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Debates over the function(s) of dorsal anterior cingulate  
cortex (dACC) have persisted for decades. So too have  
demonstrations of the region’s association with cognitive  
control. Researchers have struggled to account for this  
association and, simultaneously, dACC’s involvement in  
phenomena related to evaluation and motivation. We describe  
a recent integrative theory that achieves this goal. It proposes  
that dACC serves to specify the currently optimal allocation of  
control by determining the overall expected value of control  
(EVC), thereby licensing the associated cognitive effort.  
The EVC theory accounts for dACC’s sensitivity to a wide array 
of experimental variables, and their relationship to subsequent 
control adjustments. Finally, we contrast our theory with a 
recent theory proposing a primary role for dACC in foraging-
like decisions. We describe why the EVC theory offers a more 
comprehensive and coherent account of dACC function, 
including dACC’s particular involvement in decisions regarding 
foraging or otherwise altering one’s behavior. 

The computational function of the dACC has remained perennially 
controversial1–5. Many points of disagreement stem from differential 
weightings across a body of empirical findings that can be complex 
and contradictory. However, there are at least two broad findings 
upon which most researchers agree and which therefore offer a poten-
tial foundation for building a successful, unifying theory. First, the 
dACC—encompassing regions referred to as the anterior midcingu-
late cortex and the rostral cingulate zone5–9—is a key hub in a network 
of brain regions implicated in domain-general executive functions 
in humans4,10. The dACC thus appears to be important to cognitive 
control; that is, our ability to flexibly adjust behavior in accord with 
internally maintained goals and away from behaviors that are more 
automatic but distract from those goals11. Second, and closely related 
to the first point, is the consistent association of dACC function with 
motivation and reward-based decision-making3,12,13. In recent work, 
we have advanced a theory of dACC function that seeks to integrate 
these two sets of observations, attributing to the dACC a specific role 
in linking executive function with reward-based decision making4 
(for related accounts, see refs. 2,6,14,15). Specifically, we suggest that 

dACC plays a central role in decisions about the allocation of cogni-
tive control based on a cost/benefit analysis that identifies the highest 
expected value of control (EVC).

The EVC theory builds on one of the most basic theoretical premises 
in cognitive psychology: that the processes governing human behavior 
lie along a continuum from automatic to controlled, a continuum 
that is as foundational as it is easily observed11,16. Some behaviors are 
carried out quickly, effortlessly and with little risk of intrusion from 
distraction. The processes underlying such behaviors typically involve 
stereotyped and ballistic responses, making them efficient but inflex-
ible; they are therefore characterized as ‘automatic’. In contrast, other 
behaviors have the opposite properties: they exhibit greater flexibility 
but require more time, are experienced as effortful and are more sub-
ject to interference. It is generally assumed that such processes rely on 
cognitive control signals, the functions of which are to parameterize 
processing in a way that maximizes desired outcomes when those 
outcomes would not otherwise be achieved by ‘default’ settings (i.e., 
those that give rise to automatic behavior)11. The EVC theory focuses 
on the evaluation and selection of control signals required to carry out 
control-demanding behavior, identifying the computational problem 
that this selection process seeks to solve and proposing a candidate 
set of algorithms used to accomplish this.

Control signals can vary along two dimensions: identity, determin-
ing which process(es) should be engaged (for example, which stimulus 
or rule should be attended); and intensity, determining how much 
control should be allocated (for example, how much to augment atten-
tion to the stimulus or rule above the default level). These signals can 
be understood by analogy with motor control signals, which similarly 
vary in their identity (for example, which muscles to contract) and 
their intensity (the level of force required) according to task demands. 
And as in the case of motor control, the allocations across available 
control signals have a direct consequence for behavior and reward.

Choosing how to allocate control requires taking into account the 
benefits of control allocation (for example, improved performance 
and accrual of otherwise foregone rewards), but also its inherent costs; 
the EVC theory assumes that such costs register as ‘effortful’. By taking 
these costs into account the theory can explain not only why indi-
viduals exert more cognitive effort for more difficult tasks or when 
incentives and/or task demands increase17, but also why, all other 
things being equal, they avoid exerting too much effort and instead 
prefer less difficult tasks 18.

At the neural level, the EVC theory provides a computational 
account of the role that dACC plays in making decisions about how to 
allocate control, based on the weighted sums of estimated reward out-
come and effort cost. In so doing, it integrates and formalizes previous 
accounts that have identified dACC at the interfaces between moni-
toring and control1,6,15, between evaluation and action3,19, between 
evaluation and motivation2,12,20 and between the allocation and 
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implementation of control10. The EVC theory identifies and makes 
computationally explicit an interface that is common across most of 
these theoretical perspectives, between the monitoring for control-
relevant information and the allocation of control. In this respect, it 
can be viewed as an extension of its historical predecessor, the conflict 
monitoring theory1. This theory proposed that dACC monitors ongo-
ing processing, including the amount of conflict between potential 
responses, for signals indicative of the need for control. However, 
it made highly simplified assumptions about how those signals are 
evaluated and used to allocate control.

The EVC theory extends this monitoring framework to address how 
this process occurs in greater detail (Fig. 1). In doing so, it provides 
a more comprehensive account of dACC function, accommodating 
previously unaddressed empirical data (for example, dACC’s asso-
ciations with reward and motivation) and filling explanatory gaps 
regarding control allocation (for example, how the demanded control 
is deemed worth allocating). Because much of the force of the theory 
lies in its ability to integrate a wide range of findings that have previ-
ously been considered to reflect disparate functions, we provide a 
brief review of these findings below (see Fig. 1 and ref. 4 for a fuller 
discussion). While necessarily selective, this review of the literature 
attempts to highlight convergent findings across species and meas-
urement techniques within regions potentially homologous to those 
highlighted in Figure 1, in particular anterior midcingulate cortex. 

We focus primarily on potential functional homologies within and 
adjacent to this circumscribed region of cortex, an approach that, 
in spite of its benefits, risks blurring potential distinctions between 
species, methods and cytoarchitectonic boundaries. We will return 
to these considerations later.

dACC’s role in monitoring for EVC-relevant signals
The EVC theory explains why dACC is more active in control-demanding  
situations10,21; for instance, those that require processes that are com-
plex, deliberate, novel, and/or exploratory versus habitual and/or exter-
nally driven. Overwhelming evidence links dACC activity to signals 
indicating a demand for control6,14,15,21—including errors22–26, explicit 
negative feedback27–29, conflict1,30–34 and surprise35,36—as well as its 
payoff13,37,38. Furthermore, dACC responses to these signals can carry 
information about the particular type of control that is required22,26,38 
and are weaker in situations that pose less of a demand for control (for 
example, when correct feedback is predicted28,29 or when a surprising 
event does not bear on future task performance36).

dACC’s role in specifying control based on EVC
The EVC theory extends performance-monitoring accounts of dACC 
to explain how signals indicating the need for and/or value of control 
are translated into the adaptive execution of control (Fig. 1). In par-
ticular, the theory proposes that dACC uses estimates of EVC to select 
appropriate control signals, which are then implemented by other 
neural structures to influence processing. This explains a number of 
findings tying performance-monitoring-related responses in dACC 
or nearby regions to subsequent control adjustments4,14,15, including 
slower and/or more accurate responding25,39; increased allocation of 
attention toward task-relevant stimulus properties and away from 
irrelevant ones14,31,33,34; and adaptive changes in switching behav-
ior39, response bias40 and the pace of learning35,41 (Fig. 1).

The proposition that dACC is responsible for specifying control 
signals required to execute control-demanding tasks also explains cor-
relations observed between task performance and dACC’s encoding of 
the task environment5,42. For instance, the strength of rule encoding 
in monkey dACC predicts whether that rule will be executed properly 
on a forthcoming trial43, appears earlier on trials following an error43 
and weakens with more repetitions following a rule switch (as lateral 
prefrontal cortex rule selectivity increases)44. Similarly, in humans, 
stronger white matter tracts between dACC and other regions are 
associated with improved cognitive control45,46.

This proposition also explains why causal manipulations involving 
dACC can influence one’s ability to adjust control. Inactivating or 
lesioning dACC can impair within-trial error correction47 and post-
error slowing25, decrease conflict-related adaptation31,48 and impair 
adaptive reversal between responses49,50 and task sets51. Moreover, 
dACC inactivation impairs antisaccade performance52 whereas 
microstimulation facilitates it53. Similar effects are found when tran-
scranial direct current stimulation (tDCS) is used to modulate activity 
within dACC and surrounding cortex54,55. Inhibitory tDCS produces 
weaker error- and feedback-related dACC responses and concomitant 
impairments in performance (accuracy, learning rate and post-error 
slowing); excitatory tDCS produces the opposite patterns54. While the 
tDCS configuration in these studies likely resulted in spillover modu-
lation of other regions (including parts of lateral prefrontal cortex), 
preventing strong inference about the locus of influence, these find-
ings point to a potentially valuable avenue for noninvasively studying 
causal relationships between human dACC and control allocation. 
This would supplement studies of lesion patients, which can produce 
variable findings (for example, ref. 56) partly due to factors out of the 
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Figure 1  dACC’s proposed role in control allocation based on EVC. Top: 
the EVC theory proposes that dACC monitors for information relevant to 
evaluating EVC and specifies the optimal control allocation to downstream 
regions. dACC is shown in the central panel, based on a Neurosynth meta-
analysis of 428 human neuroimaging studies associated with cognitive 
control (http://neurosynth.org/analyses/terms/cognitive%20control/). 
Example input and output structures are shown at the left and right sides 
of the panel. Bottom: Previous findings suggest a role for dACC in using 
each of the monitoring signals listed (for example, errors, conflict) as the 
basis for one or more subsequent adjustments in control (for example, 
adjustment in one’s speed-accuracy tradeoff or attentional focus).  
As indicated in the central panel, the EVC theory proposes that dACC 
evaluates the expected future benefits of applying varying intensities of 
control (arrow in each gauge) for each candidate control signal (different 
gauges; for example, different rules and the degree to which they could 
be attended) and subtracts from this the intrinsic cost of applying a 
given control intensity. This results in an estimate of the EVC. dACC 
then selects for execution the control signal settings that maximize EVC, 
projecting information about these signals to relevant downstream regions 
responsible for implementing the corresponding signals. Elsewhere 
we have provided a formal description of this process that aligns EVC 
and its components with ideas from artificial intelligence and control 
theory4,74 and shown how a computational implementation of the theory 
can account for observed influences of incentives on control adjustments 
(and associated behavior)74. OFC: orbitofrontal cortex; STN: subthalamic 
nucleus; mPFC: medial prefrontal cortex; PFC: prefrontal cortex. Center 
panel adapted with permission from ref. 4, Elsevier.
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experimenter’s control (for example, compensatory mechanisms and 
lesion location; but see also ref. 57).

dACC’s role in motivating effortful behavior
The findings reviewed above all concern the role of the dACC in 
promoting control-demanding processes in the service of maximizing 
subjective estimates of reward. However, another critical component 
of the EVC theory is that there is an intrinsic cost to the allocation 
of control. In computing EVC, dACC must therefore take account of 
these costs alongside environmental signals indicating the demands 
and incentives for control. The EVC theory thus serves to integrate the 
aforementioned literature on dACC’s role in performance monitoring 
and decision-making with the literature linking this region to moti-
vation and effort and their relationship to control. Consistent with 
the EVC theory, dACC signals associated with control-demanding  
tasks correlate with avoidant preferences58,59 and negative affec-
tive reactions60 associated with such tasks, as well as with decreased 
reward-related responses in the ventral striatum following comple-
tion of the demanding task61. Similarly, dACC reactions to response 
conflict predict subsequent discounting of the reward associated with 
the conflict-related stimulus62. These findings can be explained by a 
role for dACC in signaling not only the benefits of exerting control 
(as discussed above) but also the costs of doing so, discounting the 
former by the latter. Similar observations have been made for dACC 
responses to demands for physical effort20.

The idea that dACC is responsible for a cost/benefit analysis of 
control-demanding behavior helps explain the longstanding link 
between dACC and motivation. The estimation of EVC is, simply 
put, an assessment of the motivational value of control-demanding 
behavior (cf. ref. 2), cast in formally explicit terms. This, in turn, helps 
explain the types of global motivational deficits that have led research-
ers to tie dACC to the “energization” of behavior2,12. Lesions to dACC 
have been associated with general slowing of performance12 and a 
higher threshold for overcoming effortful obstacles, both physical2 
and cognitive63. Extreme lesion cases result in severe impairments in 
motivating action, such as akinetic mutism. Conversely, dACC stimu-
lation produces experiences of a “willingness to persevere” through 
impending challenges64. These observations can be readily explained 
by alterations in the adaptive allocation of cognitive control.

dACC’s role in foraging and behavioral flexibility
Among the many functions that have been ascribed to dACC is a role 
in promoting behavioral flexibility. This view has been articulated 
explicitly by Kolling and colleagues3,65, who have referred to this func-
tion in various forms, including a role in the “valuation and promo-
tion of behavioural change and search”3 and encoding “the value of 
switching to a course of action alternative to that which is taken or 
is the default.”65 They have operationalized this in terms of foraging 
decisions and proposed that dACC represents, among other things, 
the value of the foraging option—that is, the value of abandoning a 
previously chosen option or one typically chosen in a given context 
(the ‘default’) in favor of an alternative. For convenience, we refer to 
this as the foraging value theory (FVT). Like the conflict-monitoring 
theory and many other previous theories, we believe that this charac-
terization accurately reflects a frequently observed characteristic of 
dACC responses but misidentifies the fundamental computational 
function responsible and thus fails to capture the fuller picture.

Specifically, FVT ties dACC responses to the value of a particular 
option or behavioral choice, one that is different from the default—
for example, traveling to a new patch versus continuing to exploit 
resources within the current one. In contrast, EVC proposes that 

dACC responses are not tied to the intrinsic status of any particular 
behavior as default versus nondefault or stay versus leave but rather 
the extent to which, in the current context, those behaviors, and/ 
or the choice between them, demands control (Fig. 2). In general, 
switching tasks or overriding a default carries costs associated with 
the demands for control4,18,21,58. The distinction between automatic 
and default is a subtle but crucial one. Often these factors may be 
aligned (i.e., the default behavior may be the strongest or most com-
pelling behavior) but not always. This alignment is particularly likely 
to occur in naturalistic foraging settings, where decisions are made 
in the context of a progressively depleting resource. Early in the pro
cess of exploiting a patch, the stay option may be most compelling 
but, as the resource depletes, continuing the same behavior (i.e., the 
default) becomes less compelling. Foraging theory66 indicates that 
the optimal point at which to choose the foraging option is when its 
relative value matches the value of that stay or default option (Fig. 3a). 
This circumstance highlights the distinction between the status of a 
behavior as default and its demands for control, as well as how they 
can be confounded. When the values of the default and the alterna-
tive are roughly comparable—confounding decision difficulty (and 
corresponding demands for control15,21) with the relative value of the 
foraging option (which has been steadily increasing)—both theories 
would predict dACC engagement. Critically, however, decision dif-
ficulty and relative value are de-confounded when the value of the 
foraging option greatly exceeds the current option. FVT predicts that 
dACC should be even more engaged in such conditions, whereas EVC 
predicts the opposite (since the decision is now easy: pick the foraging 
option). In two studies67,68, we exploited this observation and found 
that when decision difficulty was experimentally dissociated from the 
relative value of foraging, dACC activity varied with the former and 
not the latter (Fig. 3b,c; see also ref. 69).

Kolling and colleagues have allowed that, in addition to foraging 
value, dACC may also encode the difficulty of the decision itself, pos-
sibly as a consequence of the foraging value comparison process70 (but 
note that this predicts that difficulty signals should be accompanied 
by foraging value signals, which we have failed to find67,68). They 
argue that dACC may in fact encode many decision-related variables, 
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Figure 2  Decisions about engaging in a current task versus an alternate 
task from the perspective of FVT and EVC. Left: FVT focuses on the 
expected reward for remaining on the current task (the default) and 
for switching to the alternate, nondefault task (including the time and 
resources consumed during the switch). (Note that these are not argued 
to be the only signals in dACC but to comprise the key foraging decision-
related components of the dACC signal.) Right: by contrast, EVC considers 
the degree to which allocating different amounts of control to each task 
(separately or jointly) will accrue reward and effort-like costs. EVC also 
considers the switch costs in terms of both time and the demands of 
adjusting control signals, as well as the cognitive demands associated 
with decision conflict (as when the two tasks are mutually exclusive and 
close in value). Differences are highlighted in bold.
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among which difficulty is one. As we have argued above, EVC concurs 
with this latter prediction. However, what it adds is a computationally 
explicit account of the relationship among the functions associated 
with dACC (for example, the role of task difficulty in signaling the 
need for control), and therefore it offers an account of dACC activity 
that is simultaneously more coherent and more tightly constrained 
(Fig. 1). What remains in question is whether dACC encodes foraging 
value as such, specifically and over and above its role in determining 
decision difficulty and other demands or incentives for control (for 
example, surprise67).

Current challenges
This review of the EVC theory and its relation to FVT helps bring 
into focus challenges and promising directions for future research. 

Historically, progress in research on the dACC has been marked by 
the discovery of an increasing variety of signals in this region, across 
species and methodologies, that have often appeared to present con-
tradictions in the interpretation of its function23,24,56. Such apparent 
contradictions have at points led to the hypothesis that certain dACC 
signals (for example, those associated with conflict) are unique to 
humans and/or to particular measures of neural activity7. However, 
recent data call this hypothesis into question9,30–32,34,48 and instead 
suggest that the diversity of experimental observations may reflect 
strong context-dependence in dACC function5, rather than species 
or measurement specificity per se (see also ref. 71).

The EVC theory seeks to accommodate this diversity by suggesting 
that it reflects differential engagement of component computations 
that contribute to an overarching function: the evaluation and speci-
fication of control signals. These component computations include 
estimating the reward anticipated from implementing a candidate 
control signal, the costs associated with implementing that signal 
(including opportunity costs and difficulty) and the consequence(s) 
of not doing so. Insofar as different circumstances may engage these 
functions in different degrees, and insofar as these functions are 
likely to be distributed differentially over different subpopulations of 
units within dACC (and that these, in turn, may interact differently 
with other brain structures), it is not hard to imagine how differ-
ent experiments will yield different results. Accordingly, a primary 
aim of theory development should be to formalize such component 
computations, determine how they are engaged by experimental 
manipulations and, based on such determination, generate testable, 
quantitative predictions about how dACC activity should change 
according to the relevant variables (i.e., when increases or decreases 
are expected at the single-unit or population level). This would not 
only allow theories to better capture the nuances of the brain as a 
dynamical system, it would also help disambiguate terminological 
overlap (for example, different types of conflict21,30, estimates of 
task difficulty18 and senses in which an option is a default4,65) that 
often impedes direct contrasts between theories. Of course, greater 
precision at the level of theorizing must be accompanied by more 
detailed neural data. In particular, this should include a deeper con-
sideration of cross-species differences in the extent and topographic 
heterogeneity of the region subsumed by dACC5, which includes a 
prominent extension in humans (area 32′) that lacks a clear ana-
tomical homolog in nonhuman primates8 but does have a potential 
functional homolog9.

While these are challenging goals, we believe they are essential for 
progress to be made in this area of research. An important related 
aim will be to gain a better understanding of the relationship between 
motor and cognitive control specification by dACC and surrounding 
regions and to determine whether these together constitute a hierar-
chical2,72 or otherwise topographically organized9,21 map of potential 
control outputs. Future work should also examine the relationship 
between the computations and circuitry underlying the learning of 
rewards and control costs in these two domains, given previous work 
tying striatal learning signals to both motor and cognitive actions73. 
We hope that the EVC theory provides a helpful framework for pur-
suing these goals and thus contributes to progress in deepening and 
expanding our understanding of dACC function.
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