (6.D) and how the work opens up new

avenues for research (6.E).

1 An Illustrative Example

This section uses an example to highlight key features of the identification strategy. In particular,

it illustrates how we can separately identify the strategic and rationality bounds.

Figure 1.1 describes two games, G and G∗. The payoff matrices on the left represent Player 1’s

payoffs and the payoff matrices on the right represent Player 2’s payoffs. Write (e, f∗) to denote

that a player chooses action e in G and action f∗ in G∗. We refer to such an action profile as a

strategy. We now point to the important features of these games.

For Player 1 (P1, she), the payoff matrix given by G∗ is a relabeling of the payoff matrix given

by G. That is, there is a permutation Π1 : {a,b, c,d} → {a∗, b∗, c∗, d∗} with

Π1(a) = d∗ Π1(b) = b∗ Π1(c) = a∗ Π1(d) = c∗,

so that P1’s row e ∈ {a,b, c,d} in G corresponds to P1’s row Π1(e) ∈ {a∗, b∗, c∗, d∗} in G∗.

Moreover, the strategy (a,Π1(a)) = (a,d∗) is the dominant strategy.

For Player 2 (P2, he), the payoff matrices in G and G∗ are the same. P2 does not have a

dominant strategy; in fact, each of P2’s strategies is undominated. However, P2 has a unique

iteratively undominated (IU ) strategy—namely, (b, a∗).

Rational vs. Strategic To illustrate the relationship between rational and strategic behavior,

we focus on P1. Suppose that P1 is rational in the sense that she maximizes her subjective expected

utility—i.e., she chooses a best response given her subjective belief about how P2 plays the game.

Then, she would play the dominant strategy (a,Π1(a)) = (a,d∗). Notice that, if she is rational,
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P1’s Payoffs

P2
a b c d

P1
a 17 15 18 16
b 15 14 15 15
c 6 4 14 8
d 12 2 2 10

P2’s Payoffs

P1
a b c d

P2
a 8 14 4 18
b 16 4 2 10
c 15 17 4 4
d 14 6 20 10

(a) Figure G

P1’s Payoffs
P2

a∗ b∗ c∗ d∗

P1
a∗ 6 4 14 8
b∗ 15 14 15 15
c∗ 12 2 2 10
d∗ 17 15 18 16

P2’s Payoffs
P1

a∗ b∗ c∗ d∗

P2
a∗ 8 14 4 18
b∗ 16 4 2 10
c∗ 15 17 4 4
d∗ 14 6 20 10

(b) Figure G∗

Figure 1.1. A Two-Player Example

then she has a specific theory about how to play the game. This is the sense in which we will say

that she is also strategic.

At least in principle, P1 may be strategic and irrational. For instance, suppose that P1 instead

adopts a rule-of-thumb, in which she chooses an action that could potentially lead to a payoff of

6 provided that such an action exists. She does so even if such an action does not maximize her

subjective expected utility. For the purpose of illustration, she adopts such a method for playing

the game because 6 is her lucky number. In this case, she would choose the “lucky-6” strategy

(c,Π1(c)) = (c, a∗).

This example points to the approach we take more generally. Because P1’s payoffs in G∗ are a

relabeling of her payoffs in G, P1’s strategic behavior varies systematically between the two games:

Any theory that leads P1 to play e in G will lead P1 to play Π1(e) in G∗. As a consequence, P1’s

strategically optimal behavior corresponds to the graph of the permutation Π1—i.e., to the set

Strategic1 = {(a,Π1(a)), (b,Π1(b)), (c,Π1(c)), (d,Π1(d))}. (1)

We exploit this fact below.4

Reasoning about Rationality vs. Strategic Reasoning To illustrate the relationship be-

tween reasoning about rationality and strategic reasoning, we focus on P2. Throughout the discus-

sion, we suppose that P2 is rational (and, thus, strategic). We distinguish between three scenarios.

First, suppose P2 reasons about rationality. By this, we mean that P2 believes—i.e., assigns

probability 1 to the event—that P1 is rational. In this case, he must assign probability 1 to P1

4This argument implicitly assumes that either (i) P1’s strategically optimal behavior does not depend on her beliefs
about P2’s play, or (ii) P1 has the same beliefs in G and G∗. Our identification strategy (Section 2) will not impose
these assumptions exogenously. Instead, it will focus on an experimental design in which these assumptions are
satisfied endogenously.
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playing the dominant strategy (a,Π1(a)) = (a,d∗). As P2 is rational, he chooses a best response

to this belief; thus, he plays the IU strategy (b, a∗). This is a non-constant strategy for P2—i.e., a

strategy that varies across G and G∗.

Second, suppose P2 believes that P1 is strategic. Then, P2 has a 2-strategic belief, i.e., a belief

that assigns probability 1 to P1 choosing a strategy in Strategic1 (Equation (1)). Notice, P2 may

well believe that P1 is rational—after all, P1’s dominant strategy is strategic. But, P2 need not.

For instance, he may assign probability 4/5 to P1 being rational and probability 1/5 to the lucky-6

strategy (c,Π1(c)) = (c, a∗). If P2 holds this 2-strategic belief, his best response is to play (d, a∗).

Notice, this too is a non-constant strategy for P2, but one that differs from the IU strategy.

Third, suppose P2 believes that P1 is not strategic. In this case, he reasons that P1 does not

have a theory about how to play the game. As a consequence, he thinks that P1’s behavior does

not depend on specific parameters of the game—including P1’s payoffs. Thus, P2 has the same

belief about how P1 plays the game in both G and G∗. Since P2’s payoffs do not vary across

the two games, his best response does not vary. That is, P2’s best response is to play a constant

strategy—i.e., (a, a∗), (b,b∗), (c, c∗), or (d,d∗).

Relationship Between Bounds A player’s strategic bound must be at least as high as her

rationality bound: If she is not strategic, then she cannot be rational. So, if she believes that the

other player is not strategic, then she also believes that the other player is irrational.

However, a player’s strategic bound may be strictly higher than her rationality bound: P2 may

believe that P1 is strategic, even though he does not believe that P1 is rational. In this case,

bounded reasoning about rationality is not entirely determined by limits in ability.5 With this in

mind, our question is: Does there exist a gap between the strategic and rationality bounds? We

next describe how we identify such a gap.

Identification We seek a conservative estimate of the gap between the strategic and rationality

bounds. As such, we seek to identify:

(i) The maximum level of reasoning about rationality consistent with observed behavior.

(ii) The minimum level of strategic reasoning consistent with observed behavior.

To identify these bounds, we assume that observed behavior is rational, in the sense that it is

consistent with a player choosing a best response given her belief. As a consequence, we assume

that observed behavior is strategic. That is, we do not attempt to distinguish rational behavior from

strategic behavior. Instead, our identification focuses on reasoning about rationality vs. strategic

reasoning. In light of this, we focus on the observed behavior of P2. Table 1.1 summarizes the

identification. We now explain.

The top row of Table 1.1 points to the identification of the rationality bound. Suppose we

observe P2 play the IU strategy. In this case, we identify P2 as having a rationality bound of 2. His

5Recall from the Introduction: The strategic bound need not correspond to an ability bound. Instead, we use the
strategic bound as a vehicle to show that the rationality bound is not entirely determined by limitations in ability.
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Observed Behavior

IU Non-IU Non-Constant 2-Strategic Constant Other

Rationality Bound 2 1 1 1

Strategic Bound 2 2 1 NC

Gap No Yes No NC

Table 1.1. Identification: Observed P2 Behavior
NC = non-classified

behavior is consistent with being rational and believing that P1 is rational. Notice, P2 may also

play the IU strategy if he assigns probability strictly less than 1 to P1’s rationality. For instance, it

is a best response for P2 to play the IU strategy, if he assigns probability .95 to P1 being rational

and probability .05 to P1 playing the lucky-6 strategy. But, because we seek the maximum level

of reasoning about rationality consistent with observed behavior, we identify the rationality bound

as 2. On the other hand, if we observe P2 play a non-IU strategy, we identify P2 as having a

rationality bound of 1. His behavior is consistent with being rational, but inconsistent with both

being rational and believing that P1 is rational.

The middle row of Table 1.1 points to the identification of the strategic bound. If we observe

P2 play a constant strategy, we identify P2 as having a strategic bound of 1. Each constant strategy

is consistent with P2 being rational and believing that P1 is not strategic. For instance, it is a best

response for P2 to play (c, c∗), if he assigns probability 1 to P1 playing (b, b∗). This behavior—i.e.,

the constant strategy (c, c∗)—is also consistent with a rational P2 believing that P1 is strategic.

(P1’s action b is associated with the same payoff row as P1’s action b∗ and so (b,Π1(b)) = (b, b∗)

is also strategic.) But because we seek the minimum level of strategic reasoning consistent with

observed behavior, we identify the strategic bound as 1.

Suppose, instead, we observe P2 play a non-constant strategy. The strategy is inconsistent with

a rational P2 believing that P1 is not strategic. As such, the minimum level of strategic reasoning

consistent with observed behavior is 2. If the strategy is also a best response to a 2-strategic belief,

we identify P2 as having a strategic bound of 2.

Notice, there are non-constant strategies that are not a best response to a 2-strategic belief. As

an example, (a,b∗) is a non-constant strategy and, so, is not classified as having a strategic bound

of 1. But, because (a, b∗) is not a best response under any 2-strategic belief, it is also not classified

as having a strategic bound of 2. If we were to observe this behavior, we would simply not classify

a strategic bound. Section 6.C discusses this point.

The bottom row of Table 1.1 points to when we identify a gap between the rationality and

strategic bounds. If P2 plays the IU strategy or a constant strategy, there is no gap identified.

However, if we observe P2 play a non-IU strategy that is both non-constant and a best response

under a 2-strategic belief, then we identify a gap.

Deliberate Choice or Errors? Our identification strategy rests on an implicit assumption that

observed non-constant behavior is a consequence of deliberate choice by a rational P2. An alternate
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hypothesis is that such non-constant behavior is an artifact of errors or mistakes. We rule out this

alternate error hypothesis by studying behavior in a variant of the original game. Refer to Figure

1.2. There are two changes relative to the original game in Figure 1.1. First, in the game G, two

rows of P1 are swapped: b and d. Second, the permutation of P1 has changed; it is now

Π1(a) = d∗ Π1(b) = a∗ Π1(c) = b∗ Π1(d) = c∗.

Importantly, the dominant strategy of P1 remains (a,Π1(a)) = (a, d∗) and the payoff matrices of

P2 have not changed. This implies that P2’s IU strategy remains (b, a∗).

P1’s Payoffs

P2
a b c d

P1
a 17 15 18 16
b 12 2 2 10
c 6 4 14 8
d 15 14 15 15

P2’s Payoffs

P1
a b c d

P2
a 8 14 4 18
b 16 4 2 10
c 15 17 4 4
d 14 6 20 10

(a) Figure G

P1’s Payoffs

P2
a∗ b∗ c∗ d∗

P1
a∗ 12 2 2 10
b∗ 6 4 14 8
c∗ 15 14 15 15
d∗ 17 15 18 16

P2’s Payoffs

P1
a∗ b∗ c∗ d∗

P2
a∗ 8 14 4 18
b∗ 16 4 2 10
c∗ 15 17 4 4
d∗ 14 6 20 10

(b) Figure G∗

Figure 1.2. A Two-Player Example: Changing the Permutation

Because the IU strategy remains unchanged, Figures 1.1 and 1.2 remain unchanged from the

perspective of rationality and belief about rationality. If observed non-IU behavior were only an

artifact of errors, we would expect to see the same distribution of play in Figures 1.1 and 1.2. To

see this, take two examples of errors. First, suppose there is measurement error that arises from

players mistakingly clicking on the wrong choice in the computer interface.6 There is no reason to

hypothesize that such mistakes would depend on the game; as such, we would expect to see the

same distribution of play across Figures 1.1 and 1.2. Second, suppose there are mistakes made in

decision-making. A prominent model in the literature is that players make errors according to a

logistic best response. In that case, we would expect to see non-IU play. But, we would expect to

see the same distribution of play across Figures 1.1 and 1.2 since P2’s payoffs are unchanged across

these games.

However, if non-IU behavior results from strategic reasoning, we may well see a different dis-

tribution of play across these games. For instance, suppose P2 assigns probability .4 to “P1 is

6This is the only measurement error that we can see arising. In the experiment itself, we minimize such measurement
error by giving subjects the opportunity to review and revise their choices.
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rational” and probability .6 to “P1 chooses the lucky-6 strategy.” In Figure 1.1, P2 assigns .4 : .6

to (a, d∗) : (c, a∗); but, in Figure 1.2, P2 assigns .4 : .6 to (a,d∗) : (c,b∗). In the former case, P2’s

best response is (d,b∗), while in the latter case it is (d, a∗).

In sum, if the non-IU play only arises from errors—and not from strategic reasoning—we would

expect to see the same distribution of play across Figures 1.1 and 1.2. However, if P2 is rational and

believes that P1 is strategic, there may well be different distributions of play across Figures 1.1 and

1.2, even if there are also errors. The econometric analysis will show that the observed differences

in empirical distributions cannot arise from a single true distribution of play. This means that the

differences in distributions cannot solely be an artifact of errors—the two distributions must be

fundamentally different.7

Assumptions on Strategic Reasoning So far, we have taken a broad view of strategic rea-

soning. This choice is deliberate. Our goal is to address the question: Is bounded reasoning about

rationality determined by limits on the ability to engage in interactive reasoning? For the pur-

pose of addressing this question, we want to make few assumptions about the nature of reasoning

and beliefs that players hold. A restrictive model of strategic reasoning would involve auxiliary

assumptions about reasoning and beliefs—assumptions that require verification separate from our

identification strategy. That said, if a player’s ability to reason about rationality is not determined

by limits in ability, there is room for particular forms of strategic reasoning to systematically shape

beliefs. Understanding the nature of such reasoning can inform new models in epistemic game

theory and new solution concepts. With this in mind, we explore a natural class of assumptions,

with an eye toward letting the data tell us whether or not these assumptions serve to shape players’

beliefs.

Models of Heuristic Beliefs Suppose P2 does not believe that “P1 is rational,” but does believe

that “P1 is strategic.” In this case, P2 believes that P1 has a theory for how to play the game.

In principle, P2’s model of P1’s theory may be complex. But, it seems natural that P2’s model is

shaped by simple heuristics or rules-of-thumb that P1 can adopt.

Let’s take a concrete example of one such a heuristic: P1 seeks to maximize the minimum payoff

that she can receive. If P2 reasons that this is the only criterion that determines P1’s strategic

belief, then P2 would assign probability 1 to P1 choosing the strategy that is best according to that

criterion—i.e., to P1 choosing the dominant strategy (a,Π1(a)). If, instead, P2 thinks that this is

only one criterion that can shape P1’s beliefs, then P2 may not be prepared to assign probability

1 to the dominant strategy. However, if this heuristic is prominent in P2’s model, then he should

reason that strategies associated with higher minimum payoffs are more likely. Thus, in Figure 1.1,

P2’s belief should satisfy

Pr2(a,Π1(a)) ≥ Pr2(b,Π1(b)) ≥ Pr2(c,Π1(c)) ≥ Pr2(d,Π1(d)), (2)

7We are not saying that there are no errors: The empirical distributions may be different from the true distributions.
But, the econometric analysis rules out the hypothesis that the two empirical distributions are realizations of a single
true distribution—that the only difference between the distributions are errors.
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since (a,Π1(a)) has a minimum payoff of 15, (b,Π1(b)) has a minimum payoff of 14, etc.

Of course, maximizing the minimum payoff is only one of many possible heuristics. This paper

focuses on a class of three heuristics. The heuristics are based on whether P1 seeks to maximize the

maximum, minimum, or sum of payoffs that she can receive. Our goal is to understand whether the

class, as whole, is prominent in forming P2’s strategic beliefs. That is, the goal is to either falsify or

provide evidence in favor of the hypothesis that P2’s beliefs are shaped by this class of heuristics. As

such, the experiments are designed so that P1 ranks strategies the same way irrespective of which

heuristic in the class P1 holds. That is, (e,Π1(e)) has a higher maximum payoff than (f,Π1(f)) if

and only if (e,Π1(e)) has a higher minimum payoff and a higher payoff sum than (f,Π1(f)). In this

case, we say that (e,Π1(e)) heuristically dominates (f,Π1(f)).

Observable Implications of Heuristic Beliefs Models We pointed out that, if a rational P2

believes that P1 is strategic, P2’s behavior may vary across Figures 1.1 and 1.2. In the specific

case in which P2 holds heuristic beliefs, we can provide a tighter prediction on P2’s behavior. To

better understand, it will be useful to understand how the differences between Figures 1.1 and 1.2

impact the nature of heuristic beliefs.

Recall, there are two differences between Figures 1.1 and 1.2. First, in the game G, two of P1’s

rows are flipped: b and d. Second, the permutation Π1 changes. Flipping the rows in G impacts

how actions in G are ranked according to the heuristics. In Figure 1.1, b heuristically dominates

c which heuristically dominates d; in Figure 1.2, d heuristically dominates c which heuristically

dominates b. Changing the permutation changes which actions in G∗ correspond to the actions b,

c, and d. Taken together, a player who holds heuristic beliefs has beliefs that satisfy

Pr2(a, d∗) ≥ Pr2(b,b∗) ≥ Pr2(c, a∗) ≥ Pr2(d, c∗) (3)

in Figure 1.1, but

Pr2(a, d∗) ≥ Pr2(d, c∗) ≥ Pr2(c,b∗) ≥ Pr2(b, a∗) (4)

in Figure 1.2. These different requirements of heuristic beliefs impacts which strategies are vs. are

not a best response.

As an illustration, suppose that P2 assigns probability .85 to the heuristic best strategy, proba-

bility .1 to the heuristic second-best strategy, and probability .05 to the heuristic third-best strategy.

While, in Figure 1.1, P2’s best response is to play (c, a∗), in Figure 1.2, P2’s best response is to

play the IU (b, a∗). So, such a player would depart from IU in Figure 1.1, but not in Figure 1.2.

If, instead, P2 assigns probability .75 : .15 : .1 to the heuristic best, second-best, and third-best

strategies, P2’s best response would depart from IU in both games—but would involve different

behavior across the two games: In Figure 1.1, (c, a∗) is the best response; in Figure 1.2, (d, a∗) is

the best response.

Notice, in each of these examples, P2 forms his heuristic belief systematically; that is, he assign

the same probability to the heuristic-best vs. second-best, etc. Even in this case, P2’s best responses

differ across the two games. Payoffs in Figures 1.1 and 1.2 were chosen so that this is true more
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generally.8 Figures 5.1-5.2 in Section 5 illustrate that the set of strategies that are a best response

to some heuristic belief differs across the two figures—pointing to one observable implication of

heuristic beliefs.

Differences in Identified Rationality Bounds There is a second observable implication of

Heuristic Belief Models: We would expect to see more subjects play IU in Figure 1.2 than in

Figure 1.1. To understand why, suppose that P2 holds a heuristic belief. Then, he will assign some

probability p > 0 to P1 choosing the heuristic-best strategy; P1’s heuristic-best strategy is P1’s

dominant strategy. (Thus, we can view P2 as holding a belief that assigns probability p to P1 being

rational and probability (1 − p) to P1 playing an invariant but irrational strategy.) Certainly, if

p = 1, P2’s IU strategy is a best response to such a belief. However, it will also be a best response if

p is less than 1 but “high.” Consider the minimum probability p that P2 can assign to the dominant

strategy of P1 and have the IU strategy as a best response. This probability is smaller in Figure

1.2 than in Figure 1.1. (This feature is by design—that is, the payoffs in Figures 1.1 and 1.2 were

chosen so that this property holds.) So, for instance, a rational P2 that always assigns probability

.85 to P1’s dominant strategy would not play IU in Figure 1.1, but must play IU in Figure 1.2.

Identified Gap The differences in the identified rationality bounds have consequences for the

identification of a gap between the rationality and strategic bounds. To see this, suppose that

players’ actual rationality and strategic bounds do not vary across treatments. With heuristic

beliefs, we would expect Figure 1.1 to be associated with a lower identified rationality bound

relative to Figure 1.2. So the identified gap will be larger in Figure 1.1 relative to Figure 1.2.

Figures 1.1 vs. 1.2 serve different roles in our analysis. Both games allow us to identify a gap.

However, the identified gap is a lower bound on the actual gap. We would expect Figure 1.2 to

underestimate the gap relative to Figure 1.1. For this reason, we think of Figure 1.1 as better suited

for identifying the gap. It will be part of, what we will call, an Identification treatment. While

Figure 1.2 does allows us to identify a gap, its central role is to allow for the comparative statics

discussed above—i.e., to generate a change in the game that allows us to address the question of

deliberate choice and to investigate the heuristic beliefs model. So, it will be part of, what we will

call, a Comparative Static treatment.

2 Identifying the Gap

This section lays out key assumptions in our identification of the rationality and strategic bounds.

We do so in the context of a four-player game. Doing so has two benefits relative to the two-player

game. First, it allows us to identify a gap between rationality and strategic bounds up to four levels

of reasoning. Second, it allows us to use behavior across player roles to tighten the identification.

8This will not be—and cannot be—true for every heuristic belief. For instance, a belief that assigns probability 1 to
P1’s dominant strategy is a heuristic belief. To distinguish between deliberate choice and noise, the IU strategy is
the same across the two games and, so, P2’s best response will be the same.
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P1’s Payoffs
P4

a b c d

P1
a 17 15 18 16
b 15 14 15 15
c 6 4 14 8
d 12 2 2 10

P2’s Payoffs
P1

a b c d

P2
a 8 14 4 18
b 16 4 2 10
c 15 17 4 4
d 14 6 20 10

P3’s Payoffs
P2

a b c d

P3
a 12 14 7 20
b 18 4 7 14
c 8 16 2 6
d 2 15 17 8

P4’s Payoffs
P3

a b c d

P4
a 6 8 16 2
b 20 12 12 6
c 14 17 4 6
d 8 2 15 18

(a) Figure G

P1’s Payoffs
P2

a∗ b∗ c∗ d∗

P1
a∗ 6 4 14 8
b∗ 15 14 15 15
c∗ 12 2 2 10
d∗ 17 15 18 16

P2’s Payoffs
P1

a∗ b∗ c∗ d∗

P2
a∗ 8 14 4 18
b∗ 16 4 2 10
c∗ 15 17 4 4
d∗ 14 6 20 10

P3’s Payoffs
P2

a∗ b∗ c∗ d∗

P3
a∗ 12 14 7 20
b∗ 18 4 7 14
c∗ 8 16 2 6
d∗ 2 15 17 8

P4’s Payoffs
P3

a∗ b∗ c∗ d∗

P4
a∗ 6 8 16 2
b∗ 20 12 12 6
c∗ 14 17 4 6
d∗ 8 2 15 18

(b) Figure G∗

Figure 2.1. Identification Game

Figure 2.1 describes two games, G and G∗. Each of the games has a ring structure (Kneeland,

2015): Player i’s (Pi’s) payoffs depend only on the behavior of Player (i− 1) (P(i− 1)). (We adopt

the convention that P0 ≡ P4). Let us point to three important features of the games. First, P1’s

and P2’s payoff matrices are as in Figure 1.1. So, for P1, the payoff matrix in G∗ is a relabeling

of the payoff matrix in G and P2 has the same payoff matrix across the two games. P3 and P4

also have the same matrices across the two games. Second, while P1 has a dominant strategy, all

strategies are undominated for P2, P3, and P4. Third, the games are dominance solvable.

Figure 2.2 also describes two games with a ring structure. The only difference between Figure

2.1 and 2.2 is P1’s payoff matrix. Whereas P1’s payoffs in Figure 2.1 correspond to Figure 1.1,

P1’s payoffs in Figure 2.2 correspond to Figure 1.2. Thus, round-for-round, iterated dominance is

the same across Figures 2.1 and 2.2. Given the connection to Figures 1.1-1.2, we refer to Figure

2.1 as the Identification Game and Figure 2.2 as the Comparative Static Game. Each subject will

play one of these games, not both.

For the purpose of describing how the rationality and strategic bounds are identified, we will

focus our discussion on the Identification Game (Figure 2.1). A subject who is assigned to the Iden-

tification Game plays both G and G∗, in each of the player roles. As such, an observation consist of a

subject’s behavior across eight games—that is, an observation is a profile x = (x(1), x(2), x(3), x(4)),

where each x(i) ∈ {a,b, c,d}×{a∗, b∗, c∗,d∗} indicates the subject’s behavior in the role of Pi across

both G and G∗. We assume that each subject is rational (and, so, strategic). Therefore, we can

use the subjects’ behavior across both games and player roles to provide a lower bound on strategic

reasoning and an upper bound on reasoning about rationality. This provides us with a conservative

estimate (i.e., an underestimate) of the gap between the strategic and rationality bounds.

The next subsections will elaborate on the identification strategy. But, Section 1 provided the

basic insight: If we identify a subject as having a rationality bound of m, the subject plays IU in
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P1’s Payoffs
P4

a b c d

P1
a 17 15 18 16
b 12 2 2 10
c 6 4 14 8
d 15 14 15 15

P2’s Payoffs
P1

a b c d

P2
a 8 14 4 18
b 16 4 2 10
c 15 17 4 4
d 14 6 20 10

P3’s Payoffs
P2

a b c d

P3
a 12 14 7 20
b 18 4 7 14
c 8 16 2 6
d 2 15 17 8

P4’s Payoffs
P3

a b c d

P4
a 6 8 16 2
b 20 12 12 6
c 14 17 4 6
d 8 2 15 18

(a) Figure G

P1’s Payoffs
P2

a∗ b∗ c∗ d∗

P1
a∗ 12 2 2 10
b∗ 6 4 14 8
c∗ 15 14 15 15
d∗ 17 15 18 16

P2’s Payoffs
P1

a∗ b∗ c∗ d∗

P2
a∗ 8 14 4 18
b∗ 16 4 2 10
c∗ 15 17 4 4
d∗ 14 6 20 10

P3’s Payoffs
P2

a∗ b∗ c∗ d∗

P3
a∗ 12 14 7 20
b∗ 18 4 7 14
c∗ 8 16 2 6
d∗ 2 15 17 8

P4’s Payoffs
P3

a∗ b∗ c∗ d∗

P4
a∗ 6 8 16 2
b∗ 20 12 12 6
c∗ 14 17 4 6
d∗ 8 2 15 18

(b) Figure G∗

Figure 2.2. Comparative Static Game

the role of Pi=P1,. . . ,Pm—but not in the role of P(m + 1). If we identify a subject as having a

strategic bound of m, the subject plays a non-constant strategy profile in the role of Pm and a

constant strategy profile in the role of Pi for each i > m.

2.1 Identifying the Rationality Bounds

Say a subject is 1-rational if, in the role of each Pi, she plays a best response given a belief about

P(i− 1)’s play of the game. Say a subject is m-rational if, in the role of each Pi, she plays a best

response given a belief that assigns probability 1 to the event that P(i − 1) is (m − 1)-rational.

Note, a subject is m-rational if and only if she satisfies rationality and (m − 1)th-order belief of

rationality (R(m − 1)BR). (See, e.g., Remark 5.1 in Battigalli, Friedenberg, and Siniscalchi, 2021

for this standard result.) Say the subject has a rationality bound of m if she is m-rational but not

(m+ 1)-rational.

There is a tight connection between m-rationality and the IU strategies: A subject is m-rational

if and only if, in the role of each Pi, she plays a strategy that survives m rounds of iterated

dominance or, equivalently, m rounds of rationalizability. (See, e.g., Tan and da Costa Werlang

(1988), Battigalli and Siniscalchi (2002), among others.) In the ring games given by G and G∗,

an observation x = (x(1), x(2), x(3), x(4)) survives m rounds of iterated dominance if and only if

(x(1), . . . , x(m)) is IU. As such:

Identification (Rationality Bound). Identify x = (x(1), x(2), x(3), x(4)) as having a rationality

bound of m if

(i) (x(1), . . . , x(m)) is IU; and

(ii) if m = 1, 2, 3, then x(m+ 1) does not survive IU.
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So, an observation is identified as having a rationality bound of m if the observed behavior is

consistent with m-rationality and, when m < 4, the observed behavior is inconsistent with (m+1)-

rationality. If a subject has a rationality bound ofm ≤ 4, then her behavior generates an observation

with an identified rationality bound of n ≥ m. But, if a subject is m-rational for m > 4, then her

behavior generates an observation with an identified rationality bound of 4.

Importantly, the identification strategy makes use of the subject’s behavior across all player

roles. For instance, suppose we observe some x = (x(1), x(2), x(3), x(4)), where x(4) is IU and x(2)

is not IU. Suppose, unlike the identification strategy here, we identified the rationality bound by

only looking at observed behavior in a single player role. Then, we would use the fact that x(4) is

IU to incorrectly conclude that the subject’s rationality bound is 4. However, the subject’s behavior

in the role of P2—namely, x(2)—does not survive two rounds of iterated dominance. As such, the

observation x is inconsistent with a rational subject who assigns probability 1 to the event that

“P1 is rational.” As a consequence, the subject’s behavior is inconsistent with 4-rationality. Thus,

our identification strategy instead identifies this observation as having a rationality bound of 1.

2.2 Identifying the Strategic Bounds

Section 1 gave the basic idea for how we identify the strategic bound: We identify P2’s strategic

bound as 1 if we observe P2 play a constant strategy. We identify P2’s strategic bound as 2 if his

behavior is inconsistent with a strategic bound of 1 and, moreover, it is a best response under a

2-strategic belief. This is the approach that we take more generally.

When we identify a subject’s reasoning, we will assume that she is rational—not simply strategic.

Moreover, we assume that no subject’s behavior (in any player role) is a result of indifference.9 This

implies that each subject chooses amongst pure strategies. In addition, we assume that each subject

believes that others choose amongst pure strategies.10

With this in mind, we think of the subject as having a belief in each player role Pi about

P(i− 1)’s behavior across G and G∗. Write Pri for Pi’s distribution on {a,b, c,d}×{a∗, b∗, c∗,d∗}.
So, Pri(e, f∗) is the probability that Pi assigns to P(i − 1) playing the strategy (e, f∗). We must

specify what it means for the subject to believe that the other players are not strategic vs. are

strategic. For that, we introduce two identification assumptions: the Principle of Non-Strategic

Reasoning and the Principle of Strategic Reasoning.

Principle of Non-Strategic Reasoning Consider the case in which a subject believes that

others are not strategic. Section 1 introduced the basic idea: If Pi believes that P(i − 1) is not

strategic, she reasons that P(i − 1) does not have a theory about how to play the game. As a

consequence, she believes that P(i − 1)’s behavior does not depend on specific parameters of the

9The data in this paper supports this assumption. This can be seen by applying the argument in Kneeland’s (2015)
footnote 20 to our dataset. Kneeland’s data also supports this assumption. (Footnote 20 discusses rationalizable
strategies, but the same argument applies to all strategies.)

10This will effectively follow from assumptions about strategic reasoning that we impose below. For clarity, we simply
assume this from the onset.
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game—including P(i − 1)’s payoffs. Thus, Pi has the same belief about how P(i − 1) plays the

game in both G and G∗.

This is the approach we take more generally. If a subject believes that others are not strategic,

then she reasons that their behavior does not depend on the details of the game. This implies that,

within a given player role, she reasons that the behavior of others does not depend on whether G

versus G∗ is played. But, within a given a game, it also implies that she reasons that the behavior

of others does not depend on the player role.11

Say a subject believes others are not strategic if she satisfies:

Principle of Non-Strategic Reasoning: The subject has the same belief Pr in

each player role, i.e, Pri = Pr for each i = 1, 2, 3, 4. Moreover, this belief satisfies

Pr(a, a∗) + Pr(b,b∗) + Pr(c, c∗) + Pr(d,d∗) = 1.

Call a belief for Pi, Pri, a constant belief if Pri(a, a∗) + Pri(b,b∗) + Pri(c, c∗) + Pri(d,d∗) = 1. The

Principle of Non-Strategic Reasoning says that the subject has the same constant belief in each

player role.

Principle of Strategic Reasoning Consider the case in which a subject believes that others

are strategic. Section 1 introduced the basic idea: If Pi believes that P(i − 1) is strategic, she

reasons that P(i − 1)’s decisions are determined by his payoff matrix and potentially his beliefs

about play. For instance, Pi may believe that P(i− 1) adopts a rule-of-thumb in which he always

chooses a strategy that generates the highest maximum payoff—or, alternatively, that P(i − 1)

adopts a rule-of-thumb that generates the highest minimum or sum of payoffs. Or, alternatively,

Pi may believe that P(i−1) adopts a rule-of-thumb whereby P(i−1), first, chooses a strategy that

could lead to a payoff of 6 if such an action exists and, second, if not, plays a best response given

his subjective belief about the play of the game. Or, alternatively, Pi may believe that P(i− 1) is

rational. In each of these cases Pi believes that P(i − 1) has some theory about how to play the

game; in the latter two examples, she believes that P(i− 1)’s rule-of-thumb depends on his beliefs.

More generally, when we think of a subject that believes the other players are strategic, we

think of a subject that believes that other players choose a strategically optimal strategy. To

understand which behavior is strategically optimal, notice the following: For each player Pi, there is

a permutation Πi of i’s actions fromG toG∗ that preserves Pi’s payoff matrix. P1’s permutation was

described on p. 5. For Pi=P2,P3,P4, the permutation is constant—i.e., mapping each Πi(e) = e∗. If

a strategic Pi adopts a rule-of-thumb that does not depend on her belief about P(i− 1)’s behavior,

then her rationale for choosing e in G would also serve as a rationale for playing the permuted Πi(e)

in G∗. The same conclusion holds for any strategic Pi if she has the same beliefs about P(i− 1)’s

behavior across G and G∗ (i.e., if the probability she assigns to e in G is the same as the probability

she assigns to Π(i−1)(e) in G∗). Put differently, in these cases, Pi’s strategic optimality is invariant

to the permutation of payoff-equivalent action labels.

11This is a reasonable assumption in the experiment, where subjects do not observe the identity of others.
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With this in mind, say Pi is strategic if, whenever Pi has a constant belief, she plays a strat-

egy (e,Πi(e)) ∈ {(a,Πi(a)), (b,Πi(b)), (c,Πi(c)), (d,Πi(d))}. To better understand this definition,

suppose that Pi is strategic. If Pi has different beliefs across G and G∗, we cannot draw conclusions

about her behavior. However, if she has the same beliefs across G and G∗, any of her invariant

strategies—i.e., strategies of the form (e,Πi(e))—is strategically optimal. Moreover, in that case,

the invariant strategies are the only strategies that are strategically optimal, provided Pi is not

indifferent.

Say a subject believes that others are strategic if, in each player role Pi, she satisfies:

Principle of Strategic Reasoning: Suppose Pi believes that P(i− 1) has a constant

belief. If Pri(e, f∗) > 0, then (e, f∗) = (e, ,Π(i−1)(e)).

The Principle of Strategic Reasoning captures the idea that Pi believes P(i − 1) chooses a strate-

gically optimal strategy and is not indifferent between any such strategies. Thus, if Pi believes

that “P(i− 1) has the same beliefs about P(i− 2)’s behavior across G and G∗,” then the principle

requires Pi to believe that P(i− 1) plays an invariant strategy.

To better understand this principle, suppose that P2 believes that P1 is strategic and that P1

has the same beliefs about P4’s behavior across G and G∗. For instance, P2 may assign probability

1/2 to P1 being rational and probability 1/2 to P1 adopting the lucky-6 rule-of-thumb. In that

case, Pr2(a, d∗) = Pr2(c, a∗) = 1/2. The Principle of Strategic Reasoning implicitly requires that P2

has the same belief about the nature of P1’s strategic optimality criterion across G and G∗. So,

for instance, P2 cannot assign probability 1 to P1 playing a best response in G and probability

1 to P1 playing the lucky-6 strategy in G∗. If P2 had such a belief, he would believe that P1’s

theory of how to play the game changes across G and G∗, despite the fact that the two games are

payoff-equivalent (up to the permutation of action labels).12

Strategic Bounds Say a subject is 1-strategic if, in each player role, she is strategic. Say a

subject is 2-strategic if she is 1-strategic and, in each player role, she satisfies the Principle of

Strategic Reasoning. Inductively, say a subject is k-strategic if she is (k − 1)-strategic and she

believes (i.e., assigns probability 1 to the event) that other subjects are (k−1)-strategic. A subject

has a strategic bound of 1 if she is 1-strategic and satisfies the Principle of Non-Strategic Reasoning.

Inductively, a subject has a strategic bound of k if she is k-strategic and believes that other players

have a strategic bound of (k − 1).

We will inductively identify the strategic bounds. (Proposition A.1 in Appendix A.1 estab-

lishes that this identification corresponds to the minimal strategic bound consistent with observed

behavior.) We begin with a strategic bound of k = 1.

12Take another example: Suppose P3 believes that P2 maximizes her expected payoffs and that P2 assigns probability
1/2 : 1/2 to (a, a∗) : (d, d∗). Then P3 believes that P2 is indifferent between playing a and b in G. The Principle of
Strategic Reasoning requires that P3 thinks that the method P2 uses to resolve this indifference in G gets translated
into G∗. For instance, P3 may reason that P2 resolves this indifference in G by choosing the action with the highest
minimum payoff (i.e., a); but, if so, then P3 must also reason that P2 resolves this indifference in G∗ by choosing
the action with the highest minimum payoff (i.e., a∗). If not, P2 would effectively be using a different notion of
strategic optimality across the two games.
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Identification (Strategic Bound 1). Identify (x(1), x(2), x(3), x(4)) as having a strategic bound

of 1 if there exists a constant belief Pr on {a, b, c, d} × {a∗,b∗, c∗, d∗} so that each x(i) is a unique

best response under Pr.

If we identify an observation x = (x(1), x(2), x(3), x(4)) as having a strategic bound of 1, then

each of x(1), x(2), x(3), and x(4) is a best response under the same constant belief. In the role

of P1, the observed behavior x(1) must be non-constant: The dominant strategy (a, d∗) is the

only strategy that can be a best response to any belief. In the role of Pi=P2,P3,P4, the observed

behavior x(i) must be constant: Pi=P2,P3,P4 has the same payoff matrix in G and G∗ and so

only a constant strategy can be a unique best response to a constant belief. (The uniqueness

requirement reflects the assumption that no behavior is an artifact of indifference.) Thus, x ∈
{(a,d∗)} × {(a, a∗), (b, b∗), (c, c∗), (d, d∗)}3.

Suppose that we have identified strategic bounds of 1, . . . , k − 1, where 4 > k − 1. We now

identify a strategic bound of k.

Identification (Strategic Bound k ≥ 2). Identify (x(1), x(2), x(3), x(4)) as having a strategic

bound of k ≥ 2 if it has not been identified as having a strategic bound of j < k and the following

hold:

(i) x(1) = (a, d∗);

(ii) x(2) is a unique best response under a 2-strategic belief; and

(iii) for each j with 4 ≥ j > k, x(j) is constant.

To better understand the identification, focus on a subject who has a strategic bound of 2. This

is a subject who, in each player role Pi believes that “P(i− 1) is strategic and believes P(i− 2) is

non-strategic.” (This uses the fact that she believes that others are strategic and have a strategic

bound of 1.) Recall, if P(i− 1) believes that “P(i− 2) is non-strategic,” then P(i− 1) has the same

belief about P(i− 2)’s behavior across G and G∗. Thus, the Principle of Strategic Reasoning says

that, in the role of Pi, this subject must believe that P(i− 1)’s behavior is invariant to permuting

equivalent action labels. That is, Pi’s belief—namely, Pri—must satisfy

Pri(a,Πi−1(a)) + Pri(b,Πi−1(b)) + Pri(c,Πi−1(c)) + Pri(d,Πi−1(d)) = 1. (5)

For Pi=P2, this is a 2-strategic belief and so x(2) must be a unique best response under a 2-strategic

belief. For Pi = P3,P4, this is a constant belief. (In that case, each (e,Πi−1(e)) = (e, e∗).) Since

x(i) = x(3), x(4) must be a unique best response and Pi’s matrix is the same across G and G∗, it

follows that x(i) = x(3), x(4) is constant.

Note, there are observations in {(a, d∗)} × {(a, a∗), (b, b∗), (c, c∗), (d,d∗)}3 that cannot be iden-

tified as having a strategic bound of 1; these are observations (x(1), x(2), x(3), x(4)) for which there

is no single constant belief Pr where each x(i) is a unique best response under Pr. (See Table

D.1.) Those observations are constant in player role Pi=P2,P3,P4. They can be identified with

a strategic bound of 2—but only if their behavior in the role of P2 is uniquely optimal under a
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2-strategic belief. More generally, an observation is identified as having a strategic bound of 2 if

and only if (i) x(1) is the dominant strategy; (ii) x(2) is a unique best response under a 2-strategic

belief; and (iii) x(3), x(4) are constant. Many of these observations have x(2) non-constant. (See

Tables D.2 and D.4.)

An observation is identified as having a strategic bound of 3 (resp. 4) if and only if (i) x(1) is

the dominant strategy; (ii) x(2) is a unique best response under a 2-strategic belief; and (iii) x(3)

is non-constant and x(4) is constant (resp. (iii) x(4) is non-constant). Tables D.5-D.6 provide the

observations with an identified strategic bound of 3-4.

2.3 Gap Between the Rationality and Strategic Bounds

The identified rationality bound must be less than the identified strategic bound. (See Lemma

A.6.) We seek to identify whether there is a gap between the identified rationality and identified

strategic bounds.

Identification (Gap versus No Gap).

(i) Identify (x(1), x(2), x(3), x(4)) as having a gap if the observation is identified with a ratio-

nality bound m ≥ 1 and a strategic bound of k > m.

(ii) Identify (x(1), x(2), x(3), x(4)) as having no gap if the observation is identified with a ratio-

nality bound m ≥ 1 and a strategic bound of k = m.

Notice, if an observation is identified as having a strategic bound of 1 or a rationality bound of 4,

then the observation is identified as having no gap.

To see the rationale, consider a rational subject who has a strategic bound of k. If the subject’s

behavior generates an observation with an identified gap, then the subject’s rationality bound must

be strictly less than k. (See Lemma A.7.) So, the subject’s rationality bound cannot be determined

by limitations in the ability to engage in interactive reasoning.

Finally, notice that, if the observation is identified as no gap, the behavior may still have been

generated by a rational subject whose rationality bound is strictly lower than her strategic bound.

(The identified rationality bound may be strictly higher than the subject’s rationality bound and

the identified strategic bound may be strictly lower than the subject’s strategic bound.) That is,

the identified gap is a conservative estimate of the gap.

3 Experimental Design

The experiment was conducted online using the ELFE subject pool at UCL.13 We used ORSEE

(Greiner, 2015) for recruitment and collected data from 295 undergraduate subjects. The program

13We ran three lab sessions in March 2020, just before in-person labs closed. The results from our online experiment
are in line with the results from the lab sessions. Because the online experiment is a different medium, we do not
include the data from the in-person sessions.
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used in the experiment was written in oTree (Chen, Schonger, and Wickens, 2016). Appendix C

provides screenshots of the instructions and an example game.

Each subject was assigned to one of two treatments: the Identification (IDENT) Treatment or

the Comparative Static (CS) Treatment. IDENT (resp. CS) corresponds to the games in Figure 2.1

(resp. Figure 2.2). Within a subject’s assigned treatment, the subject played G and G∗ in each of

the four player roles (P1, P2, P3, and P4). As such, each subject played eight games. The order of

the games was random. Subjects were required to spend at least 90 seconds on each of the games.

After making their choices in all games, subjects were given the opportunity to revise their choices.

There was no feedback throughout the play of the games and the revision.

The treatment was randomized at the subject level within each session—i.e., within a given

experimental session, some subjects were assigned to IDENT and others were assigned to CS. At

the end of the experimental session, subjects were randomly and anonymously matched with three

other participants in the same treatment. One of the eight games was selected for payment; the

same game was selected for the four subjects matched together. Subjects were paid based on their

action and the actions of their randomly matched counterparts. Subjects received the GBP value

of their payoff in the selected game.

Because the experiment was conducted online, we implemented several features important to

preserve anonymity, decrease dropout rates, increase attention, and ensure that subjects understood

the experiment.14 We highlight several of these features. First, we adopted a Zoom protocol similar

to that used by EBEL at UCSB. (Appendix C describes the protocol.) Second, we had a completion

fee of 3.5 GBP. Third, we implemented an incentivized quiz; a screenshot of the quiz can be found

in Appendix C. Subjects who answered all the quiz questions correctly on the first try received a

bonus of 3 GBP. Moreover, subjects who did not answer the quiz correctly within three tries were

automatically assigned to a low-stakes version of the game (played against a computer).15 Fourth,

on each page of the experiment, subjects could both reveal the instructions and anonymously ask

questions via a chat box. That is, they did not have to navigate between the experimental interface

and the Zoom app to either see instructions or chat with the experimenter.

On average, subjects earned 15 GBP plus the completion fee. In addition 89% of subjects

answered all the quiz questions correctly on the first try and, so, also earned the quiz fee. Subjects

were paid by bank transfer using Wise.

14Ex ante, we could not ensure that there would be no dropout. As such, we had to have an experimental design
that was robust to dropout. This is why we matched subjects into groups of four after subjects completed the
play of the game. (Note, this does not affect the incentives of participants.) If we end up with a session in which
a treatment does not have a multiple of four, we complete the incomplete group with behavior from subjects in a
complete group.

15 Only one subject was assigned to the low-stakes game. Because the incentives in that game were quite different
from Figures 2.1-2.2, that subject’s data is omitted from the dataset.
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Rationality Bound

Strategic Bound RB=1 RB=2 RB=3 RB=4
SB=1 39 – – –
SB=2 36 21 – –
SB=3 17 17 4 –
SB=4 40 46 3 44

Table 4.1. Gap Between Identified Rationality and Identified Strategic Bounds

Rationality

Strategic RB=1 RB=2 RB=3 RB=4

SB=1 15 – – –
SB=2 20 12 – –
SB=3 12 8 3 –
SB=4 27 24 3 16

(a) Identification Treatment (IDENT)

Rationality

Strategic RB=1 RB=2 RB=3 RB=4

SB=1 24 – – –
SB=2 16 9 – –
SB=3 5 9 1 –
SB=4 13 22 0 28

(b) Comparative Static Treatment (CS)

Table 4.2. Gap Between Identified Rationality and Identified Strategic Bounds: Treatment

4 Experimental Results

We collected data for 295 subjects. Of those, 147 subjects were assigned to IDENT and 148 subjects

were assigned to CS. Thus, there are 295 observations of the form xi = (xi(1), xi(2), xi(3), xi(4)).

We use the approach laid out in Section 2 to assign each xi a rationality bound (if possible) and a

strategic bound (if possible).

Of the 295 subjects, 27 chose a dominated strategy and, thus, we cannot assign a rationality

bound to those subjects. Of the remaining 268 subjects, one chose strategies that are inconsistent

with our assumptions about strategic reasoning and, thus, we cannot assign a strategic bound to

that subject. As such, 28 subjects fall outside the purview of our analysis. So, our analysis focuses

on the behavior of the remaining 267 subjects.

4.1 The Gap

Table 4.1 reports the interaction between the identified rationality and strategic bounds. Obser-

vations with an identified gap are those that fall on the off-diagonal. Notice, 159 observations are

identified as having a gap. This constitutes 60% of the observations. Table 4.2 highlights that the

prevalence of an identified gap is not a treatment-specific effect. In IDENT, 67% of the observations

are identified as having a gap, and in CS, 51% of the observations are identified as having a gap.

(When we discuss the heuristic beliefs model, we return to discuss differences in these distributions.)

The identified gap reflects a stark contrast between the distribution of identified rationality and

strategic bounds. The majority of subjects have a low identified rationality bound: 49% have a

rationality bound of 1, and 32% have a rationality bound of 2. By contrast, 50% of subjects have

an identified strategic bound of 4.

On average, subjects identified as having a gap fare better relative to their no-gap counterparts.
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Identified Strategic Bound

SB=1 SB=2 SB=3 SB=4

No Gap 14.89 15.70 14.06 13.31
Gap - 15.63 15.44 14.61

Table 4.3. Average Expected Payoffs

To illustrate this, in each player role, we compute each subject’s (i.e., observation’s) expected

earnings given the empirical distribution of observed behavior. (This empirical distribution includes

the behavior of all subjects—both classified and non-classified.) We take the average across player

roles to compute each subject’s average expected earnings. Table 4.3 reports the average earnings

across observations identified with a strategic bound of k and a gap (resp. no gap).

Subjects identified with both a strategic bound of k ≥ 3 and a gap outperform their no-gap

counterparts. In fact, for subjects with an identified strategic bound of k ≥ 3, we can reject the

hypothesis that the true average payoffs of the no-gap subjects are greater than or equal to the

true average payoffs of their gap counterparts. (A 1-sided two-sample t-test returns a p-value of

.0001 for k = 3 and .0000 for k = 4. We take ‘reject’ to mean ‘reject at the 5% significance level.’)

However, we cannot reject the hypothesis that, when the identified strategic bound is 2, average

payoffs are the same across gap and no-gap subjects. (The 2-sided two-sample t-test returns a

p-value=.6123.)

The fact that gap subjects outperform their no-gap counterparts is of interest. Bounds on

reasoning about rationality are often interpreted as limits on the ability to engage in interactive

reasoning. However, such bounds may instead reflect a deliberate decision to not believe that

other players are rational (or reason about rationality). The fact that the gap subjects outperform

their no-gap counterparts may further indicate that some subjects are capable of reasoning about

rationality at higher levels, but simply choose not to do so.

4.2 Distribution of Play

Identifying the strategic bound rests on an implicit assumption that observed non-constant behavior

is a consequence of deliberate choice—and not only an artifact of errors. Section 1 (p. 9) provided a

method for how we can reject the null hypothesis that non-constant non-IU behavior is an artifact

of errors: If P2’s behavior were only an artifact of errors, then we would expect to observe the

same distribution of P2 play across the two treatments. Thus, we can reject the null hypothesis if

we observe a different distribution of P2 play in IDENT vs. CS. This very same argument applies

equally to the distribution of P3’s and P4’s behavior. By contrast, rational subjects with a strategic

bound of k ≥ 2 may induce different distributions of play in the roles of Pi=P2,. . .,Pk.

With this in mind, we look at the distribution of Pi’s play for subjects with an identified

strategic bound k ≥ i. Figure 4.1 illustrates that, in each player role Pi=P2,P3,P4, these empirical

distributions are different across treatments. In particular, in each player role, there is substantially

more IU play in CS vs. IDENT. Conversely, in each player role, there is some non-constant strategy
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(a) P2 Distribution Given SB ≥ 2
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(b) P3 Distribution Given SB ≥ 3
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(c) P4 Distribution Given SB ≥ 4

Figure 4.1. Pi Distribution of Play Given SB ≥ i: Error bars represent bootstrapped standard errors

(e, f∗) for which there is substantially more (e, f∗) play in IDENT vs. CS. For instance, in the role

of P2, 28% of subjects play (c, a∗) in IDENT, but only 1% of subjects play it in CS. Similarly, for

(d,b∗) in the role of P3 (23% in IDENT vs. 9% in CS) and (d, c∗) in the role of P4 (23% in IDENT

vs. 10% in CS).

Figure 4.1 highlights how the empirical distributions differ across player roles. It leaves open the

possibility that the empirical distributions are generated by a single underlying distribution. That

is, it leaves open the possibility that the distributions differ only in terms of errors.16 A chi-square

test of homogeneity allows us to test the hypothesis that the empirical distributions differ only in

terms of errors—that the two true distributions are, in fact, the same. We implement a conservative

application of this test, one that makes it difficult to reject the hypothesis of homogeneity.17 This

allows us to reject the hypothesis that the true distribution of P2’s play (conditional on an identified

strategic bound of k ≥ 2) is independent of the treatment. (The p-value is .0001.) The same

conservative application of the chi-square test of homogeneity does not allow us to reject the

hypothesis that the true distribution of P3’s (resp. P4’s) play conditional on an identified strategic

bound of k ≥ 3 (resp. k = 4) is independent of the treatment. (The p-values are .6575 and .8405,

16Note a subtle distinction: While the distribution of errors is expected to be the same across treatments, the
realization of errors may well be different across treatments.

17In each player role, there are strategies that are not played in either treatment. These zero-frequency strategies cause
a problem in computing the chi-square test statistic. The statistic itself can be corrected for by effectively ignoring
zero-frequency strategies. A conservative approach is to, nonetheless, take the number of degrees of freedom to be
one less than the number of strategies, i.e., 15; this is what we report in the text. A more permissive approach
would be to take the number of degrees of freedom to be one less than the number of strictly-positive-frequency
strategies. Under this permissive approach, the p-values are .0000, .1978, and .1396 respectively.
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respectively.) However, the fact that we can reject this null for some player allows us to reject the

hypothesis that the non-constant non-IU behavior is an artifact of errors.

Two features of the cross-treatment distributions of play provide auxiliary evidence that the

data is generated by strategic reasoning. First, Figure 4.1 highlights the fact that there are many

non-constant strategy profiles that are simply not played. If the non-constant data were generated

by errors, we might expect to see more of these strategies played; that is, we might expect some

of these non-constant strategies to be played even if only by a few subjects. (We would expect to

see these actions played if the dataset were large.) By contrast, as the discussion of the heuristic

beliefs model (Section 5) will drive home, the observed pattern is natural if the data is generated

by strategic reasoning.

Second, consider a subject whose actual strategic bound is k. If the subject were assigned to

both treatments then, in player roles Pi > Pk, she should play the same strategy across both.

As a consequence, for subjects with an identified strategic bound of k, we should observe the

same distribution of play across treatments. Indeed, this is what we observe. Moreover, these

distributions are (almost) degenerate. Subjects with an identified strategic bound of 1 play (d, d∗)

in the role of P2, (a, a∗) in the role of P3, and (b, b∗) in the role of P4; this behavior is irrespective

of the treatment. Almost all subjects with an identified strategic bound of k = 2, 3 play analogously

in the role of Pi > Pk.18

5 Heuristic Belief Model

The experimental results highlight that a substantial fraction of subjects have a gap between their

identified strategic and identified rationality bounds. This implies that their ability to reason about

rationality is not determined by limits in ability. As a consequence, there is room for particular

forms of strategic reasoning to systematically shape beliefs. This section introduces a natural class

of assumptions on strategic reasoning, with an eye toward letting the data tell us whether or not

these assumptions serve to shape players’ beliefs.

5.1 Key Assumptions

The heuristic beliefs model captures the idea that, if a player’s strategic reasoning departs from

reasoning about rationality, then her reasoning is shaped by certain natural heuristics. This is

captured by two interrelated assumptions: simple-strategic beliefs and ordered-heuristic beliefs.

To better understand these assumptions, note that strategically optimal behavior can depend

on both payoffs and beliefs. Rationality is one such form of strategic optimality. But, there are

many forms of strategic optimality that depend on payoffs and not on beliefs. For instance, the

lucky-6 rule-of-thumb depends on payoffs but not on beliefs. When a subject’s notion of strategic

18If the identified strategic bound is strictly lower than the actual strategic bound, then subjects with the same
identified strategic bound may well play differently across treatments. The fact that subjects play the same across
treatments suggests that the identified and actual strategic bounds may coincide.
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optimality does not depend on her beliefs, we think of the subject as adopting a rule-of-thumb or

heuristic.

Simple-strategic beliefs is an assumption that strategic reasoning is shaped by a belief that

either other players are rational or they adopt a belief-independent heuristic. That is, Pi believes

that P(i−1)’s strategically optimal but irrational behavior depends only on P(i−1)’s payoff matrix

(and not his beliefs). So, if Pi believes that P(i− 1) is strategic, she believes that P(i− 1) is either

rational or P(i− 1) plays an invariant strategy. With this in mind, write

Invi = {(a,Πi(a)), (b,Πi(b)), (c,Πi(c)), (d,Πi(d))}

for the set of invariant strategies of Pi.

Assumption 5.1. Pi has a simple-strategic belief Pri if Pri(e, f∗) > 0 implies that either (e, f∗)

is rational or (e, f∗) ∈ Invi−1.

Under the assumption of simple-strategic beliefs, a player’s belief can be decomposed into a “rational

part” and an “invariant (but irrational) part.” In the example of Section 1, we implicitly assumed

that P2 has a simple-strategic belief. (See footnote 4.)

Ordered-heuristic beliefs pertain to the relative weight that a subject assigns to invariant but

irrational strategies. Section 1 explained the idea: If P(i − 1) prefers (f,Πi−1(f)) to (e,Πi−1(e))

according to a class of natural heuristics, then Pi should assign a higher weight (f,Πi−1(f)) vs.

(e,Πi−1(e)). (Refer back to p. 11 for the rationale.)

With this in mind, write (f,Πi(f)) ≥max
i (e,Πi(e)) (resp. (f,Πi(f)) ≥min

i (e,Πi(e))) if the max-

imum (resp. minimum) payoff that Pi can achieve by choosing f is at least as high as the maximum

(resp. minimum) payoff that Pi can achieve by choosing e. Likewise, write (f,Πi(f)) ≥sum
i (e,Πi(e))

if the sum of Pi’s payoffs associated with f is at least as high as the sum of Pi’s payoffs associ-

ated with e. Say (f,Πi(f)) heuristic dominates (e,Πi(e)) for Pi if (f,Πi(f)) ≥max
i (e,Πi(e)),

(f,Πi(f)) ≥min
i (e,Πi(e)), and (f,Πi(f)) ≥sum

i (e,Πi(e)); in that case, write (f,Πi(f)) ≥2
i (e,Πi(e)).

Note, the games were designed so that, for each Pi=P1,P2,P3, ≥max
i ,≥min

i ,≥sum
i are complete orders

that coincide. So, for Pi=P1,P2,P3, ≥2
i is a complete order.19

Assumption 5.2. Pi satisfies ordered-heuristic beliefs if Pi has a simple-strategic belief Pri and

the following holds: If (f,Πi−1(f)) heuristic-dominates (e,Πi−1(e)) and (e,Πi−1(e)) is irrational,

then Pri(f,Πi−1(f)) ≥ Pri(e,Πi−1(e)).

The assumption of heuristic beliefs requires that, if Pi assigns positive probability to an irrational

strategy (e,Πi−1(e)) and (f,Πi−1(f)) has a higher maximum/minimum/sum than (e,Πi−1(e)), then

Pi assigns higher probability to (f,Πi−1(f)) over (e,Πi−1(e)). We refer to a belief that satisfies

this condition as an ordered-heuristic belief. (Note, an ordered-heuristic belief is, by definition, a

simple-strategic belief.)

19More precisely, ≥max
i and ≥sum

i are complete and strict orders that coincide. Moreover, for Pi=P1,P2,P3,
(f,Πi(f)) ≥max

i (e,Πi(e)) implies (f,Πi(f)) ≥min
i (e,Πi(e)). So, for Pi=P1,P2,P3, ≥2

i is a complete strict or-
der that coincides with ≥max

i =≥sum
i . Note, (f,Π4(f)) ≥max

4 (e,Π4(e)) does not imply (f,Π4(f)) ≥min
4 (e,Π4(e));

as such, ≥2
4 is not a complete order. However, because only P1 cares about P4’s behavior and we restrict attention

to rational observations, this will not matter.
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Let us pick up on two comments made in Section 1 about the ordered-heuristic beliefs assump-

tion. First, the assumption rests on three rules of thumb: maximum, minimum, and sum. We think

that each of these rules of thumb is reasonable. For Pi=P1,P2,P3, the relations ≥max
i , ≥min

i , ≥sum
i

coincide; as such, we need not “choose” between the criteria. (Again, this feature is by experimental

design.) Instead, we seek to understand whether or not they jointly impact strategic reasoning.

Second, we also don’t rule out the possibility that other rules of thumb may be at play. In fact,

that very possibility is why we allow Pri(e,Πi−1(e)) > 0 even if (f,Πi−1(f)) heuristic dominates

(e,Πi−1(e)). Instead, we view these rules of thumb as being prominent in how players engage in

strategic reasoning. Third, we do not insist that these rules of thumb are, in fact, an important

determinant of beliefs. Instead, we seek to allow the data to weigh in on this question. As we

will explain, it does so in two ways: first, in terms of the cross-treatment distribution of play and,

second, in term of the cross-treatment distribution of rationality bounds.

5.2 Heuristic Reasoning and Bounds

Say a subject is 1-heuristic if, in each player role, she is strategic. Say a subject is 2-heuristic if she

is 1-heuristic and, in each player role, (i) she has an ordered-heuristic belief, and (ii) she believes

that, if a subject is rational, the subject is not indifferent between any two strategies. For k ≥ 3, a

subject is k-heuristic if she is (k−1)-heuristic and believes that others are (k−1)-heuristic. She has

a heuristic bound of 1 if she is 1-heuristic and satisfies the Principle of Non-Strategic Reasoning.

Inductively, a subject has a heuristic bound of k if she is k-heuristic and believes that others have

a heuristic bound of (k − 1).

If a subject is k-heuristic, the subject is also k-strategic; likewise, if a subject has a heuristic

bound of k, the subject also has a strategic bound of k. (See Lemmata B.1-B.2.) The key is

that, if a subject has a simple-strategic belief, then she must believe that others satisfy the Prin-

ciple of Strategic Reasoning. So, this new model of strategic reasoning—the Heuristic Beliefs

(HB) model—is nested in the original model of strategic reasoning—what we now refer to as the

Strategic Beliefs (SB) model.

We identify an observation (x(1), x(2), x(3), x(4)) as having a heuristic bound of 1 if we identify

it as having a strategic bound of 1. To identify an observation as having a heuristic bound of

k ≥ 2, it will be useful to inductively define i-heuristic beliefs (an analogue to 2-strategic beliefs).

Set HB1 = {(a, d)}—i.e., the set that contains the dominant strategy for P1. Call Pri a i-heuristic

belief if it is an ordered-heuristic belief of Pi that assigns probability one to HBi−1 ∪ Invi−1. Set

HBi as the set of strategies of Pi that are a unique best response under an i-heuristic belief.

Identification. Identify (x(1), x(2), x(3), x(4)) as having a heuristic bound of k ≥ 2 if it has not

been identified as having a heuristic bound of j < k and the following hold:

(i) for each j = 1, . . . , k, x(j) ∈ HBj; and

(ii) for each j > k, x(j) is a constant strategy.
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An observation (x(1), x(2), x(3), x(4)) is identified as having a heuristic bound of k if and only if

the observation is consistent with a heuristic bound of k and there is no other j < k so that the

observation is consistent with a heuristic bound of j. Proposition B.1 in the Appendix shows that

this identification corresponds to the minimal heuristic bound consistent with observed behavior,

provided a k-heuristic subject satisfies (k−1)th-order belief of non-indifference. (Note, by definition,

a 2-heuristic subject believes non-indifference; this new assumption is an analogue for higher-

orders.)

If an observation is identified as having a heuristic bound of k, it is identified as having a

strategic bound of k. (See Lemma B.3.) But, an observation can be identified as having a strategic

bound of k even if it is not identified as having any heuristic bound. So, the HB model provides

tighter predictions than the SB model. (See Tables D.2-D.6 in the Appendix.) Despite the tighter

set of predictions, 88% of rational observations are consistent with the HB model, in that they are

identified as having some heuristic bound. We next discuss treatment differences that we would

expect—and observe—under the HB model.

5.3 Distribution of Play

The HB model has implications for the expected distributions of play: If a rational subject has

a heuristic bound of k ≥ i ≥ 2, then the subject’s behavior in the role of Pi lies in HBi. Since

a 2-heuristic belief depends on the treatment, the set HB2 varies based on the treatment. As a

consequence, for each k ≥ 3, the sets HBk will vary by treatment.

Distribution of P2’s Play To better understand the consequences for P2’s play, consider a

rational subject with a heuristic bound of k ≥ 2. In the role of P2, the subject plays a strat-

egy that is a unique best response to a 2-heuristic belief. We point out two properties of this

belief. First, because the belief is a simple-strategic belief, it assigns probability p ∈ [0, 1] to

the dominant strategy (a,Π1(a)) = (a, d∗) and probability (1 − p) to the irrational but invariant

{(b,Π1(b)), (c,Π1(c)), (d,Π1(d))}. This irrational invariant set differs across treatments since Π1

differs across treatments. Second, because the belief is an ordered-heuristic belief, it assigns weight

in accordance with P1’s heuristic dominance order. The heuristic dominance order differs across

treatments—above and beyond the permutation changing across treatments—since the rows b and

d are flipped for P1.

To make this more concrete, suppose this belief of P2 assigns probability zero to the “heuristic

worst” strategy—i.e., the strategy that is “worst” according to P1’s heuristic dominance order.

So, in IDENT, Pr2(d,Π1(d)) = Pr2(d, c∗) = 0, and in CS, Pr2(b,Π1(b)) = Pr2(b, a∗) = 0. Under

this assumption, we can draw P2’s belief in a two-dimensional simplex. Figure 5.1 depicts this

simplex; any point in the large triangle specifies the probability that P2 assigns to each of the

remaining invariant strategies. For both treatments, the x-axis represents the probability that

P2 assigns to the rational (a,d∗). This is also the probability that P2 assigns to the “heuristic

best” strategy. For both treatments, the y-axis represents the probability that P2 assigns to the
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Figure 5.1. P2’s Beliefs and Best Responses

“heuristic second-best” strategy and the distance from the diagonal represents the probability that

P2 assigns to the “heuristic third-best” strategy. So, the vertex (1, 0) corresponds to P2 assigning

probability 1 to the IU strategy; the vertex (0, 1) corresponds to P2 assigning probability 1 to

the “heuristic second-best;” and the vertex (0, 0) corresponds to P2 assigning probability 1 to the

“heuristic third-best.” Importantly, the treatments differ in what is the “heuristic second-best”

(resp. “heuristic third-best”) strategy: The second-best (resp. third-best) is (b,Π1(b)) = (b, b∗)

(resp. (c,Π1(c)) = (c, a∗)) in IDENT and (d,Π1(d)) = (d, c∗) (resp. (c,Π1(c)) = (c, b∗)) in CS.

The ordered-heuristic beliefs assumption adds the requirement that the probability assigned to

the x-dimension must be weakly higher than the probability assigned to the y-dimension which,

in turn, must be weakly higher than the probability assigned to the diagonal. So, the set of

beliefs consistent with the ordered-heuristic beliefs assumption corresponds to the small triangles

in Figure 5.1 (outlined in black). While these are each ordered-heuristic beliefs, they assign different

probabilities to P1’s strategies since P1’s matrix has changed. This has implications for P2’s best

response: In each treatment, P2 may have an ordered-heuristic belief that assigns probability p

(resp. q) to the heuristic-best strategy (resp. heuristic-second-best strategy) and, despite this, P2

may have a different best response across the treatments. This can be seen from the colored

areas within the triangles, which represent P2’s best responses. In particular, there are points in

the triangle at which the best response differs across treatments. Moreover, the set of all best

responses also differs across treatments: In IDENT, the strategies that are a unique best response

under some ordered-heuristic belief are (b, a∗), (c, a∗), and (d, a∗); in a sense, (c, a∗) is the most

prominent among these. In CS, the strategies that are a unique best response are (a,d∗), (b, a∗),

(b,d∗), (d, a∗), and (d, d∗).

The message remains analogous, even if P2 holds an ordered-heuristic belief that assigns positive

probability to the “heuristic worst” outcome. Figure 5.2 in the Appendix varies the probability

assigned to the “heuristic worst” outcome. 20 In each treatment, the set of non-constant strategies

20The probability that P2 assigns to the “heuristic third-best” strategy must be at least as high as the probability
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that are a best response under some ordered-heuristic belief is the same as in Figure 5.1. (The

only addition is that the constant (d, d∗) can be a best response to an ordered-heuristic belief in

IDENT.) So, put together, these figures depict HB2.

The predictions accord with the observed distributions of P2 play, conditional on being identified

as having a strategic bound of k ≥ 2. Refer to Figure 4.1a. First, we observe that more subjects

play (c, a∗) in IDENT (28%) vs. CS (1%); the strategy (c, a∗) is a best response (under a 2-heuristic

belief) only in IDENT. Second, we observe that more subjects play the IU strategy, (b, a∗), in CS

(67%) vs. IDENT (53%); the IU strategy is a “more prominent” best response in CS. More generally,

strategies that are played often are in HB2. But, more notably, the strategies that are not in HB2

are rarely played—this is the case despite the fact that about 3/4 of the feasible strategies are not

in HB2. In IDENT (resp. CS), only 6% (resp. 1%) of the strategies played are not in HB2.

Distribution of P3’s and P4’s Play Now turn to behavior in the role of Pj, where j ≥ 3. To

do so, consider a rational subject with a heuristic bound of k ≥ j. Since Pj has a simple-strategic

belief, any strategy that gets strictly positive probability must be a strategy that is either rational

for P(j− 1) or invariant for P(j− 1). Since the subject has a heuristic bound of j, Pj also believes

that the rational strategies of P(j − 1) are contained in HBj−1. As such, in the role of Pj, the

subject must assign probability one to

HBj−1 ∪ Invj−1 = HBj−1 ∪ {(a, a∗), (b, b∗), (c, c∗), (d, d∗)}.

Now notice that, because HB2 varies by treatment, the beliefs of such a P3 will vary by treat-

ment. As such HB3 varies by treatment. An analogous argument implies that HB4 varies by

treatment. The sets HB3 and HB4 can be read from Tables D.5-D.6.

The predictions accord with the observed distributions of play. Begin by focusing on subjects

with an identified strategic bound of k ≥ 3 and their behavior in the role of P3. There are three

notable features of the distribution. First, we observe that more subjects play (d,b∗) in IDENT

vs. in CS. This corresponds to the fact that (d,b∗) is in HB3 for IDENT but not CS. Moreover, in

IDENT, there is exactly one degenerate belief under which the strategy (d,b∗) is a best response—a

belief that assigns probability one to (c, a∗). As pointed out above, (c, a∗) is a best response under

a 2-heuristic belief in IDENT—indeed, it is a best response that is often played in IDENT. Thus, it

is intuitive that we would observe (d,b∗) played in IDENT. Second, we observe that more subjects

play the IU strategy (c,b∗) in CS; as we will explain in the next subsection, this is natural given

that, for P2, IU is a “more prominent” best response in CS. Third, strategies that are not in HB3

are not played often. (Only 11% of the strategies played are not in HB3.)

The picture is analogous for P4 behavior of subjects with an identified strategic bound of 4.

First, we observe more subjects play (d, c∗) in IDENT vs. in CS. Just like for P3, there is only

one degenerate belief under which the strategy (d, c∗) is a best response—a belief that assigns

assigned to the “heuristic worst.” So, increasing the probability of the “heuristic worst” strategy shrinks the heuristic
beliefs triangle and moves it to the interior of the simplex. For any ordered-heuristic belief, the probability of the
“heuristic worst” strategy is at most .25.
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Figure 5.2. P2 Beliefs and Best Responses
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Rationality Bound

Treatment RB=1 RB=2 RB=3 RB=4
Identification (IDENT) 53% 31% 4% 11%

Comparative Static (CS) 46% 31% 1% 22%

Table 5.1. Rationality bounds (p = .0391)

probability one to (d,b∗). This is a 3-heuristic belief in IDENT but not in CS. (The strategy (d, c∗)

is a best response under a 4-heuristic belief; however, any such belief must be non-degenerate

assigning positive probability to both HB3 and Inv3.) Second, we observe more IU behavior in CS.

Third, strategies that are not in HB4 are not played often. (Only 5% of the strategies played are

not in HB4.)

5.4 Identified Rationality Bounds

Assume that subjects’ actual rationality bounds do not vary across treatments. Under the HB

model, we would expect IDENT to be associated with lower identified rationality bounds relative

to CS. Section 1 (p. 12) pointed to the basic idea. We now expand.

Consider a rational subject whose heuristic bound is k ≥ 2. First focus on behavior in the role

of P2. Because P2 has an ordered-heuristic belief, the belief can be written as a vector (p, q, r),

where p is the probability of the “heuristic best” strategy, q is the probability of the “heuristic

second-best” strategy, and r is the probability of the “heuristic third-best” strategy. So, P2 assigns

probability p to P1’s dominant strategy. Certainly, if p = 1, P2’s IU strategy is a best response to

such a belief. However, it will also be a best response if p is less than 1 but “sufficiently high.”

Suppose P2 forms his 2-heuristic belief systematically across treatments—that is, P2 always

assigns the same probability p : q : r to the heuristic best: second-best: third-best strategies. (Of

course, what those strategies are change with the treatments.) Refer to Figures 5.1-5.2 and note

that the IU strategy is a best response in IDENT, only if it is also a best response in CS. Thus, if

P2’s 2-heuristic belief is determined systematically across treatments, then P2 would play the IU

strategy in IDENT only if P2 would also play the IU strategy in CS. (Even if P2 only has nearby

beliefs, a similar conclusion would hold.) But the converse does not hold: For the IU strategy to be

a best response in IDENT, P2 must assign p ≥ 121
158 to the heuristic-best strategy. However, in CS,

the IU strategy can be a best response if P2 only assigns probability p ≥ 80
137 to the heuristic-best

strategy.

The analysis of P3 and P4 yields analogous cross-treatment differences. The key is that a 3- or 4-

heuristic P3 equates “P2 is rational” with “P2 plays a best response to a 2-heuristic belief.” If such

a P3 thinks that P2 forms his 2-heuristic belief systematically across treatments, the probability

that P3 assigns to the event that “P2 plays the IU strategy” will be higher in CS vs. IDENT.

Thus, P3 is more prone to play IU in CS vs. IDENT. And similarly for P4.

Indeed, this is what we observe in the data. Table 5.1 implies that the empirical CDF of iden-

tified rationality bounds in CS first-order stochastically dominates the empirical CDF of identified
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Strategic Bound

Treatment SB=1 SB=2 SB=3 SB=4
Identification (IDENT) 11% 23% 16% 50%

Comparative Static (CS) 19% 20% 12% 50%

(a) Strategic Bounds (p = .2245)

Heuristic Bound

Treatment HB=1 HB=2 HB=3 HB=4
Identification (IDENT) 12% 23% 15% 50%

Comparative Static (CS) 21% 22% 11% 47%

(b) Heuristic Bounds (p = 0.2558)

Table 5.2. Empirical Distributions of Bounds by Treatment

rationality bounds in IDENT. IDENT is associated with a larger (resp. smaller) fraction of subjects

with an identified rationality bound of 1 (resp. 4). A chi-square test of homogeneity allows us to

reject the hypothesis that the true distributions of (identified) rationality bounds are the same.

(The associated p-value is .0391.)

5.5 Identified Gap

While the identified rationality bounds vary by treatment, we cannot rule out the possibility that

the true distributions of identified strategic bounds are the same across treatments. Refer to Table

5.2a, which depicts the empirical distribution of identified strategic bounds. (A chi-square test of

homogeneity is associated with a p-value of .2245, meaning that we cannot reject the hypothesis

of homogeneity.) Referring to Table 5.2b, a similar message pertains to the identified heuristic

bounds.

This suggests that, if subjects hold heuristic beliefs, we would expect to see a larger identified

gap in IDENT relative to CS. Indeed, that was the message of Table 4.2. In IDENT, 67% of

observations were identified as having a gap, and in CS, 51% of observations were identified as

having a gap. These results further suggest that the identified gap in CS may be an underestimate

of the actual gap.

5.6 Other Ring Game Data

To ensure that our findings are robust, it is useful to look at the implications of the HB model in

light of Kneeland’s (2015) and Sprenger and Zhao’s (2021) data. Both papers feature permuted

ring games in which players choose one of three actions. In our discussion, we order the players

so that, as in this paper, P1 has a dominant strategy; P2’s payoffs depend only on P1’s and P2’s

behavior; etc.

In Kneeland’s data, 99% of rational subjects have behavior consistent with the SB model and

81% have behavior consistent with the HB model. Of the classified subjects, 38% are identified as
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Figure 5.3. P2’s Beliefs and Best Responses

having a gap between their strategic and rationality bounds. This number is notably lower than the

cross-treatment 60% identified here (or the 67% identified in IDENT). However, viewed through

the lens of the HB model, this is what we would expect.

To see this, refer to Figure 5.3a. It illustrates P2’s best responses under any 2-heuristic belief, in

Kneeland’s games. Notice, the only non-constant behavior that is a best response to a 2-heuristic

belief is P2’s IU strategy. This implies that, under the HB model, we would also expect to see

more IU behavior in the role of P3 and P4, even if subjects deviate from 3- and 4-rationality. In

fact, in each player role Pi, the only non-constant strategy consistent with the HB model is the IU

strategy for Pi. Therefore, we would expect subjects to have a higher identified rationality bound

in Kneeland, even if their actual rationality bounds are the same as in our dataset. As such, we

would expect a smaller identified gap in Kneeland.

The full dataset from Sprenger and Zhao is not publicly available, but we can still infer the

behavior within a given player role. Their (within player role) data appears consistent with the

HB model, in that at least 90% of subjects play strategies consistent with the HB model. As an

example of how this consistency arises, refer to Figure 5.3b. The only non-constant non-IU strategy

that is a best response to a 2-heuristic belief is (a, c∗), and indeed 40% of subjects play (a, c∗) in

the role of P2.

It is worth noting that Sprenger and Zhao consider an alternate restricted model of strategic

reasoning: the focal beliefs model. That model is related to but distinct from the HB model. Under

the focal beliefs model, a player either assigns probability 1 to rationality or assigns probability 1

to the other player adopting a heuristic that is based on maximizing the sum (subject to a no-zero

requirement). Interestingly, the focal beliefs model does not predict any non-constant non-IU play,

something observed in the data. Moreover, the focal beliefs model does not predict our central

comparative static (pp. 8-10).

Table 5.3 compares the rates of IU play in the role of P2, in Kneeland and Sprenger and

Zhao. Notice, the rate is high (76%) in Kneeland and low (18%) in Sprenger and Zhao. When

viewed through the lens of the HB model, this is exactly what we would expect. To see this,

consider a rational subject whose heuristic bound is k ≥ 2. Suppose she forms her 2-heuristic
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Kneeland (2015) 76%
Comparative Static Treatment 57%
Identification Treatment 48%
Sprenger and Zhao (2021) < 18%

Table 5.3. Percentage of Rational Subjects that Play IU in P2

belief systematically across treatments—that is, in the role of P2, she always assigns the same

probability p : q to the heuristic best : second-best strategies. Refer to Figure 5.3a and notice that

the IU strategy is a best response in Sprenger and Zhao only if it is a best response in Kneeland.

Thus, the subject plays the IU strategy in the role of P2 in Sprenger and Zhao only if she does the

same in Kneeland.

We get a more complete picture by comparing this IU play in Kneeland and Sprenger and Zhao

to that in IDENT and CS. Refer to Table 5.3: P2’s IU play in Kneeland is higher than in CS and

P2’s IU play in Sprenger and Zhao is lower than in IDENT. Because these experiments vary in the

number of actions, the comparison of behavior across experiments is more involved. Nonetheless,

we can understand this difference in IU play in light of the HB model. For each treatment (or

experiment) T , let pT be the infimum of the set of p ∈ [0, 1] so that the following holds: There is a

2-heuristic belief Pr2 where (i) P2 assigns probability p to P1’s IU strategy, and (ii) in treatment

T , P2’s strict best response under Pr2 is his IU strategy. Thus, pT is the minimum probability that

P2 can assign to the heuristic best strategy of P1 (i.e., the rational strategy) and still have the IU

strategy as a best response. The key is that

pSZ > pIDENT > pCS > pK ,

where SZ denotes the Sprenger and Zhao experiment and K denotes the Kneeland experiment. (To

see this, refer to Figures 5.1, 5.2, and 5.3.) This suggests that, if subjects systematically determine

the probability that they assign to the heuristic best (or rational) strategy, then we should see more

IU behavior in Kneeland than in CS and more IU behavior in IDENT than in Sprenger and Zhao.

Indeed, this is what we observe.

6 Discussion

6.A Level-k and Cognitive Hierarchy: The level-k model (Costa-Gomes, Crawford, and

Broseta, 2001) and the cognitive hierarchy models (Camerer, Ho, and Chong, 2004) are often

motivated by limitations in the players’ ability to engage in interactive reasoning. This idea is so

engrained in the literature that papers typically use the phrase “depth of reasoning” to refer to

both the ability and the best-response bounds. Given the motivation, at first glance, it might seem

as though that literature should have something to say about the question in the current paper.

However, this is not the case.

This paper is concerned with departures from RCBR—a concept that is both conceptually and

behaviorally distinct from the level-k and cognitive hierarchy models. Conceptually, level-k behavior
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is consistent with unlimited ability to engage in interactive reasoning. Moreover, the epistemic

foundations for level-k behavior differ, in subtle ways, from m-rationality. See Brandenburger,

Friedenberg, and Kneeland (2020) for an analysis that backs up these assertions. Further, the

level-k and cognitive hierarchy models also allow for behavior that is consistent with RCBR. In

particular, in some settings, the level-0 behavior is rationalizable. As a consequence, behavior that

is viewed as level-k for some finite k will, in fact, be consistent with RCBR. Prominent examples

include coordination games and the 11-20 games of Arad and Rubinstein (2012) and Alaoui and

Penta (2016).21

Moreover, because of the literature’s motivation, it has not been concerned with identifying

ability bounds as distinct from best response bounds. Discussion 6.B points to some notable

exceptions. However, as we will highlight there, the literature’s measurement of ability is distinct

from the concept here—i.e., the ability to engage in interactive reasoning.

6.B Other Potential Approaches: We argued that it is difficult to measure the ability to

reason interactively without altering how players reason. That said, one might hope for another

approach: one based on varying whether a subject plays against a more vs. less “sophisticated”

subject pool—e.g., graduate vs. undergraduate, high vs. low Raven test score, computer vs. human,

grandmaster vs. student, etc. (The technique was pioneered in Palacios-Huerta and Volij (2009),

Agranov, Potamites, Schotter, and Tergiman (2012) and Georganas, Healy, and Weber (2015).)

Perhaps if a subject plays differently when playing against a more vs. less sophisticated group, this

should be taken as evidence that players engage in different levels of interactive reasoning across

those two groups. As a consequence, in one case—say, the less sophisticated case—there is evidence

that departures from RCBR are not driven by limits in ability.

This conclusion is premature—if not outright incorrect. Engaging in different levels of inter-

active reasoning is neither necessary nor sufficient for subjects to behave differently when playing

against different populations. This is a familiar lesson from epistemic game theory: Subjects can

have different beliefs about how different groups play the game, even if they engage in the same

level of interactive reasoning about those groups. And, conversely, a subject may engage in differ-

ent levels of interactive reasoning across groups, even if the subject has the same belief about play

across the groups.22 This is not only true, in principle, but also true for the experiments studied

in the literature.

Recent work by Alaoui, Janezic, and Penta (2020) takes a different approach to varying subjects’

level of “strategic sophistication.” Importantly, their paper cannot address the question we pose:

21Arad and Rubinstein (2012) argue that the 11-20 game is so simple that, in the context of that game, there is
unlimited ability to engage in interactive reasoning. Even if that were prima facie obvious, their paper would not
allow us to conclude that the bound on ability is strictly higher than the maximum number m consistent with
m-rationality—after all, in the 11-20 game, all behavior is consistent with RCBR.

22There is a second issue with this conclusion: It is not obvious that these notions of strategic sophistication are
correlated with the ability to engage in interactive reasoning. Fe, Gill, and Prowse (2021) makes this point in a
different context. In particular, they highlight that different measures of “sophistication” (in their context, measures
of theory-of-mind vs. measures of cognitive ability) may be conceptually distinct and lead to different behavior.
Thus, empirical work is needed to establish if and when they are “substitutable.”
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Is bounded reasoning about rationality driven by limited ability? To understand why, note that

Alaoui, Janezic, and Penta’s new approach keeps the subject pool fixed but varies the training a

given subject receives in “how to solve” the game. That is, the treatment changes a subject’s own

training, but does not vary the training of the pool of players the subject plays against. (In both

cases, the pool is untrained.) The idea is that a change in behavior post treatment suggests a

change in the subject’s ability to reason interactively. However, if the comparative static clearly

points to a variation in the subject’s ability to reason interactively, then it must be silent on whether

there is variation in the subject’s rationality bound. If the rationality bounds change in a way that

matches a change in ability, then the subject’s behavior would be consistent with no gap; if the

rationality bounds did not vary, the subject’s behavior would be consistent with a gap.23

6.C Strategic Bounds: Definition We pointed out that there are non-constant strategies

of P2 that are not a best response under a 2-strategic belief and we do not classify associated

observations as having (any) strategic bound. These observations are a best response under a

belief of P2 which does not believe that “P1 is strategic;” but, they are not a best response under

a belief of P2 that believes “P1 is not strategic.”

More generally, if Pi believes that “P(i − 1) is not strategic” then Pi does not believe that

“P(i − 1) is strategic.” But the converse does not hold. So, if we were to adopt a definition

of strategic bounds based, instead, on “not believing P(i − 1) is strategic,” we would classify

observations as we do, but also admit observations with higher strategic bounds. The approach we

take is more conservative. (At the same time, there is only one subject whose behavior is consistent

with a more lenient definition of strategic bounds.)

6.D Reasoning Across Games Table 5.1 pointed out that the identified rationality bounds

differ across treatments. We argued that, under the HB model, this is natural: Even if players have

the same rationality bounds across treatments, their identified rationality bounds may well differ

across treatments.

This points to a notable feature of the level-k and cognitive hierarchy literatures: In those

models, “levels of reasoning” is not a portable concept. (See, e.g., Georganas, Healy, and Weber,

2015.) That is, subjects who are characterized as being level-k reasoners in the context of one game

may be characterized as being level-j reasoners in the context of another game, for some j 6= k.

But, this behavior is also consistent with subjects whose identified rationality bounds change across

games, even if though their actual rationality bounds do not. Thus, m-rationality may well be a

23Alaoui, Janezic, and Penta draw this conclusion because they think of ability as arising from a level-k model. It is
worth noting that, for a minimally more permissive proxy of ability, it is not clear that subjects’ ability bounds do
vary across treatments. Because Alaoui, Janezic, and Penta focus on a variant of the 11-20 game, their experiments
cannot rule out that the training itself may change the subjects’ beliefs about how the game is played: This is so
even if, both before and after the training, the subjects reason according to common belief of rationality (and so
have unlimited ability to reason interactively). There is good reason to believe the training may change beliefs in
this way. In their version of the 11-20 game, the entire strategy set is IU. (Specifically, 20 is a best response under
a non-degenerate belief.) As such, under common belief of rationality, players may assign positive probability to
any strategy. The training implicitly suggests that 20 is not played and, so, may change beliefs.
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portable concept. This can be explored in future research, since the game parameters impact the

relationship between the identified and actual rationality bounds.

6.E A Route to New Solution Concepts In the Introduction, we pointed out that, if

bounded reasoning about rationality is not determined by limits in the ability to engage in in-

teractive reasoning, then players may well engage in forms of strategic reasoning distinct from

reasoning about rationality. The HB model highlights one such form of strategic reasoning. The

experimental results suggest that certain rules-of-thumb may well shape players beliefs, in so far as

they depart from reasoning about rationality. But, out of intellectual cautiousness, we stop short

of offering the model as a novel solution concept.

There are many important questions about the nature of strategic reasoning that are simply

not addressed by the HB model. For instance, we designed the experiments so that a class of

heuristics coincide; the experiment cannot speak to whether a specific heuristic within that class

drives heuristic reasoning. Likewise, we took no stand on how players reason across games that

differ by more than a relabeling of actions. (For that reason, we took no stand on how players

reason across player roles.) These—and, no doubt, other considerations—deserve further analyses.

We see the results here as opening up a literature.
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Appendix A The Identification Strategy

It will be convenient to introduce notation that will be used throughout the appendices. Given a

(compact metric) set Y , write ∆(Y ) for the set of probability measures on Y .

Denote the set of strategies by S = {a,b, c,d} × {a∗,b∗, c∗,d∗} and the set of observations by

X = S × S × S × S. As in Section 5 of the main text, we will write

Invi = {(a,Πi(a)), (b,Πi(b)), (c,Πi(c)), (d,Πi(d))}

Write SBk for the set of observations with an identified strategic bound of k. So, when

k ≥ 2, an observation x = (x(1), x(2), x(3), x(4)) ∈ SBk if and only if (i) x(1) = (a,d∗); (ii) x(2)

is a unique best response under a 2-strategic belief; and (iii) for each i ∈ {j : 4 ≥ j > k}, x(i) is

constant.

A.1 Identification of the Strategic Bounds

In this appendix, we draw a connection between behavior of a rational subject that has a strategic

bound of k and an observation x ∈ SBk. In doing so, we equate a rational subject with a subject

that plays a unique best response given her first-order belief (i.e., belief about observations). (This

fits with the earlier assumption that a rational subject is not indifferent between any two strategies.)

We will show that an observation x ∈ SBk if and only if (i) a rational subject with a strategic bound

of k would play x, and (ii) a rational subject with a strategic bound of j < k would not play x.

The result is immediate for k = 1. So we focus on showing the result for k ≥ 2. In particular,

we will show the following:

Proposition A.1. For each k ≥ 2 the following hold:

(i) If a rational subject with a strategic bound of k chooses an observation x, then x ∈ SBj for

some j ≤ k.

(ii) If x ∈ SBk, then there exists a rational subject with a strategic bound of k that chooses x.

Proposition A.1 serves to characterize the behavior of a rational subject who has a strategic

bound of k. Part (i) argues that a necessary condition is that the behavior has an identified strategic

bound of j ≤ k. Part (ii) gives sufficiency—an observation with an identified strategic bound of k

must be consistent with the behavior of a rational subject who has a strategic bound of k.

Proof of Necessity Proposition A.1(i) will follow immediately from the following Lemmata:

Lemma A.1. Consider a rational subject who has a strategic bound of k ≥ 2. In the role of P2,

the subject plays a strategy that is a unique best response to a 2-strategic belief.
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Lemma A.2. Fix some j, k with 4 ≥ j > k ≥ 2. Consider a rational subject who has a strategic

bound of k. In the role of Pj, the subject plays a constant strategy.

To show these results, it will be useful to, in turn, have two auxiliary lemmata.

Lemma A.3. Let Pi = P1,P3,P4. If Pi is strategic and believes that P(i−1) has a strategic bound

of 1, then Pi has a constant belief.

Proof. Suppose Pi believes that P(i−1) has a strategic bound of 1. Then, Pi believes that “P(i−1)

is strategic and satisfies the Principle of Non-Strategic Reasoning.” By the Principle of Strategic

Reasoning, Pi’s belief satisfies Pri(d, e∗) > 0 only if Π(i−1)(d) = e∗. Since i − 1 6= 1, Pi has a

constant belief.

Lemma A.4. If P1 is strategic and believes that P4 has a strategic bound of 2, then P1 has a

constant belief.

Proof. Suppose P1 believes that P4 has a strategic bound of 2. Then, P1 believes that “P4 is

2-strategic and believes that P3 has a strategic bound of 1.” By Lemma A.3, P1 believes that “P4

is 1-strategic and has a constant belief.” Applying the Principle of Strategic Reasoning, P1 believes

that P4 plays a constant strategy.

Proof of Lemma A.1. Since the subject has a strategic bound of k ≥ 2, in the role of P2, the subject

satisfies the Principle of Strategic Reasoning. It suffices to show that P2 believes P1 has a constant

belief: If so, the Principle of Strategic Reasoning implies that P2’s belief assigns probability one to

Inv1 = {(a,Π1(a)), (b,Π1(b)), (c,Π1(c)), (d,Π1(d))},

i.e., P2’s belief is a 2-strategic belief.

For k = 2, this follows immediately from the fact that the subject believes that the player in

the role of P1 satisfies the Principle of Non-Strategic Reasoning. For k = 3 (resp. k = 4), P2

believes that P1 has a strategic bound of 2 (resp. 3). As such, P2 believes that “P1 believes P4

has a strategic bound of 1 (resp. 2).” So, by Lemma A.3 (resp. Lemma A.4), P2 believes that P1

has a constant belief.

Proof of Lemma A.2. Since the subject has a strategic bound of k ≥ 2, the subject satisfies the

Principle of Strategic Reasoning. It suffices to show that, if j > k, Pj believes P(j−1) has a constant

belief: If so, the Principle of Strategic Reasoning implies that Pj’s belief assigns probability one to

Invj−1 = {(a,Πj−1(a)), (b,Πj−1(b)), (c,Πj−1(c)), (d,Πj−1(d))}.

Note, Pj’s belief is then a constant belief, as j − 1 is either 2 or 3. Since a rational subject has a

unique best response to her belief, the subject plays a constant strategy.

Since 4 ≥ j > k, k is either 2 or 3. If k = 2, the claim follows immediately from the fact that the

subject believes the player in the role of P(j−1) satisfies the Principle of Non-Strategic Reasoning.

If k = 3, Pj believes that P(j − 1) has a strategic bound of 2. As such, Pj believes that “P(j − 1)

believes that P(j − 2) has a strategic bound of 1 (resp. 2).” So, by Lemma A.3, Pj believes that

P(j − 1) has a constant belief.
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Proof of Sufficiency To show Proposition A.1(ii), we need to lay out certain epistemic for-

malisms. We use the minimal formalism necessary, introducing first-, second-, and higher-order

beliefs, as they are needed. We don’t redefine our concepts within those formalisms; we will be

careful with words in a way that we think is clear.

Two factors are important in how we define these higher-order beliefs. First, we think of a

subject as having hierarchies of beliefs about the observed behavior of a single other subject. This

is for notational simplicity. Second, beliefs are defined over observations (instead of specifying

beliefs in each player role about strategies played). This is because we will want to think about a

subject with a heuristic bound of 2 believing that the other subject has the same belief independent

of the player role.

It is be convenient to define first-order belief maps for observations with an identified strate-

gic bound of k ≥ 2. Note, a first-order belief is a belief on X1 = X.

Definition A.1. Fix k ≥ 2. For each i, define a map fki : SBk → ∆(S) so that, for each

x = (x(1), x(2), x(3), x(4)) ∈ SBk, the following hold:

• If i = 2, fki (x) is a 2-strategic belief under which x(2) is a unique best response.

• If i ∈ {1} ∪ {j : j > k}, fki (x) is a constant belief under which x(i) is a unique best response.

• If i ∈ {j : k ≥ j > 2}, fki (x) is a belief under which x(i) is a unique best response.

The first-order belief map for k is a map fk : SBk → ∆(X) where, for each observation x =

(x(1), x(2), x(3), x(4)) ∈ SBk, fk(x) = fk2 (x)⊗ fk3 (x)⊗ fk4 (x)⊗ fk1 (x).24

A second-order belief is a belief in X2 = X1 × ∆(X1). To simplify notation, we think of a

third-order belief as a belief about X3 = X1 ×∆(X2)—i.e., specifying a belief about observations

and other subjects’ beliefs about “observations and first-order beliefs.” (We can read off the second-

order belief via marginalization.) And, similarly, we think of a fourth-order belief as a belief about

X4 = X1 ×∆(X3).

It will suffice to focus on degenerate higher-order beliefs. Thus, given a belief ν ∈ ∆(Xk), we

will write δν to indicate the belief in ∆(∆(Xk)) that assigns probability one to ν. To construct the

relevant degenerate beliefs, it is convenient to fix two objects: First, let Pr ∈ ∆(S) be a constant

belief and let
−→
Pr ∈ ∆(X) be the associated product measure (Pr⊗Pr⊗Pr⊗Pr). Second, for each

k ∈ {2, 3}, fix yk ∈ SBk.
Now, inductively define maps hk : SBk → ∆(Xk).

• For each x ∈ SB2, h2(x) = f2(x)⊗ δ−→
Pr

.

• Assume hk has been defined for k ∈ {2, 3}. For each x ∈ SBk+1, let hk+1(x) = fk+1(x) ⊗
δhk(yk).

The following Lemma establishes Proposition A.1(ii).

24We adopt this ordering so that fk is indeed a distribution on observations (y(1), y(2), y(3), y(4)).
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Lemma A.5. Let k ≥ 2. For each observation x ∈ SBk,

(i) x is a unique best response under fk(x), and

(ii) (x, hk(x)) has a strategic bound of k.

Proof. By construction, each x ∈
⋃
k≥2 SB

k is a unique best response under fk(x). So, we focus

on showing that each (x, hk(x)) has a strategic bound of k.

k = 2: Fix x = (x(1), x(2), x(3), x(4)) ∈ SB2. First observe that, for each i with f2i (x) constant,

x(i) ∈ Invi. Thus, (x, h2(x)) is 1-strategic. Moreover, by construction, each f2i (x) assigns proba-

bility one to Invi−1. Thus, (x, h2(x)) is 2-strategic. Moreover, since h2(x) assigns probability one

to the other player having the same constant belief Pr across player roles, (x, h2(x)) also satisfies

the Principle of Non-Strategic Reasoning. Thus, (x, h2(x)) has a heuristic bound of 2.

k ≥ 3: Assume the result holds for k ∈ {2, 3}. Fix some x = (x(1), x(2), x(3), x(4)) ∈ SBk+1. First

observe that, for each i with fk+1
i (x) constant, x(i) ∈ Invi. Moreover, hk+1(x) assigns probability

one to some kth-order belief hk(yk), where y ∈ SBk. So, by the induction hypothesis, (x, hk+1(x))

has a heuristic bound of k + 1.

A.2 Identifying the Gap

Lemma A.6. If an observation has an identified strategic bound of k, then the identified rationality

bound must be m ≤ k.

Proof. Fix an observation (x(1), x(2), x(3), x(4)) ∈ SBk. Suppose, contra hypothesis, that the

observation has an identified rationality bound of m > k. Then, x(k + 1) is the non-constant IU

strategy, contradicting (x(1), x(2), x(3), x(4)) ∈ SBk.

Lemma A.7. Fix a rational subject who has a strategic bound of k.

(i) If the subject’s behavior generates an observation with an identified rationality bound of m,

then m ≤ k.

(ii) If the subject’s behavior generates an observation with an identified gap, then the subject’s

rationality bound must be strictly lower than k.

Proof. Since the subject is rational and has a strategic bound of k, the subject’s behavior generates

an observation with an identified strategic bound of j ≤ k. (See Proposition A.1(i).) By Lemma

A.6, the identified rationality bound must be m ≤ j. Thus, m ≤ k, establishing part (i).

Now observe that, if the subject’s behavior generates an identified gap, then the subject’s

identified rationality bound must be m < 4. As a consequence, the subject’s rationality bound is

some n ≤ m. Put together, n ≤ m < j ≤ k, establishing part (ii).
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Appendix B Heuristic Beliefs Model

B.1 Heuristic Beliefs vs. Strategic Beliefs

Lemma B.1. If a subject is k-heuristic, the subject is k-strategic.

Proof. For k = 1, the claim is by definition. Fix a subject that is 2-heuristic. Then the subject is 1-

strategic and, in each player role Pi, the subject has simple strategic belief Pri. So, if Pri(e, f∗) > 0,

then (e, f∗) is either rational or invariant. As such, to show that the subject satisfies the Principle

of Strategic Reasoning, it suffices to show that, if Pi believes that P(i − 1) has a constant belief

and Pri(e, f∗) > 0 for a rational (e, f∗), then (e, f∗) is invariant. This follows from the fact that Pi

believes that, if P(i− 1) is rational, then he is not indifferent between any two strategies.

Now suppose the claim holds for k ∈ {2, 3}. Fix a (k + 1)-heuristic subject. By the induction

hypothesis, the subject is k-strategic and believes that others are k-strategic. Thus, the subject is

(k + 1)-strategic.

Lemma B.2. If a subject has a heuristic bound of k, the subject has a strategic bound of k.

Proof. For k = 1, the claim is by definition. Assume the claim holds for k ≥ 1, where 3 ≥ k.

Fix a subject with a heuristic bound of (k + 1). By Lemma B.1, the subject is (k + 1)-strategic.

Moreover, by the induction hypothesis, the subject believes that the others have a strategic bound

of k. Thus, the subject also has a strategic bound of (k + 1).

Lemma B.3. If an observation is identified as having a heuristic bound of k, it is identified as

having a strategic bound of k.

Proof. An observation is identified as having a heuristic bound of 1 if and only if it is identified

as having a strategic bound of 1. As a consequence, if an observation is identified as having a

heuristic bound of 2, it is also identified as having a strategic bound of 2. If it is identified as

having a strategic bound of 2 but not identified as having a heuristic bound of 2, it must be

that the behavior in the role of P2 is not a unique best response under a 2-heuristic belief. As a

consequence, the observation won’t be identified as having a heuristic bound of 3 or 4. So, if the

observation is identified as having a heuristic bound of 3, it must be identified as having a strategic

bound of 3. Repeating the argument gives the conclusion for k = 3 and k = 4.

B.2 Identification of Heuristic Bounds

Let HBk be the set of observations with an identified heuristic bound of k. So, x ∈ HB1

if and only if x ∈ SB1. Moreover, for k ≥ 2, HBk =
∏
i≤k HBi ×

∏
i>k Invi.

To define the non-indifference condition, it is convenient to introduce the following definition:

Say Pi is 1-rational if she plays a best response given a belief about P(i− 1)’s play of the game.25

25Notice, here we do not include a requirement that the best response is unique.
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Say Pi is m-rational if she plays a best response given a belief that assigns probability 1 to the

event that “P(i− 1) is (m− 1)-rational.”

Say a subject satisfies first-order belief of non-indifference if, in each player role Pi, she

believes:

“If P(i− 1) is 1-rational, he is not indifferent between any two strategies.”

Inductively, a subject satisfies kth-order belief of non-indifference if, in each player role Pi, she

believes:

“If P(i− 1) is (k − 1)-rational, he satisfies (k − 1)th-order belief of non-indifference.”

In what follows, we assume that, if a subject is k-heuristic, the subjects satisfies (k − 1)th-order

belief of non-indifference. If this holds for all k ∈ {1, 2, 3, 4}, we say the belief of non-indifference

assumption holds.

Proposition B.1. Fix k ≥ 2.

(i) Suppose that the belief of non-indifference assumption holds. If a rational subject with a

heuristic bound of k chooses an observation x, then x ∈ HBj for some j ≤ k.

(ii) If x ∈ HBk, then there exists a rational subject with a heuristic bound of k that both satisfies

belief of non-indifference and chooses x.

Proposition B.1 characterizes the behavior of a rational subject with a heuristic bound of k.

Part (i) says that a necessary condition is that the subject’s behavior has an identified heuristic

bound of j ≤ k. Part (ii) establishes the converse. Any observation with an identified heuristic

bound of k can be generated by the behavior of a rational subject with a heuristic bound of k.

Proof of Necessity To prove part (i), we make use of the following Lemma.

Lemma B.4. Suppose that the belief of non-indifference assumption holds. Fix k ≥ j ≥ 2. If a

rational subject is k-heuristic then, in the role of Pj, the subject plays some strategy x(j) ∈ HBj.

Proof. The proof is by induction on j. For j = 2, the proof is immediate from the fact that

k-heuristic implies 2-heuristic and no subject is indifferent between any two actions. So suppose

the claim holds for j ∈ {2, 3} and let k ≥ (j + 1). Note, a k-heuristic subject satisfies jth-order

belief of non-indifference and believes that others are j-heuristic. So, by the induction hypothesis,

a k-heuristic subject believes that the rational strategies, in the role of Pj, are the strategies in

HBj . Since Invj is the set of constant strategies, a k-heuristic subject has a (j + 1)-heuristic belief

in the role of P(j+1). Since no subject is indifferent between any two actions, a k-heuristic subject

plays some strategy x(j + 1) that is a unique best response to a (j + 1)-heuristic belief.

Proof of Proposition B.1(i). Immediate from Lemma B.4, Lemma B.2, and Lemma A.2.
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Proof of Sufficiency To show Proposition B.1(ii), we need, once again, to introduce hierarchies

of beliefs. We follow the approach in Appendix A.1, making suitable modifications. We often use

the same notation for adjacent concepts. We do this to draw parallels. No confusion should result.

Definition B.1. Fix k ≥ 2. For each i, define a map fki : HBk → ∆(S) so that, for each

x = (x(1), x(2), x(3), x(4)) ∈ HBk, the following hold:

• If i ∈ {2, . . . , k}, fki (x) is a i-heuristic belief under which x(i) is a unique best response.

• If i ∈ {1} ∪ {j > k}, fki (x) is constant ordered-heuristic belief under which x(i) is a unique

best response.

The first-order belief map for k is a map fk : HBk → ∆(X) where, for each observation

x = (x(1), x(2), x(3), x(4)) ∈ HBk, fk(x) = fk2 (x)⊗ fk3 (x)⊗ fk4 (x)⊗ fk1 (x).

Note, for each k and each x ∈ HBk, fk(x) is a distribution on X. For each k, we can provide a

uniform bound on the supports of distributions fk(x). In particular, set

BSuppk =


Inv1 × Inv2 × Inv3 × Inv4 if k = 2

Inv1 × (HB2 ∪ Inv2)× Inv3 × Inv4 if k = 3

Inv1 × (HB2 ∪ Inv2)× (HB3 ∪ Inv3)× Inv4 if k = 4.

For each k ≥ 2 and each x ∈ HBk, Suppfk(x) ⊆ BSuppk. Moreover, for each k ≥ 2, HBk−1 ⊆
BSuppk.

With this in mind, for each k ≥ 2, construct a mapping gk : BSuppk → HBk−1 that satisfies

the following two propreties: First, for each x ∈ HBk−1 ⊆ BSuppk, gk(x) = x. Second, for each

x = (x(1), x(2), x(3), x(4)) ∈ BSuppk\HBk−1, gk(x) = (y(1), y(2), y(3), y(4)) where y(i) = x(i) if

x(i) ∈ HBi. (Observe that this can be done, since HBk−1 =
∏
i<k HBi ×

∏
i≥k Invi.)

We also fix a constant belief Pr ∈ ∆(S) under which each Pi has a unique best response. Let
−→
Pr ∈ ∆(X) be the associated product measure (Pr⊗Pr⊗Pr⊗Pr).

Now, inductively define maps hk : HBk → ∆(Xk) as follows. First, for each x ∈ HB2, h2(x) =

f2(x)⊗ δ−→
Pr

. Assume that hk : HBk → ∆(Xk) has been defined for k ∈ {2, 3}. For each x ∈ HBk+1,

let hk+1(x) = µ ∈ ∆(X ×∆(Xk)) that satisfies the following:

µ(y, ν) =

fk+1(x)(y)× δν if y ∈ Suppfk+1(x) and ν = hk(gk+1(y))

0 otherwise.

Note that fk+1(x) ∈ ∆(X ×∆(Xk)).

Lemma B.5. Fix k ≥ 2. For each x ∈ HBk, (x, hk(x)) is rational and has a heuristic bound of k.

Proof. Begin by fixing x = (x(1), x(2), x(3), x(4)) ∈ HB2. First observe that each x(i) is a unique

best response to the invariant belief f2i (x). Thus, (x, h2(x)) is rational and 1-heuristic. Moreover,

each f2i (x) is an ordered-heuristic belief. And, since h2(x) assigns probability one to the other

playing Pr independent of the player role, h2(x) believes that, if the other subject plays a best
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response, that best response is unique. This establishes that (x, h2(x)) is 2-heuristic. Finally, since

h2(x) assigns probability one to the other player having the same constant belief Pr across player

roles, (x, h2(x)) also satisfies the Principle of Non-Strategic Reasoning. Thus, (x, h2(x)) has a

heuristic bound of 2.

Now assume the claim holds for k ∈ {2, 3} and fix some x ∈ HBk+1. Note that x is a unique

best response under fk+1(x). So, (x, hk+1(x)) is rational. With this, we focus on showing that

(x, hk+1(x)) has a heuristic bound of k.

Begin by observing that, if fk+1
i (x) is a constant belief, x(i) must be invariant. (This uses the

fact that x is a unique best response under fk+1(x).) So, (x, hk+1(x)) is 1-heuristic.

Now, let µ ≡ hk+1(x). It suffices to show that, if µ(y, ν) > 0 then (y, ν) has a heuristic

bound of k. Since µ(y, ν) > 0, y = (y(1), y(2), y(3), y(4)) ∈ Suppfk+1(x) and ν = hk(gk+1(y)).

If y ∈ HBk, the result follows from the induction hypothesis. If y 6∈ HBk, then there exists

z = (z(1), z(2), z(3), z(4)) so that gk(y) = z. Note, (z, hk(z)) is rational and has a heuristic bound

of k. (This follows from the induction hypothesis.) We use this fact to show that (y, hk(z)) has a

heuristic bound of k.

First observe that (y, hk(z)) must be 1-heuristic. To see this, note that y(1), y(3), y(4) are

invariant and y(2) = z(2). So, using the fact that (z, hk(z)) is 1-heuristic, (y, hk(z)) must also

be 1-heuristic. From this and the fact that (z, hk(z)) has a heuristic bound of k, it follows that

(y, hk(z)) also has a heuristic bound of k.

Let S(i) be the set of strategies in the role of Pi. A basic induction argument establishes the

following:

Lemma B.6. Fix k ≥ 2 and x ∈ HBk. If hk(x) assigns strictly positive probability to (y, ν) ∈
X×∆(Xk−1) and (y, ν) is (k−1)-rational in the role of Pi, then y(i) is a strict best response under

fk−1i (y) = margS(i)ν.

Proof of Proposition B.1(ii) . Immediate from Lemmata B.5 and B.6.

Appendix C Experimental Instructions

Zoom Meeting: Set-Up A recurring Zoom meeting was created with the following features.

A waiting room was enabled and participants could not join before host. Participants’ video was

set to ‘on,’ but participants were muted upon entry. The Zoom chat feature was set to ‘chat with

host only.’ In addition, participants could not rename themselves or provide meeting reactions

and non-verbal feedback. Experimenter names were anonymized to “Main Experimenter” and

“Experimental Assistant X” (where X took on one of several letters).

Zoom Meeting: Check-in Experimental Assistants allowed subjects into the Zoom meeting

one at a time. They ensured that subjects had their video on and checked the subjects’ names.

Then, they changed the subject’s name to a pre-specified number and put the subject back into
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the waiting room to await the start of the experiment. (A Powerpoint slide explained this to

the subjects.) Messages went out regularly to subjects in the waiting room, to ensure that they

understood that the experiment would soon start and that they would be required to have their

video on throughout.

Zoom Meeting: Start of the Experiment After check-in was completed, subjects were al-

lowed into the Zoom session. At that time, the Main Experimenter read the preliminary instructions

described below. During that time, Experimental Assistants distributed links to the experiment.

When all links were distributed, the experiment began. At this time, the Zoom meeting was set to

“subjects cannot unmute themselves.”

Preliminary Instructions The following is the text for the preliminary instructions read at the

start of the session.

• Can you hear me? Please nod if you can. Thank you. If you cannot, please check your audio

and volume.

• Thank you for agreeing to participate in today’s ELFE experiment.

• You will soon receive a link to the experiment in the Zoom chat. It is important that you do

not click on the link until I tell you to do so: If you click too early, it will likely take longer

for everyone involved.

• Let me begin by telling you some important features about the experiment.

• It is important that you give the experiment your full attention. For the duration of the

experiment, please do not use your mobile phone or engage in other activities. In addition,

please keep your video camera on at all times and remain visible at your computer. If your

video camera is not on, we will need to remove you from today’s session.

• The experiment will begin with a consent form. Please read it carefully and be sure that you

understand what you are consenting to. After that, you will receive a series of instructions

for the experiment followed by a quiz that is intended to ensure that you have understood the

instructions. It is important that you read the instructions carefully so that you can complete

the quiz. If you answer the quiz correctly on the first try, you will earn an additional quiz fee

described in the experiment. But, even if you don’t, it is important that you answer the quiz

correctly within three tries. If you do, you will have the opportunity to earn considerably

more money during the experiment. The instructions will explain this further. Punchline:

You have every incentive to read the instructions carefully.

• Once you are admitted to the experiment, you will have 75 minutes to complete it. You will

be able to advance through the experiment at your own pace. On each screen, there will
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be a blue chat icon in the lower left-hand corner. If you have any questions throughout the

experiment, you can use that to chat with one of the experimenters.

• After everyone has completed the experiment, your payment information will appear on the

screen. At that point, I will make an announcement on Zoom that the experiment is over and

you are free to leave the Zoom meeting. If you leave the Zoom meeting before the experiment

is over, you may not be paid for your participation in the experiment.

• While you will be able to advance through the experiment at your own pace, the experiment

will only “end” after everyone in this session has completed the experiment. In order to receive

payment, you will need to wait until the end, after everyone has completed the session, and

the Zoom is dismissed. Expect this to take the full session length. Punchline: There is no

incentive to finish the experiment quickly. Expect to be here the full session length. Feel free

to carefully study the questions, so that your earnings are high.

• Before we begin, are there any questions? If so, please type it into the Zoom chat box and

send it to myself—the Main Experimenter.

• Please wait quietly until I tell you to start the experiment. Again, please do not click the

link until I tell you to do so. Thank you.

Screenshot of Instructions Below are screenshots of the instruction. Note, the instructions

point to a “highlighting feature” that the subjects can use throughout the game to help them keep

track of other players’ payoffs. The instructions require the subject to use the highlighting feature

before they can move on to a subsequent screen. (For the purposes of producing the screenshots

on paper, they are scaled down. Subjects saw larger fonts.)
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Welcome!
Welcome to an experiment at ELFE.

You are about to participate in a study of decision-making. There is 1 hour 15 minutes to complete the experiment. At the conclusion
of the experiment, you will be paid for your participation. You will receive payment via bank transfer. The amount of money you will
receive depends partly on your decisions and partly on decisions of other participants.

In order to use your data for research, you will need to complete the entire experiment. However, your participation is voluntary. You
may choose to stop participating at any time.

If you do choose to complete the experiment, you will earn a completion payment of £3.50. This completion fee is, in addition, to the
amount that you can earn from the decision rounds---which ranges from £1.5-£23. You will not earn any money if you do not
complete the experiment. We ask that you keep yourself free of distractions during the experiment. Please turn off your mobile
phones and close any distracting computer programs. In addition, please do not communicate with anyone before you complete the
experiment.

On the bottom right hand corner of each screen, there will be a blue circle with a speech bubble. This is a chat box. If you have any
questions or technical issues, you can contact one of the experimenters using the chat box. The chat box will be there throughout
the study; the experimenters will do their best to respond to any questions and fix any issues you are experiencing.

Next, we will provide instructions explaining how the experiment works and how you will be paid. As a reminder, you will never be lied
to during this or any experiment at ELFE. So, in particular, the instructions explaining how the experiment works and how you are paid
are indeed true.

When you are ready, please click "Next" to go on.

Next

The Experiment
The experiment will begin with a set of instructions detailing what is expected of you. This will include some examples. Following the
instructions, you will be given a quiz. After the quiz, you will participate in 8 decision rounds, where you will be paid according to your
choices. You will be told when the instructions and quiz have concluded and the decision rounds are about to begin.

Quiz

It is important that you understand the instructions before you attempt to take the quiz. If you correctly answer the quiz questions
within 3 (or fewer) attempts, you will have the opportunity to earn anywhere between £2-£20 in the decision rounds. If it takes you
additional attempts to correctly answer the quiz questions, you will only have the opportunity to earn between £1.5-£1.75 in the
decision rounds. In addition, if you correctly answer the quiz questions on the first attempt, you will earn a £3 quiz fee. Thus, it is a
good idea to be sure you understand the instructions before attempting the quiz.

As a reminder, you can always ask questions via the chat box. If you get a question incorrect, please feel free to ask the experimenter
questions so that you can correctly complete the quiz within 3 attempts.

Decision Rounds

You will earn a payment based on the choices you make in the decision rounds. To determine that payment, the computer will
randomly select one of the decision rounds. Your payment will be determined by your choices in that round. Importantly, any of the
decision rounds can be selected for payment. So, you should treat each decision round like it will be the one that determines your
payment.

When you are ready, please click “Next” to go to the instructions for the experiment.

Next
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Instructions
You will be randomly matched with three other participants: Participant 2, Participant 3 and Participant 4. Both you and each of these participants will face 8
decision rounds; in each decision round, you will each make a choice. During the experiment, you will not learn any information about the choices made by other
participants and they will not learn any information about the choices you make.

We now describe the decision problem that you will face in each round. You must choose 1 of 4 actions: a, b, c, or d. The three participants you are matched with
will also choose 1 of 4 actions. Your earnings will depend on both the action you choose and the action that Participant 2 chooses. The table titled "Your
Earnings" (left-hand table below) represents the possible earnings you can receive. Your action determines the row of the table and Participant 2's action
determines the column of the table. So you choose amongst actions a, b, c, or d and Participant 2 chooses amongst actions e, f, g, or h. The cell that
corresponds to this combination of actions will determine your earnings.

Participant 2's action

e f g h

Your
action

a 1 2 3 4

b 5 6 7 8

c 9 10 11 12

d 13 14 15 16

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 17 18 19 20

f 21 22 23 24

g 25 26 27 28

h 29 30 31 32

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 33 34 35 36

j 37 38 39 40

k 41 42 43 44

l 45 46 47 48

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 49 50 51 52

n 53 54 55 56

o 57 58 59 60

p 61 62 62 64

Participant 4's Earnings

You can easily see the earnings you will get by clicking on rows and columns of the earnings tables. Clicking on a row action will highlight the associated row and
show all the possible earnings you can get if you choose that row. Clicking on a column action will highlight the associated column and show all the possible
earnings you can get if Participant 2 chooses that column. By highlighting both a row and column, you can see a darker red box that shows what you would get if
you choose that row and Participant 2 chooses that column. At any time, you can unhighlight a row or column by clicking on it again. You can also highlight
multiple rows or columns at the same time.

Try out clicking the row where you choose a and Participant 2 chooses e. There, you would earn £1, as illustrated by the darker red box. Now try instead clicking
the row where you choose b and Participant 2 chooses f. Now you would earn £6.

The earnings tables also show earnings of Participants 2, 3, and 4. Participant 2 can choose one action from e, f, g, h; Participant 3 can choose an action from i, j,
k, l; and Participant 4 can choose an action from m, n, o, p. Notice, Participant 2's earnings depend upon the action they choose and the action Participant 3
chooses; Participant 3's earnings depend upon the action they choose and the action Participant 4 chooses; Participant 4's earnings depend upon the action
they choose and the action that you choose.

Notice, you can click the rows and columns in each Participant's earning table to see what they will earn. For instance, let's look at Participant 3's earnings table.
Try clicking the row where Participant 3 chooses j and the column where Participant 4 chooses m. In that case, Participant 3 will get £37.

Participant 2's action

e f g h

Your
action

a 1 2 3 4

b 5 6 7 8

c 9 10 11 12

d 13 14 15 16

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 17 18 19 20

f 21 22 23 24

g 25 26 27 28

h 29 30 31 32

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 33 34 35 36

j 37 38 39 40

k 41 42 43 44

l 45 46 47 48

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 49 50 51 52

n 53 54 55 56

o 57 58 59 60

p 61 62 62 64

Participant 4's Earnings

You can easily see the earnings you will get by clicking on rows and columns of the earnings tables. Clicking on a row action will highlight the associated row and
show all the possible earnings you can get if you choose that row. Clicking on a column action will highlight the associated column and show all the possible
earnings you can get if Participant 2 chooses that column. By highlighting both a row and column, you can see a darker red box that shows what you would get if
you choose that row and Participant 2 chooses that column. At any time, you can unhighlight a row or column by clicking on it again. You can also highlight
multiple rows or columns at the same time.

Try out clicking the row where you choose a and Participant 2 chooses e. There, you would earn £1, as illustrated by the darker red box. Now try instead clicking
the row where you choose b and Participant 2 chooses f. Now you would earn £6.

The earnings tables also show earnings of Participants 2, 3, and 4. Participant 2 can choose one action from e, f, g, h; Participant 3 can choose an action from i, j,
k, l; and Participant 4 can choose an action from m, n, o, p. Notice, Participant 2's earnings depend upon the action they choose and the action Participant 3
chooses; Participant 3's earnings depend upon the action they choose and the action Participant 4 chooses; Participant 4's earnings depend upon the action
they choose and the action that you choose.

Notice, you can click the rows and columns in each Participant's earning table to see what they will earn. For instance, let's look at Participant 3's earnings table.
Try clicking the row where Participant 3 chooses j and the column where Participant 4 chooses m. In that case, Participant 3 will get £37.

Participant 2's action

e f g h

Your
action

a 1 2 3 4

b 5 6 7 8

c 9 10 11 12

d 13 14 15 16

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 17 18 19 20

f 21 22 23 24

g 25 26 27 28

h 29 30 31 32

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 33 34 35 36

j 37 38 39 40

k 41 42 43 44

l 45 46 47 48

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 49 50 51 52

n 53 54 55 56

o 57 58 59 60

p 61 62 62 64

Participant 4's Earnings

You can easily see the earnings you will get by clicking on rows and columns of the earnings tables. Clicking on a row action will highlight the associated row and
show all the possible earnings you can get if you choose that row. Clicking on a column action will highlight the associated column and show all the possible
earnings you can get if Participant 2 chooses that column. By highlighting both a row and column, you can see a darker red box that shows what you would get if
you choose that row and Participant 2 chooses that column. At any time, you can unhighlight a row or column by clicking on it again. You can also highlight
multiple rows or columns at the same time.

Try out clicking the row where you choose a and Participant 2 chooses e. There, you would earn £1, as illustrated by the darker red box. Now try instead clicking
the row where you choose b and Participant 2 chooses f. Now you would earn £6.

The earnings tables also show earnings of Participants 2, 3, and 4. Participant 2 can choose one action from e, f, g, h; Participant 3 can choose an action from i, j,
k, l; and Participant 4 can choose an action from m, n, o, p. Notice, Participant 2's earnings depend upon the action they choose and the action Participant 3
chooses; Participant 3's earnings depend upon the action they choose and the action Participant 4 chooses; Participant 4's earnings depend upon the action
they choose and the action that you choose.

Notice, you can click the rows and columns in each Participant's earning table to see what they will earn. For instance, let's look at Participant 3's earnings table.
Try clicking the row where Participant 3 chooses j and the column where Participant 4 chooses m. In that case, Participant 3 will get £37.

Importantly, the earnings tables will differ from round-to-round. You should always look carefully at the earnings tables at the beginning of each round to
determine your earnings for that round.

You will be required to spend at least 90 seconds on each round. You may spend more time on each round, if you wish.

The “Next” button will appear after 2 minutes. Please use this time to carefully read the instructions. When you understand these instructions, please click “Next”
to go to final remarks on the experiment. You can always come back to this page by clicking the button called "Instructions."

Next
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Instructions: Final Remarks
In each round, you will be randomly matched with three participants. The identity of your randomly matched counterparts will never be revealed. Likewise, your
randomly matched counterparts will not know that they are matched with you. During the experiment, you will not learn any information about the choices made
by other participants and they will not learn any information about the choices you make.

As a reminder, your earnings will consist of three components. First, you will earn a completion payment of £3.50 for completing the experiment. Second, you will
earn a £3 quiz fee, if you answer all of the quiz questions correctly on the first attempt. Third, 1 of the 8 decision rounds will be randomly selected for payment. If
you pass the quiz successfully in 3 attempts then this payment will be at least £2 and can be as high as £20. Otherwise, you will play the decision rounds for
lower stakes and this payment will be between £1.5 and £1.75. Note, you must complete the entire experiment to earn either of the completion fee, the quiz fee,
or the decision rounds payment.

After all participants have completed the experiment, you will see information about your earnings: Specifically, you will see the round chosen for payment, the
choice you made in that round, the choices your matched counterparts made in that round, and your total earnings.

We do our best to deliver payments in a timely fashion, but please allow up to 48 hours to receive your payment. If your payment does not arrive within 48 hours,
please contact experiments@amandafriedenberg.org.

Please click “Next” when you are ready to take the practice quiz.

Next Show Instructions

Screenshot of Quiz Below is screenshots of the quiz.

Quiz

Participant 2's action

e f g h

Your
action

a 45 36 61 43

b 7 100 39 19

c 87 23 15 73

d 64 66 3 38

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 85 96 38 5

f 74 27 9 73

g 58 93 65 35

h 18 23 19 67

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 39 81 62 25

j 63 75 58 46

k 3 82 54 23

l 92 39 28 81

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 99 81 2 89

n 3 99 69 90

o 54 7 79 63

p 9 94 54 14

Participant 4's Earnings

Consider the above game.

1. Your earnings depend on your action and the action of which other participant?

Participant 2

Participant 3

Participant 4

2. Participant 3’s earnings depend on his/her action and the action of which other participant?

Your action

Participant 2

Participant 4

Quiz

Participant 2's action

e f g h

Your
action

a 45 36 61 43

b 7 100 39 19

c 87 23 15 73

d 64 66 3 38

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 85 96 38 5

f 74 27 9 73

g 58 93 65 35

h 18 23 19 67

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 39 81 62 25

j 63 75 58 46

k 3 82 54 23

l 92 39 28 81

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 99 81 2 89

n 3 99 69 90

o 54 7 79 63

p 9 94 54 14

Participant 4's Earnings

Consider the above game.

1. Your earnings depend on your action and the action of which other participant?

Participant 2

Participant 3

Participant 4

2. Participant 3’s earnings depend on his/her action and the action of which other participant?

Your action

Participant 2

Participant 4

Quiz

Participant 2's action

e f g h

Your
action

a 45 36 61 43

b 7 100 39 19

c 87 23 15 73

d 64 66 3 38

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 85 96 38 5

f 74 27 9 73

g 58 93 65 35

h 18 23 19 67

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 39 81 62 25

j 63 75 58 46

k 3 82 54 23

l 92 39 28 81

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 99 81 2 89

n 3 99 69 90

o 54 7 79 63

p 9 94 54 14

Participant 4's Earnings

Consider the above game.

1. Your earnings depend on your action and the action of which other participant?

Participant 2

Participant 3

Participant 4

2. Participant 3’s earnings depend on his/her action and the action of which other participant?

Your action

Participant 2

Participant 4

Suppose you choose d, Participant 2 chooses f, Participant 3 chooses k and Participant 4 chooses m.

3. Please highlight the above choices in the earnings tables. That is, in the table titled "Your Earnings," highlight the row action d and the column action f; in the
table titled "Participant 2’s Earnings," highlight the row action f and the column action k; in the table titled "Participant 3’s Earnings," highlight the row action k and
the column action m; in the table titled "Participant 4’s Earnings," highlight the row action m and the column action d.

4. What will your earnings be?

5. What will Participant 2’s earnings be? (Enter integer):

6. What will Participant 3’s earnings be? (Enter integer):

7. What will Participant 4’s earnings be? (Enter integer):

Please click “Next” when you are ready to submit your answers

Next

Show Instructions

Suppose you choose d, Participant 2 chooses f, Participant 3 chooses k and Participant 4 chooses m.

3. Please highlight the above choices in the earnings tables. That is, in the table titled "Your Earnings," highlight the row action d and the column action f; in the
table titled "Participant 2’s Earnings," highlight the row action f and the column action k; in the table titled "Participant 3’s Earnings," highlight the row action k and
the column action m; in the table titled "Participant 4’s Earnings," highlight the row action m and the column action d.

4. What will your earnings be?

5. What will Participant 2’s earnings be? (Enter integer):

6. What will Participant 3’s earnings be? (Enter integer):

7. What will Participant 4’s earnings be? (Enter integer):

Please click “Next” when you are ready to submit your answers

Next

Show Instructions
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Suppose you choose d, Participant 2 chooses f, Participant 3 chooses k and Participant 4 chooses m.

3. Please highlight the above choices in the earnings tables. That is, in the table titled "Your Earnings," highlight the row action d and the column action f; in the
table titled "Participant 2’s Earnings," highlight the row action f and the column action k; in the table titled "Participant 3’s Earnings," highlight the row action k and
the column action m; in the table titled "Participant 4’s Earnings," highlight the row action m and the column action d.

4. What will your earnings be?

5. What will Participant 2’s earnings be? (Enter integer):

6. What will Participant 3’s earnings be? (Enter integer):

7. What will Participant 4’s earnings be? (Enter integer):

Please click “Next” when you are ready to submit your answers

Next

Show Instructions

Suppose you choose d, Participant 2 chooses f, Participant 3 chooses k and Participant 4 chooses m.

3. Please highlight the above choices in the earnings tables. That is, in the table titled "Your Earnings," highlight the row action d and the column action f; in the
table titled "Participant 2’s Earnings," highlight the row action f and the column action k; in the table titled "Participant 3’s Earnings," highlight the row action k and
the column action m; in the table titled "Participant 4’s Earnings," highlight the row action m and the column action d.

4. What will your earnings be?

5. What will Participant 2’s earnings be? (Enter integer):

6. What will Participant 3’s earnings be? (Enter integer):

7. What will Participant 4’s earnings be? (Enter integer):

Please click “Next” when you are ready to submit your answers

Next

Show Instructions

Screenshot of Example Game Below is a screenshot of Treatment 1, Game G, role P4.

Round 1

Participant 2's action

e f g h

Your
action

a 6 8 16 2

b 20 12 12 6

c 14 17 4 6

d 8 2 15 18

Your Earnings

Participant 3's action

i j k l

Participant
2's action

e 12 14 7 20

f 18 4 7 14

g 8 16 2 6

h 2 15 17 8

Participant 2's Earnings

Participant 4's action

m n o p

Participant
3's action

i 8 14 4 18

j 16 4 2 10

k 15 17 4 4

l 14 6 20 10

Participant 3's Earnings

Your action

a b c d

Participant
4's action

m 17 15 18 16

n 15 14 15 15

o 6 4 14 8

p 12 2 2 10

Participant 4's Earnings

Recall: You can click the row and column action labels to highlight the associated rows/columns. You can unhighlight by clicking again.

Please choose your action: 

a

b

c

d

(The Ok button will appear after 90 seconds) 

Ok

Show Instructions
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Appendix D Additional Tables and Figures

P1 P2 P3 P4

(a,d∗) (a, a∗) (a, a∗), (d,d∗) (b,b∗), (c, c∗),(d,d∗)

(a,d∗) (a, a∗) (b,b∗) (b,b∗), (d,d∗)

(a,d∗) (b,b∗) (a, a∗), (b,b∗) (b,b∗), (d,d∗)

(a,d∗) (c, c∗) (a, a∗) (b,b∗), (c, c∗)

(a,d∗) (c, c∗) (b,b∗) (b,b∗)

(a,d∗) (c, c∗) (c, c∗) (c, c∗)

(a,d∗) (c, c∗),(d,d∗) (d,d∗) (b,b∗), (c, c∗)

Table D.1. Observations Identified as Strategic/Heuristic Bound of 1
For Both IDENT and CS

P1 P2 P3 P4

(a,d∗) (a, a∗) (a, a∗), (d,d∗) (a, a∗)

(a,d∗) (a, a∗) (b,b∗) (a, a∗), (c, c∗)

(a,d∗) (a, a∗) (c, c∗) (a, a∗), (b,b∗), (c, c∗), (d,d∗)

(a,d∗) (c, c∗) (a, a∗) (a, a∗), (d,d∗)

(a,d∗) (c, c∗) (b,b∗) (a, a∗), (c, c∗), (d,d∗)

(a,d∗) (c, c∗) (c, c∗) (a, a∗), (b,b∗), (d,d∗)

(a,d∗) (c, c∗), (d,d∗) (d,d∗) (a, a∗), (d,d∗)

(a,d∗) (d,d∗) (a, a∗), (b,b∗), (c, c∗) (a, a∗), (b,b∗), (c, c∗), (d,d∗)

Table D.2. Observations Identified as Strategic Bound of 2: Constant P2
Shaded is identified in both IDENT and CS; non-shaded is only identified in IDENT.

P1 P2 P3 P4

(a,d∗) (d,d∗) (d,d∗) (a, a∗), (d,d∗)

(a,d∗) (d,d∗) (a, a∗), (b,b∗), (c, c∗) (a, a∗), (b,b∗), (c, c∗), (d,d∗)

Table D.3. Observations Identified as Heuristic Bound of 2: Constant P2
For Both IDENT and CS
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