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Abstract

Interacting Ultracold Bosonic Atoms in Geometrically Frustrated Lattices

by

Tsz Him Leung

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan Stamper-Kurn, Chair

Geometric frustration is a phenomenon where local energy constraints cannot be simultane-
ously satisfied because of geometric reasons. This leads to a manifold of degenerate ground
states in which ordering can be highly nontrivial and exotic phases of matter could emerge.
In a kagome lattice, both interaction energies of spins and kinetic energies of particles can
be frustrated. In the latter case, a single-particle band structure with a flat (dispersionless)
energy band results.

In this dissertation, we report our experimental studies of interacting bosonic systems in
kagome lattices. Such studies are performed with a quantum simulator based on ultracold
atoms in optical lattices. We describe upgrades and development of the apparatus that
constructs optical kagome lattices in our experiment. We briefly discuss results of an exper-
iment studying the Bose-Hubbard model in a trimerized kagome lattice. We then report the
details of an experiment investigating the interplay of kinetic frustration and interactions by
probing the band structure of an optical kagome lattice with interacting ultracold bosonic
atoms. Finally, we propose experimental ideas for exploring the properties of the singular
band touching point in the kagome flat band.
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Chapter 1

Introduction

In this introductory chapter, we present the main themes of the research work reported
in this dissertation, namely geometric frustration and flat bands. We also describe how a
quantum simulator based on ultracold atoms and optical lattices works and is used in our
experiment.

1.1 Geometric frustration and flat band

Geometric Frustration

Geometric frustration is a phenomenon where a system fails to minimize local energy con-
straints simultaneously because of geometric reasons. Consider a Ising model with three
antiferromagnetically coupled spins placed at the corners of a triangular plaquette, as shown
in Fig. 1.1. The Hamiltonian of the system is H = J

∑
i>j σ

z
i σ

z
j , where J is the interaction

energy, σz is the Pauli-z operator, and the summation runs over all the bonds between spins.
This system represents a classic example of geometrical frustration – because of the triangu-
lar geometry, there is no possible spin configuration where the antiferromagnetic coupling is
satisfied for all pairs of neighboring spins. In contrast, a system of four spins placed at the
corners of a square plaquette does not show geometric frustration.

An important consequence of geometric frustration is that the system does not have
a unique ground state. Denoting the two possible spin states as |↑〉 and |↓〉, we have six
degenerate spin configurations: |↓↑↑〉 , |↑↓↑〉 , |↑↑↓〉 , |↑↓↓, ↓↑↓〉 and |↓↓↑〉, all having the same
energy −J .

Geometric frustration also occurs at the macroscopic scale, i.e. in extended lattices. Lat-
tices in which frustrated spin models can be defined are referred to as geometrically frustrated
lattices. For example, a triangular lattice is geometrically frustrated for the Ising model, and
a kagome lattice is geometrically frustrated for both the Ising model and the Heisenberg
model (Fig. 1.2). In such macroscopic frustrated magnetic systems, the large degeneracy of
ground states can lead to a spin liquid, where spins are highly correlated and entangled but
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?

(a) (b)

Figure 1.1: Antiferromagnetically coupled Ising spins in a (a) triangular plaquette and (b) a
square plaquette. In (a), the system is frustrated and does not have a unique ground state.
In (b) the system is not frustrated.

long-range order is inhibited even at zero temperature because of quantum fluctuations [1,
2, 3].

Frustrated magnetism is extensively studied both numerically [4, 5] and experimentally
[6, 7]. Yet, the topic is very challenging and there are still a lot of open questions in this field
of research [8]. For example, the exact details of the ground state of a Heisenberg kagome
antiferromagnet is still unresolved [7]. One reason is that a spin liquid is susceptible to any
kind of “perturbations” and sample imperfections, as there is no other energy scale present
in the degenerate ground-state manifold. Finding a faithful realization of the ideal kagome
antiferromagnet is therefore difficult. Also, a spin liquid is a highly correlated state, which
makes it difficult to simulate on a classical computer.

Flat band

A flat band is an energy band with no dispersion. The origin of a flat band is quantum
destructive interference. A lattice model leads to a flat band if and only if a set of eigenstates
known as compact localized states (CLS) can be constructed [9]. These CLS are localized
in real space, as tunneling paths leading to the outside of the localized region cancel one
another out by interference.

Take the kagome lattice as an example. The kagome lattice possesses a flat band in the
tight-binding model (see chapter 2). We can define the creation operator Â for a CLS as

Â =
1√
6

∑
i∈9

(−1)iĉi (1.1)

ĉi is a creation operator for site i, and i runs over the six sites around a hexagonal plaquette.
Each CLS occupies one hexagonal plaquette, and has alternating phases around the plaque-
tte’s vertices (Fig. 1.3). Tunneling to a nearby site outside the plaquette takes place through
two out-of-phase paths, resulting in destructive interference. As a result, the CLS states are
localized in real space. Note that the CLS states are actual eigenstates for a flat band.
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(a) (b)

Figure 1.2: Two examples of geometrically frustrated lattices: (a) the triangular lattice, and
(b) the kagome lattice.

While being geometrically frustrated does not always imply the possession of flat bands,
and vice versa, for the kagome lattice, the two are actually related. For example, a frustrated
Heisenberg model can be derived from a tight-binding model with frustrated tunneling in
the strongly interacting regime [10]. In both cases, a degenerate manifold is present, either
due to a set of degenerate Bloch states/CLS, or a set of degenerate spin configurations.

Because of the absence of kinetic energy (dispersion), the physics of a system of particles
in a flat band is dictated solely by their interactions (and/or disorder). This makes flat
band systems an ideal setting for studying interaction-driven physics. For bosons, a number
of exotic phases of matter have been proposed to be hosted in a flat band, for instance
Wigner crystals, supersolids and trion superfluids [11, 12]. For fermions, flat bands are
considered as a setting to realize itinerant ferromagnetism [13, 14] and superconductivity
with enhanced critical temperature by taking advantage of the high density of states for
coupling between fermions [15]. Very recently, superconductivity is observed in twisted
bilayer graphene systems and it is attributed to an emergent flat band that shows up when
the twisted angle is right at the magic angle [16, 17, 18].

Another exciting possibility is the realization of strongly interacting topological states.
A topological (nearly-) flat band resembles a Landau level. When partially filled, such a
band is predicted to host fractional quantum hall states at room temperature [19, 20, 21].

For a more comprehensive review of the subject, see [22, 23].

1.2 Quantum simulation

We have seen that the kagome lattice offers exciting opportunities for studying exotic physics
and realizing novel phases of matter. To test out various theoretical models, we perform
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Figure 1.3: Wavefunction of a compact localized state. Because of its alternating phases
around the hexagonal plaquette, tunneling to a neighboring site has zero probability due to
destructive interference.

(analog) quantum simulations [24], where a controllable quantum system is built to evolve
under the Hamiltonian of interest.

Analog quantum simulation has been performed on various experimental platforms (quan-
tum simulators), including ultracold atoms in optical lattices [25, 26, 27], trapped ions [28],
superconducting circuits [29], photonic circuits [30] etc. The work reported in this thesis is
performed with ultracold atoms in optical lattices.

Ultracold atoms in optical lattices

Employing various laser cooling and trapping techniques developed over decades in the field of
atomic physics, neutral atoms can be cooled down to extremely low (ultracold) temperatures
– only a few billionth of a degree [31, 32, 33, 34, 35]. At such low temperatures, the quantum
nature of the atoms is fully manifested. Bosons occupy the ground state of the system
macroscopically, forming a Bose-Einstein condensate [33, 36, 37]. Fermions atoms fill up
all the energy states from the ground state up to an energy (Fermi energy), as allowed by
Pauli-exclusion principle, forming a Fermi degenerate gas [38].

Ultracold atoms can be loaded into an optical lattice – a periodic intensity pattern formed
by interference of laser light. Light field induces a dipole moments in atoms, which in turn
interacts with the light field, creating a periodic potential that bears the same geometry as
the intensity pattern and traps the atoms. This constructs a conceptually simple system
where identical quantum particles reside in a discretized lattice. Naturally, it can be used to
perform quantum simulations of theoretical models for solid-state materials. In such models,
materials are often abstracted as a system of electrons residing in a discrete lattice originated
from a periodic ionic potential.

This ultacold-atom quantum simulator has a number of remarkable features. For exam-
ple, it is free of detects and impurities, making interpretations of experimental data more
straightforward. Also, it is highly controllable and tunable. For example, the depth of the
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lattice atoms reside in can be adjusted easily by tuning the power of laser beams. The lattice
structure itself can be modulated dynamically, say by changing the frequencies of the laser
beams. Many of the experiments that have been demonstrated with ultrcold atoms in optical
lattices are difficult, if not impossible, to be performed with solid-state materials.

Optical lattices with different geometries and dimensionality can be created by arranging
laser beams in different ways. In addition to the one-dimensional lattice [39] and the three-
dimensional cubic lattice [40], a number of two-dimensional geometries have been realized in
the field, including square lattice, the triangular lattice [41], the honeycomb lattice [42], the
double-well lattice [43], the Lieb lattice [44] and the kagome lattice [45] (by our group).

For a detailed review of the field of quantum simulation using ultracold atoms in optical
lattices, see Ref. [25, 26, 27].

1.3 Outline

The main theme of the research work reported in this dissertation is the quantum simulation
of quantum models for bosonic particles in geometrically frustrated kagome lattices. Below
are summaries of the content in each chapter:

Chapter 2 We explain the basic theory that underlies the work reported in the rest of
the dissertation. We also explain the experimental scheme for the construction of optical
kagome lattices, both regular and trimerized.

Chapter 3 We describe the experimental apparatus for performing quantum simulation,
with a focus on the setup that creates optical lattices. We describe in details two major
upgrades of the apparatus – a new optical system that creates a triangular lattice at 532-
nm, and an upgraded phase feedback system that allows arbitrary and dynamic control of
the optical superlattice geometry.

Chapter 4 This short chapter concerns an experiment simulating the Bose Hubbard model
in an optical trimerized kagome lattice in the strongly interacting regime. This work repre-
sents the first realization of an optical lattice with such geometry. We discuss some important
aspects of data analysis in this work.

Chapter 5 This chapter concerns an experiment measuring the band structure and its
distortion due to mean-field interactions of an optical kagome lattice. This work reveals
interaction-induced band renormalization effects in the kagome flat band. We discuss the
details of the experimental protocol, data analysis and numerical simulation performed in
this work.
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Chapter 6 We develop an idea on exploring the quadratic band touching point in the
kagome band structure. Preliminary experimental results and some calculations based on
interacting mean-field model that might guide future research directions are discussed.

Both works in chapter 4 and 5 are already reported in academic journals [46, 47]. Instead
of restating the results that can be found in the published materials, we focus on explaining in
details some aspects of the experimental procedure and data analysis that are not reported.

1.4 History

I started my research work in Fall 2013 as a rotating student. I expressed my interest in
the group’s kagome lattice experiment (referred to as E5) to Prof. Dan Stamper-Kurn and
we agreed that I joined the E5 team. E5 was then comprised of three people – graduate
students Claire Thomas and Thomas Barter, and a visiting student Vincent Klinkhamer
from Heidelberg who was leaving the group in a month of so. I started by taking over some
of Vincent’s projects, including some calculations on the design of a dual-species (rubidium
and potassium) Zeeman slower and testing of a set of PCB coils designed for controlling the
magnetic field environment at the glass cell (where the BEC is created). In the summer
of 2014, we were joined by another German student, Severin Daiss. In Fall 2014, I built
a spectroscopy setup for potassium atoms, as the team wanted to get prepared for putting
fermionic potassium atoms into the kagome lattice in the future.

Starting Spring 2015, I became a full-time researcher in the group, and began working
closely with Claire and Tom. To support the research work led by the two senior graduate
students, I worked on building a number of optical and electronic systems, including some
parts of the optical lattice setup, the lattice intensity stabilization circuit, etc, and helped
with running experiments. In the next two years or so, we managed to recover the BEC
machine and finished two projects that led to publications [48] and [49]. The history of the
experiment during that time can be found in [50] and [51].

Trimerized kagome lattice (2017-2019)

In Spring 2017, Claire stepped out from the lab and started writing her thesis. Soon Luca,
another German visiting student who joined the team earlier in Summer 2016, went back
to Heidelberg to continue his doctoral work. The rest of us started a new project conceived
by Tom on the trimerized kagome lattice. Tom and I worked in the lab to set up the
experiment. Masayuki, a postdoc who joined us in Fall 2015, did calculations to understand
the mean-field Bose-Hubbard model in the trimerized kagome lattice.

This project turned out to be much more technical challenging than we thought, mostly
due to the linear sensitivity of the lattice geometry (see Ref. [51] and Chapter 4 of this thesis).
After putting a lot of effort in improving our phase lock system, we managed to create a
(marginally) stable enough optical trimerized kagome lattice for experiments. We tried out
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a few ideas for the rest of the year, including preliminary attempts on all the experiments
eventually reported in Ref. [46].

Things seemed to be working well for a while. It was not until Spring 18 that we realized
another major issue with the experiment – the nearest-neighbor coherence extracted from
time-of-flight images of atoms was unphysically large. We went through a lot of troubleshoot-
ing and eventually concluded that the problem was due to the system’s failure to reach an
equilibrium state when crossing the superfluid to Mott insulator transition. We decided to
apply an extra potential to the atoms to keep its Thomas Fermi profile constant throughout
the transition such that atoms do not need to move over large distances to equilibrate. I
was responsible for calculating the ramp function of such a potential, and Tom set up the
required optics and control system. With such a scheme, Tom and I took the final data of
the project.

After collecting all the data in Summer 2018, Tom stepped out from the lab and started
analyzing the the data and also writing his thesis. In early 2019, Tom left the group after
putting together a manuscript that was almost ready for submission to journals. I took
over the job of finishing the manuscript. Soon I realized that an important aspect of the
experiment – the breathing of the trimerized kagome lattice – was not considered in the
original analysis method. This led to a couple of unresolved puzzles in the analyzed data
(see Chapter 4). Dan and I decided that all the data should be reanalyzed. With other
things going on in the lab, it was only in June 2019 that the first complete draft of the paper
was submitted. This project resulted in the publication in Ref. [46].

New SW lattice setup (2018)

As the lab had suffered a lot from the superlattice instability problem during the work on
the trimerized kagome lattice, we decided in mid 2018 to construct a new SW (532 nm)
lattice system by frequency doubling the LW (1064 nm) light from the Mephisto. That way
all our lattice beams are delivered by a common laser source, and the superlattice geometry
will be immune to frequency drifts of the laser. Masayuki did some planning and purchasing
for setting up the frequency doubling system. In Summer 2018, Yee Ming Tso, a visiting
student from Gyu-boong Jo’s group at the Hong Kong University of Science and Technology,
joined the group for summer research. Ming, under the supervision of Masayuki and myself,
built the first iteration of the frequency-doubling system.

After the summer, Ming went back to Hong Kong and I became the only person in the
lab. I slightly revised the frequency doubling system based on what Ming built, and spent
the rest of the year building the entire new SW lattice system (see Chapter 3). This system
was put into official operation starting from 2019.

A long interlude (2019)

After the construction of the new SW lattice setup was completed, I decided to tackle
another longstanding problem in the lab - the mysterious disappearing of the BEC. It had
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been the case for at least a couple of years that we were able to make a nice and cold BEC
in the morning everyday, but only to see it get smaller and smaller over time and eventually
disappear at some unpredictable time in the afternoon. Sometimes it comes back after we
try some random things, more often it shows up again only in the next morning.

We put some effort in monitoring various things (light intensity of different beams, tem-
perature, magnetic field, etc.) in the lab. We then saw some suspiciously large 60 Hz noise
on our magnetic quadrupole trap. It was later found that the ground wire that connects the
master and slave power supplies which drive the quadrupole trap coils was missing! After
fixing this problem, we had a much more stable BEC to work with.

Around that time, Storm Weiner, a rotating student, and Govind Unnikrishnan, a visiting
student from Innsbruck, joined E5. We were very excited to do some science with the new
SW setup and the more stable BEC condition. We set out to explore non-stationary (q 6= 0)
Bloch states in optical lattices. Only after a week, we realized that we ran out of rubidium in
the reservoir. We ended up spending two months on putting a new rubidium source into the
system, as well as ordering and replacing various vacuum components broken in the process.
There was also a flood during the vacuum bake-out, which, fortunately, only made a mess
but nothing too serious.

After the vacuum work, Storm left the team to start another rotation. Govind and I
thought it was time to return to doing science, but the master laser diode died for some
unknown reason. It took a surprisingly long time for us to recover it because we just could
not get the right parts for replacement – we had got brand new diodes with bad spatial
modes, as well as empty packages from vendors. The apparatus was finally back up and
running in Fall 2019.

Kagome flat band (2019 - 2020)

Right before Govind returned to Innsbruck, another visiting student from Germany, Malte
Schwarz, joined our team in early Fall 2019. Malte familiarized himself with the apparatus
in a impressively short period of time. We started our project on exploring excited bands of
optical lattices. We started with 1D and honeycomb lattices, then moved onto the kagome
lattice.

In October, Malte and I successfully populated the supposedly flat third band of the
kagome lattice, as evidenced by the qualitative agreement between the diffraction pattern
we observed in experiments and the ones calculated based on non-interacting band theory.
At that time, we were convinced that the third band was indeed flat, as the extracted group
velocity of the atoms was about zero. However, the data quality was not good and the image
analysis method we used was not refined (see Chapter 5). In the same month, we were joined
by a new graduate student Shao-Wen Chang and a new postdoc Charles Brown.

In Spring 2020, Matle and I worked on numerical simulations to figure out a better lattice
ramp function that would give us higher state-preparation fidelity. Leon Lu, then a first year
grad student rotating with E5, pointed out that an exponential ramp could work the best.
We took his suggestion and with the new ramp, we measured a non-zero group velocity of
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atoms in the third band of the kagome lattice, suggesting that the band is not flat. As we
collected more data, we were convinced that the third band is indeed not flat in our system,
presumably due to interaction effects.

In mid March 2020, COVID hit and we learned that the campus, including our lab,
was going to shut down. Things escalated so quickly that we did not have enough time
to properly wrap things up. No plans could be made because no one knew how long the
shutdown was going to last. On the last day before the shutdown, Malte took some data to
explore the dependence of group velocity on number density. The data eventually became a
very important plot in [47].

As the campus was shut down, I flew back to Hong Kong and started working remotely.
We were fortunate enough to have taken enough data before the shutdown to write a paper
with. I analyzed the data we had taken and wrote up the manuscript. Malte and Shao-
Wen worked on numerical simulations. The paper was written up in June and eventually
published in September [47].

Arbitrary phase lock loop and singular band touching points
(2020)

In July 2020, I returned to the U.S. amid COVID. To wrap up my doctoral work I took
on a technical project – upgrading the then existing optical phase lock system to make it
capable of locking to an arbitrary phase. The team had always wanted to have this capability
because of the wide range of possibilities in experiments it would open up.

In about two months, with a lot of assistance from Shao-Wen, I completed the optical
setup, the electronics, as well as the computer control system for the new phase lock. Charles
and I immediately took advantage of the system and did a preliminary experiment to ex-
plore the singular Dirac point of the honeycomb lattice (see Chapter 6). The result of that
experiment suggested that exploring the singular band touching points of the honeycomb or
the kagome lattice is a promising future research direction.

Oct 23, 2020 was my last day in the E5 lab.
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Chapter 2

Kagome lattice and Its Optical
Representation

This chapter serves to lay the foundation for discussions in the rest of this dissertation. We
first introduce the kagome lattice and describe its features. We then study and solve the tight-
binding model of this lattice, and point out several important aspects of the band structure
which will be discussed in later chatpers. Finally, we explain our experimental scheme for
realizing an optical kagome lattice. We calculate the band structure of the optical kagome
lattice at realistic experimental parameters and compare it to the tight-binding one.

2.1 Basics

The kagome lattice, shown in Fig. 1.2, can be viewed as a lattice of corner-sharing triangles,
or a lattice of hexagrams. It has a triangular Bravais lattice with three sites per unit cell.
This lattice has a number of different symmetries. They include (a) C3 rotational symmetry
about the triangle centers and C6 rotational symmetry about the hexagram centers, (b)
inversion symmetry with inversion centers located at both the hexagram/hexagon centers
and all the lattice sites, as well as (c) mirror symmetries for six different symmetry lines that
bisect the hexagons through either their vertices or edges.

We define the primitive lattice vectors and the corresponding reciprocal vectors of the
kagome lattice as below,

a1 = a

0

1

 , a2 = a

−√3/2

1/2

 (2.1)

G1 = G

 1/2
√

3/2

 , G2 = G

−1

0

 (2.2)
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2
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Γ

(b)

(d)

C

C
B

B

B

A

A

A C

K’

Figure 2.1: (a) Definitions of the primitive unit vectors. (b) A close up of the kagome lattice
with labelled sites. A unit cell formed by a1 and a2 is indicated by a shaded yellow region.
(c) Definitions of the reciprocal lattice vectors. (d) Reciprocal lattice. The first Brilluoin
zone is indicated by a shaded yellow region. Symmetry points Γ, K, K ′ and M are labelled.

where a is the lattice spacing, and G = 4π/(
√

3a). From the definitions above, we have the
relations ai ·Gj = 2πδi,j. For convenience in later discussions, we also define a3 = a1 − a2

and G3 = −G1 −G2. We also write down the positions of the lattice sites in a unit cell as

RA = (1/2)a3, RB = 0, RC = (1/2)a1 (2.3)

The position of any site can be written using the unit cell index s = (s1, s2) and site index i
as Rs,i = Rs + Ri = (s1a1 + s2a2) + Ri, for i ∈ {A,B,C}.

In the reciprocal lattice shown in Fig. 2.1 (b), a few important symmetric points are
marked. They are

Γ :

0

0

 , K :

1

0

 qK , K ′ :

√3/2

1/2

 qK , M :

√3/4

3/4

 qK (2.4)

where qK is defined as the distance from Γ to K in reciprocal space. Note that there are
three equivalent K (and K ′) points in the first Brillouin zone that are related by reciprocal
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lattice vectors, and only one of them is marked in Fig. 2.1 (b). The K and K ′ points are
also referred to as the Dirac points (see next section and Chapter 6 for further discussion).
Similarly, there are six M points in the first Brillouin zone that are related by one another
by mirror symmetries.

2.2 Tight-binding model

In this section, we introduce the tight-binding model defined on the kagome lattice. Going
to momentum space, the Hamiltonian of the system can be written as a simple 3 × 3,
quasimomentum-dependent matrix. Solving this matrix at all quasimomenta, the kagome
band structure can be obtained.

In the tight-binding model, we work in the basis of Wannier states W (r−Rs,i), which has
spatially localized wavefunction centered at the lattice site with position Rs,i. For clarity,
we define a†s (b†s, c

†
s) as the creation operator that creates a particle in the Wannier basis in

the lattice site A (B, C) of a unit cell s. In the following, we refer to intra- and inter-trimer
tunneling energy as J and J ′ respectively, such that the derivation applies to a more generic
setting. For the normal (trimerized) kagome lattice J = J ′(J 6= J ′). The tight-binding
Hamiltonian is given by

H = −J
∑
s

(
c†sas + b†scs + a†sbs + H.C.

)
−J ′

∑
s

(
c†(s1,s2−1)as + b†(s1+1,s2)cs + a†(s1−1,s2+1)bs + H.C.

)
(2.5)

In the equation, the first sum includes coupling within a single unit cell m, and the second
sum includes coupling between neighboring unit cells. The second sum is written in a way
such that only half of the inter-trimer bonds are taken into account. When such a term is
enumerated for all unit cells, there is no double counting.

After writing down the Hamiltonian in the Wannier basis, we go into momentum space

by performing Fourier Transform â†m =
√
N
−1∑

k exp[ik · (Rm + Ra)]ã
†
k

1 and similarly for

b̂†m and ĉ†m . Consider the first summation,

1Conventionally, the Fourier transform should be written as â†m =
√
N
−1∑

k exp[ik ·Rm]ã†k where the

phase factor ik ·Ra is not included. However, we can perform a gauge transformation ã†k → exp[ik ·RA]ã†k
and obtain the expression written in the text.
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−J
∑
s

(
c†mam + b†mcm + a†mbm + H.C.

)
= −J

∑
s

N−1
∑
k,k′

exp[ik · (Rs + RC)] exp[−ik′ · (Rs + RA)]c̃†kãk′ + ...+ H.C.


= −J

∑
k,k′

((
N−1

∑
s

exp[i(k− k′) ·Rs]

)
︸ ︷︷ ︸

δk,k′

exp[i(k ·RC − k′ ·RA)]c̃†kãk′ + ...+ H.C.

)

= −J
∑
k

(
exp[ik ·RCA]c̃†kãk + exp[ik ·RBC]b̃†kc̃k + exp[ik ·RAB]ã†kb̃k + H.C.

)
(2.6)

Here, RCA = RC −RA and so on. Similarly, for the inter-trimer terms,

−J ′
∑
m

(
c†(s1,s2−1)am + b†(s1+1,s2)cm + a†(s1−1,s2+1)bm + H.C.

)
= −J ′

∑
k

(
exp[ik · (RCA − a2)]c̃†kãk + exp[ik · (RBC + a1)]b̃†kc̃k + exp[ik · (RAB − a3)]ã†kb̃k

+H.C.
)

= −J ′
∑
k

(
exp[−ik ·RCA]c̃†kãk + exp[−ik ·RBC]b̃†kc̃k + exp[−ik ·RAB]ã†kb̃k + H.C.

)
(2.7)

Combining the results,

H = −
∑
k

J
(

(exp[ik ·RCA] + r exp[−ik ·RCA])c̃†kãk + ...+ H.C.
)

=
∑
k

ψ†kHkψk (2.8)

(2.9)

where,
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Hk = −J


0 e+ik·RAB + re−ik·RAB eik·RAC + re−ik·RAC

e−ik·RAB + re+ik·RAB 0 e+ik·RBC + re−ik·RBC

e−ik·RAC + re+ik·RAC e−ik·RBC + re+ik·RBC 0


ψ†k = (a†k b

†
k c
†
k)

r = J ′/J (2.10)

In particular, if we take r = 1 (regular kagome lattice), the Hamiltonian takes the following
simple form,

Hk = −2J


0 cos(k3) cos(k2)

cos(k3) 0 cos(k1)

cos(k2) cos(k1) 0

 , (2.11)

where k1 = k · a1/2, k2 = k · a2/2 and k3 = k · (a2 − a1). Now we can solve for the band
structure, which is boiled down to solving Eq. 2.11 for different values of k. The characteristic
equation det |Hk + εI| = 0 is exactly solvable. The solutions are

ε = (1 + r)J or ε =
J

2

[
−(1 + r)±

√
(3r − 1)2 + 8(1 + rΩ(k))

]
(2.12)

where Ω(k) = cos(2 · k1)+cos(2 · k2)+cos(2 · k3). We plot the band structure for the regular
(r = 1) kagome lattice in Fig. 2.2. Below we discuss a few special features of the kagome
band structure.

Flat band The first solution in Eq. 2.12, which has the highest eigenenergy, has no de-
pendence on k. This corresponds to a band that is dispersionless, or flat band. The origin
and importance of flat bands is explained in Chapter 1. In Chapter 5, we will discuss an
experiment that demonstrates the distortion of this flat band due to interaction effects.

Quadratic band touching point At the Γ point where Ω = 3, the eigenenergies are
ε = (1 + r)J (double root) and and −2(1 + r)J . The two-fold degeneracy of the higher-
energy solutions indicate that there is band touching between the second (n = 2) and third
(n = 3, flat) band. Near the touching point, the energy difference between the touching
bands changes quadratically.

The existence of this touching point can be explained by the C3 symmetry of the lattice,
and also by the incompleteness of the CLS basis. In Chapter 6, we will investigate further
into the origin and features of this touching point.
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K M
0

3

6

E/
J

(a) (b)

Figure 2.2: (a) Tight-binding band structure of the kagome lattice (s-bands). (b) One-
dimensional cut-through of the band structure along the symmetry line Γ−K −M −Γ (see
Eq. 2.4).

Dirac points There are also band touching points between the first and the second band.
They occur when the term in the square root in the second solution in Eq. 2.12 vanishes,
which is possible only when r = 1, i.e. when it is a regular kagome lattice, and Ω = −3/2,
which corresponds to the K and K ′ points in the first Brilluoin zone. Once the kagome
lattice is trimerized , the lowest two bands are gapped out by 6|r − 1|J . These touching
points are actually the famous linearly dispersive Dirac point, which is widely studied in the
context of the honeycomb lattice.

2.3 Construction of optical kagome lattice

To perform quantum simulations of many-body quantum-mechanical models for the kagome
lattice, we load ultracold atoms into an optical lattice with the kagome geometry. In this
section, we explain the scheme for creating such an optical lattice using interfering laser
beams.

Observe that a kagome lattice is simply a triangular lattice with one out of every four sites
removed. To create an optical kagome lattice, we can superimpose two optical triangular
lattices, one at wavelength λ and is attractive, and the other at 2λ and is repulsive. These
two lattices are referred to as the short-wavelength (SW) and the long-wavelength (LW)
lattices respectively in the rest of the dissertation. The two lattices are superimposed at a
specific relative position where one out of every four attractive SW lattice sites sits on top
of a repulsive LW lattice site, and therefore is energetically raised. The remaining attractive
sites of the superlattice thus forms a kagome lattice (Fig. 2.3).

For the trimerized kagome lattice, this scheme has to be slightly modified. We create an
attractive LW triangular lattice instead and place its lattice sites in the middle of the trimers
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(a) (b) (c)

Figure 2.3: (a) Configuration of laser beams. Beams of both 532 nm and 1064 nm co-
propagate and are focused onto atoms along three different directions that intersect at 120
degrees. (b) To create a kagome lattice, an attractive SW triangular lattice (formed by
in-plane polarized light) and a repulsive LW triangular lattice (formed also by in-plane
polarized light) are superimposed. The repulsive sites of the LW lattice (red dots with
dashed circumference) are situated on top of a SW lattice site (green dots). (c) To create
a trimerized kagome lattice, an attractive LW triangular lattice (formed by out-of-plane
polarized light) is used instead. The attractive sites of the LW lattice (red dots with solid
circumference) are situated in the middle of three SW lattice sites. In the figure, one of the
two equivalent trimerized pattern is shown.

formed by three SW lattice sites. For details, see Ref. [51].
Below we derive the expressions of the potential of a triangular lattice, a regular kagome

lattice and a trimerized kagome lattice. From there we focus on the regular optical kagome
lattice and calculate its band structure through direct diagonalization of the single-particle
Hamiltonian. We confirm that all the important features emphasized in the last section are
reproduced.

Triangular lattice

Let us first consider the construction of an optical triangular lattice [41]. We write down a
set of wavevectors {ki} for the three lattice beams as follows

k1 = k

√3/2

−1/2

 , k2 = k

0

1

 , k3 = k

−√3/2

−1/2

 (2.13)

Here k = 2π/λ is the magnitude of the wavevector and λ is the wavelength of light. We
keep k generic so that the following derivation applies to both the SW and LW lattices. We
denote the polarizations of the laser beams by {εi}.
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The creation of an optical lattice relies on the fact that an electric field induces in an
atom an electric dipole moment, which in turn interacts with the electric field, resulting in
an induced potential. To be specific, assume each beam has equal electric field strength E.
The total electric field is

E(r, t) =
∑
i

Ei =
∑
i

Eεie
i(ki·r−ωt) (2.14)

where ω is the angular frequency of the light. The induced dipole moment in an atom is
given by

p(r, t) = αE(r, t) (2.15)

where α is the polarizability of the atom, which can be approximated using the classical/semi-
classical Lorentz model [52]:

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
(2.16)

Here, a two-level system with energy spacing h̄ω0 is assumed, ε0 is the permittivity of free
space, c is the speed of light, and Γ is the decay rate of the excited level.

The induced dipole potential is [52]

V (r) = −1

2
〈p · E〉T = − 1

2ε0c
Re(α)I(r) (2.17)

where 〈 〉T denotes time-averaging over a period of T = 2π/ω, and I(r) ∝ |E(r)|2 is the field
intensity. From Eq. 2.13, 2.14 and 2.17, we have

V (r) = 4V0

(
3

4
+

1

2

3∑
i=1

cos(φi) cos(Gi · r)

)
(2.18)

where V0 ∝ α|E|2 is the potential depth due to a single beam, cos(φi) = εj · εk and Gi =
kj − kk, for cyclic permutation of i, j and k ∈ {1, 2, 3}. Since 3 ≥

∑
i cos(Gi · r) ≥ −3

2
, we

can infer the maximum and minimum of the potential with some particular polarizations. In
our experiments, lattice beams are either in-plane or out-of-plane polarized. In such cases,

9

2
V0 ≥ 4V0

(
3

4
− 1

4

3∑
i=1

cos(Gi · r)

)
≥ 0 in-plane polarization (2.19)

9V0 ≥ 4V0

(
3

4
+

1

2

3∑
i=1

cos(Gi · r)

)
≥ 0 out-of-plane polarization (2.20)

At the same V0, the lattice formed by out-of-plane polarized beams is two times deeper. This
is because the all the beams have aligned polarization in that case, leading to stronger inter-
ference. Also, note that complete destructive interference is possible in both configuration.
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The intensity patterns formed by in-plane and out-of-plane beams are complementary
to each other. While in-plane polarized beams form a triangular (honeycomb) lattice of
intensity minima (maxima), out-of-plane polarized beams form a triangular (honeycomb)
lattice of intensity maxima (minima). Whether atoms are attracted to the intensity maxima
or minima depend on the sign of the ac stark shift. For example, the 532-nm SW light is
blue-detuned with respect to the main atomic transition line of rubidium-87 atoms at 780
nm. In that case, V0 ∝ |E|2, and atoms are attracted to intensity minima to lower potential
energy. In contrast, 1064-nm LW light is red-detuned and V0 ∝ −|E|2. Therefore atoms are
attracted to the intensity maxima.

Kagome lattice

To create the regular optical kagome lattice, we choose the polarization of all the beams to
be in-plane, i.e. cos(θi,j) = −1/2 for all pairs of i and j. As a result, the SW lattice is an
attractive triangular lattice, and the LW lattice is a repulsive triangular lattice. We define
the lattice depth VSW/LW = 9/2|V0| for both lattices. The expressions for the the two lattice
potentials are

VSW(r, t) =
8

9
VSW

(
3

4
− 1

4

3∑
i=1

cos
(
2Gi · r + θSW

i

))
(2.21)

VLW(r, t) = −8

9
VLW

(
3

4
− 1

4

3∑
i=1

cos
(
Gi · r + θLW

i

))
(2.22)

where we have added the phase factors θ
SW/LW
i to the expressions. These phase factors are

important as they determine the relative position of the two triangular lattices. They have
to be actively stabilized to construct a lattice with well defined geometry. An electronic
feedback system was built by former member Thomas Barter for this purpose [51]. In
Chapter 3, we describe an upgraded phase lock system which allows us to arbitrarily adjust
these phases and therefore dynamically translate or distort the lattices. In the following, we
assume that all the phases are controllable and static.

The kagome lattice potential Vkag(r, t) is obtained by adding VSW(r, t) and VLW(r, t) and

setting all the θ
SW/LW
i to be zero 2:

Vkag(r) =
2

3
(VSW − VLW)− 2

9

(
VSW

∑
i,j

cos(2Gi · r)− VLW

∑
i,j

cos(Gi · r)

)
(2.23)

Plots of Vkag(r, t) at different lattice depth ratio VSW/VLW are shown in Fig. 2.4.

2There are other choices of phases that make kagome lattices too, but they are all equivalent up to lattice
translation.
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(a) (b)

High

Low

Figure 2.4: Potential of (a) a regular optical kagome lattice and (b) a trimerized optical
kagome lattice. A lattice depth ratio is VLW/VSW = 1/3 is used for calculations.

Trimierzed Kagome lattice

To construct an optical trimerized kagome lattice, we superimpose an in-plane polarized SW
lattice to an out-of-plane LW lattice. In this case, both the SW and LW lattices are an
attractive triangualr lattice. We define VLW = 9|V0|. The lattice phases are set so that LW
lattice intensity maxima are situated at the center of either the A-B-C trimer or the A-C-D
trimer. The lattice potentials can be written as

VTKL(r, t) =
2

3
(VSW −

1

2
VLW)− 2

9

(
VSW

∑
i,j

cos(2Gi · r) + VLW

∑
i,j

cos
(
Gi · r + θLW

i

)
)

)
(2.24)

where

θ1 = ±π
3
, θ2 = ±2π

3
, θ3 = ±π

3
(2.25)

The + and − cases correspond to the two different ways of trimerization.3

2.4 Band theory

In this section, we solve for the band structure of the regular optical kagome lattice by
direct diagonalizing the full single-particle Hamiltonian. We confirm that, in appropriate

3Again, there are other choices of phases that make equivalent trimerized kagome lattices up to lattice
translation.
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parameter regimes, it reproduces the important features, namely the presence of a flat band
and a quadratic band touching point, of the tight-binding band structure as described earlier
in this chapter.

The Hamiltonain for a particle loaded into the optical kagome lattice is formally written
as

H =
p̂2

2m
+ Vkag(r) (2.26)

By the Bloch’s Theorem, the eigenstate with discrete translational invariance is given by

ψ
(n)
k (r) = exp(ik · r)u

(n)
k (r) (2.27)

Here k is the quasimomentum and n is the band index. Substituting Eq. 2.27 into Eq. 2.26,
we obtain the following equation for u

(n)
q (r):(

(p̂ + q)2

2m
+ Vkag(r)

)
u

(n)
k (r) = E(n)

q u
(n)
k (r) (2.28)

To solve this equation, note that u
(n)
k (r) has the same periodicity as the lattice potential

Vkag(r). Therefore, it can be written in a Fourier basis with discrete momenta Gs = s1G1 +
s2G2 (Eq. 2.2), where s = (s1, s2) is a composite index. Explicitly,

u
(n)
k (r) =

∑
s

cs exp(iGs · r) =


...

cs
...

 (2.29)

where an ordered basis of {Gs} is chosen when writing the state as a vector. Now we want
to compute the matrix element Hs,s′ and cast the problem into the matrix form.

The kinetic energy term evaluates to

〈G′s|
(p̂ + q)2

2m
|Gs〉 =

(Gs + q)2

2m
δs,s′ (2.30)

For the lattice potential term, observe that cos(G · r) = (exp(iG · r) + exp(−iG · r))/2, we
have

〈G′s|Vkag(r)|Gs〉 =
2

3
(VSW − VLW)δs,s′ −

1

9
VSW

3∑
i=1

δ(Gs −G′s ± 2Gi)

+
1

9
VLW

3∑
i=1

δ(Gs −G′s ±Gi) (2.31)
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Combining the results, we have

Hs,s′ =


(Gs + q)2/(2m) + (2/3)(VSW − VLW) s = s′

−(1/9)VSW s− s′ = ±{(2, 0), (0, 2), (2,−2)}
+(1/9)VLW s− s′ = ±{(1, 0), (0, 1), (1,−1)}
0 otherwise

(2.32)

The physical meaning of this matrix is as follows. The diagonal terms represents the kinetic
energy of the plane waves, with an energy offset from the lattice potential. The off-diagonal
terms represent lattice-mediated coupling between different momentum states. In the recip-
rocal lattice, a particle can hop from one momentum state to another through the momentum
transfer in a two photon process, where the particle absorb one photon from a lattice beam
of one color and emit it into another of the same color. With the SW (LW) lattice, such a
process leads to a momentum change of one (two) reciprocal lattice vector(s). In this treat-
ment, off-resonance processes (e.g. absorption and emission of a single photon from each
color) and high-order (> 2) photon processes are neglected.

Having cast the problem in the matrix form, the band structure can be numerically
calculated by diagonalizing the matrix. The matrix has an infinite dimension in theory and
needs to be truncated for practical calculations. For realistic experimental parameters, a
truncation to max(s) = 4 is appropriate.

Band structures

In Fig. 2.5, band structures calculated at three different sets of lattice depths are shown.
One can see that in order to recover the tight-binding band structure, both the SW and LW
lattices have to be sufficiently deep. When either one lattice is not sufficiently deep, some
aspects of the tight-binding model are not satisfied. The SW lattice needs to be deep enough
such that the Wannier function is well defined and localized within single site. That is to
ensure higher-order tunneling processes (those beyond nearest neighbors) are suppressed.
See [53] for further discussions. The LW lattice needs to be deep enough such that the
fourth site in a unit cell is detuned and occupancy in that site is negligible.

2.5 Lattice characterization

The superlattice geometry created in the experiment can be characterized by the momentum
distribution of ground-state atoms in a superfluid state in the superlattice. To measure
momentum distribution of lattice-trapped atoms, we suddenly turn off the lattice beams
and let the atoms either expand in free space for some period of time, or we implement
the momentum space focusing technique by letting the atoms evolve in a weak underlying
magnetic trap for a quarter of the trap period. After that, we take absorption images of the
atoms, which reveal their momentum distribution.
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Figure 2.5: Band structures of the regular optical kagome lattice obtained by direct diago-
nalization for lattice depths (VSW, VLW) = h× (a) (30, 1) , (b) (10, 10) and (c) (30, 10) kHz
respectively. In (a), LW lattice is shallow that the D-site remains energetically close to the
other three lattice sites, and therefore the lattice geometry is somewhere between triangular
and kagome. In (b) the SW lattice too shallow that higher-order tunneling processes are
present, breaking the tight-binding assumption. In (c), both lattices are deep enough, the
tight-binding band structure is recovered, showing a flat band.

To be concrete, we write down the expression of the momentum distribution n(q) in the
tight-binding limit:

n(q) = |W̃ (q)|2
∑
s,s′,i,j

eiq·(Rs,i−Rs′,j)â†s′,j âs,i (2.33)

where s and s′ are unit cell indices, i,j ∈ {A,B,C} are lattice site indices, W̃ (q) is the Fourier
transform of the Wannier function, and a†s,i is the creation operation of a particle in the
Wannier basis at unit cell s and site i. Here we have made the approximation that Wannier
functions are identical at different lattice sites. In the following we further approximate that
the Wannier function takes a Gaussian form: |W̃ (q)|2 = exp(−|q|2/a2

w), where aw is its
width in the momentum space, and is identical for all the lattice sites.

We consider a generic Bloch state with nonzero quasimomentum q0 :

|ψ〉 =
∑
l,α

eiq0·Rl,αcα |α〉 (2.34)

To avoid confusion, we define new indices l and α for labelling unit cells and lattice sites.
cl,α is the coefficient for the Wannier state |α〉 at the corresponding site α in unit cell l. We
take cα as complex numbers, and we have

∑
α |cα|2 =

∑
α Pα = 1. In fact, for the purpose of

lattice characterization, we only need to consider the q0 = 0 case. In the following, however,
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we will keep the generic form in Eq. 2.34 so that the derived results can be used in later
sections (see Section 6.4).

With Eq. 2.34, and the assumption that the system is in a superfluid state with long-range
order, the momentum space distribution then evaluates to

n(q) = |W̃ (q)|2
∑
s,s′,i,j

∑
l,l′,α,β

eiq·(Rs,i−Rs′,j)c∗βcαe
iq0·(Rl,α−Rl′,β)â†s′,j 〈β| â

†
s′,j âs,i |α〉︸ ︷︷ ︸

δi,βδj,αδs,lδs′,l′

= |W̃ (q)|2
∑
s,s′,i,j

ei(q−q0)·(Rs−Rs′ )ei(q−q0)·(Ri−Rj)c∗i c

= M |W̃ (q)|2
∑
s

ei(q−q0)·Rs

︸ ︷︷ ︸
δ(q−q0−G)

∑
i,j

ei(q−q)·(Ri−Rj)c∗i cj

= M |W̃ (q)|2δ(q− q0 −G)

(
1 +

∑
i>j

2 cos((q− q0) · (Ri −Rj)) Re(c∗i cj)

)
(2.35)

In the second last line the translational symmetry of the lattice is invoked and M is the
number of unit cells. The 1 in the last bracket comes from the sum of all the |c∗i ci| terms.
The following relations are useful when evaluating the interference term at different G’s:

RC −RB = RD −RA = (1/2)a1

RD −RB = RC −RA = (1/2)(a1 − a2)

RB −RA = RC −RD = (1/2)a2 (2.36)

Below we consider different cases of q− q0 ∈ {G}.

q− q0 = 0: Interference is always constructive.

M−1 n(q0)

|W̃ (q0)|2
= 1 + 2

∑
i>j

√
PiPj cos(θij) (2.37)

q−q0 = Gi: Since Gi · (1/2)aj = πδi,j, the interference can be constructive or destructive,
depending on the particular choice of G.

M−2 n(q0 ±G1)

|W̃ (q0 ±G1)|2
= 1 + 2

[
+ cos(θAB)

√
PAPB + cos(θDC)

√
PDPC

− cos(θBC)
√
PBPC − cos(θDA)

√
PDPA

− cos(θDB)
√
PDPB − cos(θAC)

√
PAPC

]
(2.38)
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M−2 n(q0 ±G2)

|W̃ (q0 ±G2)|2
= 1 + 2

[
− cos(θAB)

√
PAPB − cos(θDC)

√
PDPC

+ cos(θBC)
√
PBPC + cos(θDA)

√
PDPA

− cos(θDB)
√
PDPB − cos(θAC)

√
PAPC

]
(2.39)

M−2 n(q0 ±G3)

|W̃ (q0 ±G3)|2
= 1 + 2

[
− cos(θAB)

√
PAPB − cos(θDC)

√
PDPC

− cos(θBC)
√
PBPC − cos(θDA)

√
PDPA

+ cos(θDB)
√
PDPB + cos(θAC)

√
PAPC

]
(2.40)

q−q0 = 2Gi: Since 2G·(1/2)aj = 2πδi,j, the interference is always 1. This implies that the
weight in the 0th and 2nd order peaks only differ from the weight of the Wannier function
in momentum space.

M−1 n(q0 ± 2G)

|W̃ (q0 ± 2G)|2
= 1 + 2

∑
i>j

√
PiPj cos(θij) (2.41)

Now, we focus on ground state of the superlattice lattice, in which case q0 = 0 and all
the coefficients ci are real. We define experimentally measurable quantities P̃i as [45, 54, 50]

P̃i =

(
n(Gi) + n(−Gi)

2n(0)

)
· |W̃ (0)|2

|W̃ (Gi)|2

=

(
n(Gi) + n(−Gi)

2n(0)

)
·
(

n(0)

n(2Gi)

) 1
4

(2.42)

where the last line follows from Eq. 2.37 and 2.41, and the approximation that the Wannier
function in momentum space is Gaussian. Note that P̃i is related to the fractional population
of atoms in a unit cell, which is dependent on the superlattice geometry, through Eq. 2.37
to 2.41. Therefore, we can characterize the superlattice geometry through measurements of
P̃i. For an ideal kagome lattice, one site in a unit cell is eliminated and the other three sites
are equal in energy, giving PA = PB = PC = 1/3 and PD = 0. From Eq. 2.37 to 2.41, we
have P̃1 = P̃2 = P̃3 = 1/9.
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Chapter 3

Experimental Apparatus

The two ingredients that make up our quantum simulator are ultracold atoms and the
optical lattices. We will first very briefly describe the apparatus that produces ultracold
atoms. Then, for the rest of this chapter we will focus on two major upgrades on the optical
lattice system used to implement the scheme described in Chapter 2. The two upgrades are
(1) a new SW lattice system based on frequency doubling, and (2) an upgraded phase lock
system which allows arbitrary control of lattice relative phases.

3.1 Ultracold atoms

The apparatus that produces ultracold atoms for our experiments is described and explained
in details in the theses of previous group members [54, 50, 51]. In short, our current apparatus
is capable of producing ultracold rubidium-87 atoms in the quantum degenerate regime. A
series of standard techniques are employed to reduce the temperature of atoms down by
nine orders of magnitude, from slightly above the room temperature down to hundreds of
nanokelvin. These techniques include a Zeeman slower [55], a magneto-optical trap [56],
microwave evaporation [37, 36] and optical evaporation [57]. The mechanism of each of
these techniques is extensively discussed in the literature. The actual implementation and
practical details are found in the theses cited above.

As rubidium-87 is a bosonic isotope, when a gas of such atoms is cooled to sufficiently
low temperatures, they form a Bose-Einstein condensate (BEC), where the ground state of
the system is macroscopically occupied. On a typical day, we produce pure (no discernible
thermal fraction), optically trapped BECs with properties listed in Table 3.1.

To probe the atoms, we perform absorption imaging with a simple imaging system con-
sisting of an objective lens (150 mm, NA = 0.17), a focusing lens (300 mm) and a CCD
camera (Stingray from Allied Vision). According to calibration performed in 2018, the mag-
nification of this imaging system is 2.3, which implies a theoretical imaging resolution of
3.6 µm.
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Number Trap frequency Peak density Thomas-Fermi Radius Chemical potential

5×104 2π×(23, 41, 46) Hz 3 ×1013cm−3 (12, 9, 8) µm h×300 Hz

Table 3.1: Properties of a BEC on a typical day in E5 (2020).

3.2 Bichromatic triangular superlattices

As explained in Chapter 2, our scheme of creating an optical kagome lattice requires (in-
coherently) superimposing two non-retroreflecting triangular lattices at a 2-to-1 wavelength
ratio. In the original superlattice system, two independent laser sources are used to generate
these two lattices – a 18W Verdi laser from Coherent for the SW lattice, and a Nufern fiber
amplifier seeded by Mephisto MOPA from Coherent for the LW lattice.

The relative position between the two lattices needs to be actively stabilized, otherwise
the superlattice geometry varies over time. Stabilizing the relative position, or phase, be-
tween two non-retroreflecting lattices at different colors is not a trivial task. The details of
the original phase stabilization system in the experiment can be found in Ref. [51]. The basic
idea of the system is the following: consider a pair of beams, beam 1 and beam 2, at wave-
length λ. We want to fix their relative phase at a certain position r (say this is the center of
the atomic gas), where the two beams overlap and interfere non-colinearly with phase θ1 and
θ2. To do so, we let the beams propagate further, and combine the beams again, say on a
beam splitter, at r′, where the phases of the two beams are θ′1 and θ′2 respectively. We mea-
sure the combined beam on a photodiode to extract phase information through interference
signals. Using electronic feedback, we enforce the phase condition θ′1 − θ′2 at the combining
cube. Note that θ1′(2′) and θ1(2) are related only by the light propagation phase

∫
k · dr. If

the light propagation phase is constant, enforcing a phase condition at r′ automatically fixes
the phase relation at r. For each color, we designate one beam as the reference beam and fix
the phases of the other two beams relative to it. The relative phases are locked to zero, i.e.
a constructive-interference condition. When all the lattice phases are locked, we have two
triangular lattices with fixed positions in real space. To allow adjustments on the relative
positions of the two lattices between different experimental runs, a pair of dispersive glass
wedges is intentionally added to one path of the interferometer. Varying the total thickness
of the glass wedge in the interferometer path changes the propagation phase differentially
for the two colors. This results in a change in the relative position between the two lattices,
and therefore a different lattice geometry, on top of a common displacement for both lattices
which has no physical significance.

One of the biggest issues of this scheme comes from the combination of the using of two
separate lasers to generate the two lattices, and the unequal propagation phases for the two
beam paths in the interferometer (θ′1 − θ1 6= θ′2 − θ2) due to difference in path lengths from
the combining cube to the location of atoms. Consider a laser frequency shift of f → f +∆f
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and an interferometer with path length difference ∆L at r, the center of the atomic gas. As
a result of the frequency drift, the relative phase between the two beams θ1−θ2 at r changes
by 2π∆f∆L/c. This leads to a displacement of the lattice relative to its original position:

∆(θ1 − θ2)

2π
× λ =

∆f

f
∆L (3.1)

When the two laser sources have independent frequency drifts, the two triangular lattices
displace from each other and the resultant superlattice geometry changes.

For the rest of this chapter, we detail two major technical upgrades on the superlattice
system. The first one is a new SW lattice system that involves a high power, frequency
doubling system that converts 1064-nm light into 532-nm light. With this system, all the
beams used to create the superlattice are delivered from one single light source. In case
of frequency drifts, the fractional change ∆f/f would be the same for both colors, thus
resulting in a slow drift in the absolute position of the superlattice but no distortion in the
geometry. The second one is an extension of the existing phase lock system that leads to the
capability of setting an arbitrary relative phase condition between lattice beams. In other
words, θ′1 − θ′2 can be flexibly locked to any values, not just zero. Such a seemingly small
extension to the system opens up a lot of experimental possibilities.

Both upgrades are motivated by challenges or limitations we faced in the experiments
reported in this dissertation. Experiments performed with the trimerized kagome lattice
(Chapter 4) demand a very stable superlattice geometry due to the linear sensitivity of
this lattice on the relative lattice position. With our original system, data taking relied
on random, temporary pauses of the lasers’ random drifts. The upgraded system creates a
superlattice whose geometry is completely immune to frequency drifts of the laser source.1

The development of a new phase lock system is motivated by the work reported in Chapter 5.
In that experiment, we can only accelerate atoms to quasimomenta along a single direction
using an out-of-plane optical beam that is aligned to a specific position in advance. A flexible
method to accelerate the atoms in arbitrary directions is needed for full exploration of the
band structure. We can do that with the upgraded phase lock system, which allows us to
lock the lattice phases to time-varying lock points, thus “accelerating” the lattice, instead
of the atoms, in arbitrary directions. The two upgrades therefore respectively improve the
stability and flexibility of the superlattice setup.

1The original system also has other minor problems. For example, the Verdi laser has pronounced
intensity noise peaks at 375 Hz and its harmonics, close to the typical energy scale of our lattice system.
Another problem is that the 532-nm light is delivered in free space, through a total path length of 3 m from
the laser to the position of atoms. One obvious problem is the difficulty of beam alignment. For example
optimizing alignment through an accousto-optical modulator placed upstream in the beam path unavoidably
misaligns the beam from the atoms. Moreover, due to high beam power, optics in this set up become damaged
quite often. As a result, the spatial profiles of lattice beams get deteriorated. Such low-quality laser beams
lead to various problems, including insufficient lattice depth (as they cannot get focused down nicely) and
even anomalous data sometimes. These problems are mitigated in the new system, where lattice beams are
delivered from the laser source to the atoms through optical fibers.
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Figure 3.1: High-level schematic for generating trapping beams and lattice beams used in
the experiment. In this scheme, all beams have a common origin from the Mephisto MOPA.

3.3 Frequency doubling and SW lattice

The Mephisto MOPA is the most powerful and stable laser in our lab. It outputs 40 W of
1064-nm light with a linewidth of 1 kHz (for a measurement time of 100 ms) and a measured
frequency drift on the order of 10 MHz/hr. We take advantage of the high output power of
this laser and construct a system that relies on this laser only to create all the lattice beams.
A small amount of power (∼ 150 mW) is taken from the MOPA’s output and used to seed
the Nufern amplifier, which outputs about 10 W of amplified 1064-nm light. The major
portion of the MOPA output power is frequency-doubled to generate 532-nm light through
the process of second harmonic generation. See Fig. 3.1 for a high level schematic.

In the following section, we focus on the frequency doubling setup and the SW lattice
system. Details on the dipole trap, LW lattice and vertical lattice setups can be found in
[50].

3.3.1 Second harmonic generation

We start by briefly describing the theory of second harmonic generation, a process in which
nonlinear response of a dielectric material to electric field is utilized to convert light at
one frequency (fundamental) into light at twice the frequency (second harmonic). See for
example [58] for a complete coverage of the subject.

Nonlinear response

When an electric field E(t) passes through a dielectric media, bound electrons inside the
material feel a force and move away from their equilibrium position. The material acquires
polarization P. When the electric field is small, we can assume linear responses from the
system, and P(t) = ε0χE(t) where ε0 is the electric permittivity of free space and χ is the
electric susceptibility which quantifies how polarizable a material is. When the electric field
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becomes strong, we need to consider nonlinear effects. The field-induced polarization can be
written in the following general form

P(t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
(3.2)

where χ(n) is the n-th order electric susceptibility. In the harmonic oscillator model for
bound electrons, higher order susceptibilities come from corrections to an imperfect harmonic
potential. The symmetry of a crystal could enforce some of these higher order terms to vanish.
For example, inversion symmetry dictates that χ(2) vanishes. Therefore, a nonlinear crystal
without inversion symmetry is needed for second harmonic generation. One expects nonlinear
terms (n ≥ 2) start to matter when the applied electric field is somehow comparable to the
nuclear electric field ' 1012 V/m that binds the electrons to the ions. By I = 1/2ε0|E|2,
beam intensity on the order of 105 W/mm2 is required to induce observable nonlinear effects.

Phase matching

Second harmonic generation takes place as the fundamental wave travels along the nonlinear
crystal. We want to ensure that the second harmonic waves created at different positions
are added up in phase such that the total wave amplitude builds up, instead of averaging
out because of destructive interference. In the ideal phase matching condition where the
fundamental and second harmonic waves travel at the same phase velocity in the nonlinear
material, the second harmonic wave amplitude is added up constructively everywhere and
therefore its power is maximized.

Denote the fundamental and second harmonic wave by indices 1 and 2 respectively. Inside
the nonlinear crystal, the phase velocity of a wave is given by ω/k, where k = 2π/(λ/n) is
scaled by the refractive index n of the nonlinear crystal. Since the frequencies of the two
waves have a definite 1-to-2 ratio as dictated by conservation of energy (i.e. ω2 = 2ω1), the
phase matching condition is therefore

k2 − 2k1 = 0 (3.3)

Alternatively, the phase condition can be rewritten as n2 − n1 = 0. In general, the phase
matching condition is not satisfied because of chromatic dispersion. We can define a length
scale dc = π/|k2−2k1| = λ1/4(n2−n1), which represents a distance over which the amplitude
of the secondary wave can build up (at least partially) constructively. dc is referred to as the
coherence length in the literature and is typically on the order of µm.

There are different tricks to make the phase condition apply. One of them is by peri-
odically modulating the nonlinear property of the dielectric material. The most common
technique is periodic poling, where the orientation of the birefringent material is reversed
periodically every coherence length. By doing so, the phase of the second harmonic wave
flips sign when the phase lag due to unequal phase velocities of the fundamental and the
second harmonic waves is about to reach π. As a result, the field amplitude does not get
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averaged out to zero, albeit the accumulation is not completely constructive. This is known
as the quasi-phase matching condition.

3.3.2 Frequency doubling setup

Having discussed the basics of second harmonic generation, we now describe the experimental
setup. The frequency doubling setup, as well as the lattice-beam preparation section, are
built on the same single optical table and are housed in an enclosure.

Generic Considerations

Below are some considerations regarding handling high power laser beams in the setup:

• There is no optical isolator for the Mephisto MOPA in this setup. There was one when
the system was initially built. Later, we noticed that the isolator severely distorted the
spatial beam mode and reduced the frequency doubling efficiency, even though we were
using one that is designed for handling high intensity beam and our laser intensity was
way lower than the damage threshold. This distortion happened only at high power,
therefore it is likely some thermal effect in the Faraday rotator. An engineer from
Coherent, as well as people from some other research groups, have told us that an
external isolator is unnecessary. The isolator was then taken out and we have not seen
a problem with the Mephisto MOPA over three years of operating time.

• The output power of our Mephisto MOPA is 40 W (nominally 43 W). Such a high
power beam should be handled with care. A few sets of halfwave plates and polarizing
beam splitters (PBS) are put into the setup for power adjustment so that beam power
in different sections of this setup can be sequentially turned up after alignment at low
power is done. Thin film plate polarizers are used as they are in general more tolerant to
high power compared to the standard PBS cubes. However, even these plate polarizers
could be damaged by the high power beam over time. In our previous setup with the
high-power Verdi laser, we have seen that the transmitted beam of a damaged PBS is
more susceptible to spatial mode distortion than the reflected beam. In this setup, the
beam that goes into the nonlinear crystal undergoes multiple reflections on PBS but
no transmission, as a clean spatial mode of this beam is required for good conversion
efficiency.

• There is a lot of beam power that needs to be dumped in this setup. Under normal
operation condition, about 20 W of 1064-nm light is left unconverted going through the
nonlinear crystal. This light is in generally dumped but not recycled for other purposes,
as it has a very non-Gaussian profile. Dumping the power inside the enclosure that
houses the system is undesirable, as it causes the local temperature to rise, misaligning
optics. For this reason, most beams are redirected to the outside of the enclosure for
dumping.
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Regarding the last point, for the purpose of facilitating thermal equilibration, the enclo-
sure is partially open. However, this allows dust to creep into the setup and cause damages
on optics when it is burnt by the high power laser beam. It also makes the setup susceptible
to air current and temperature fluctuations in the laboratory. A better solution is to build
an air circulating system that passes temperature-controlled, laminar flow of air through the
whole setup. This would be an important upgrade to the system in the future.

Frequency Doubling Crystal

We implement a single-pass frequency doubling scheme (see Fig. 3.2) with a periodically
poled Mg-doped stoichiometric lithium tantalate (PPMgSLT) crystal, purchased from a
Japanese company OXIDE. Stoichiometric lithium tantalate is a nonlinear crystal suitable
for high-power SHG in the UV to mid-IR range. It has many desirable properties as a fre-
quency doubler [59], including a high thermal conductivity and a high nonlinear coefficient.
Especially when doped with magnesium, it is also less susceptible to detrimental processes
like photorefractive damages and green-induced infrared absorption, which limits the con-
version efficiency in practice, compared to some other nonlinear materials. According to
specification, the crystal is able to perform second harmonic generation with 33W input and
10W output, or an efficiency of 30%.

The crystal has a size of 0.5mm (H) × 2mm (W) × 30mm (L) mm. It is housed in a
aluminum mount, which is temperature stabilized by a thermoelectric cooler. This mount
sits on a 5-axes translational stage.

We focus the MOPA output beam from a 1/e2 radius of 1 mm down to 68 µm, with a
200 mm lens. An important factor that determines the conversion efficiency is the focusing
parameter ξ = l/b, where l is the length of the doubling crystral, and b = (2πn1/λ1)w2 is
the confocal parameter, with n1 being the refractive index of the crystal at the fundamental
wavelength λ1 and w the focused beam size. In our setup, ξ = 0.52. This is quite different
from the theoretical optimum value of ξ = 2.84. This is potentially a parameter to be
improved in the future if more power is needed. However, the current focusing condition has
provided us a satisfactory amount of output power at 532 nm that is close to the specification.

Performance

In Fig. 3.3, we show the variation of second harmonic output power from the frequency
doubling setup as a function of the fundamental input power. The power is measured with
a fixed beam alignment but at different optimized temperatures (further details in the dis-
cussion later in this section). The output power is measured after two consecutive dichroic
mirrors placed after the crystal for separating the fundamental and second harmonic waves.
This induces a total transmission loss of 6%.

In Fig. 3.3 (a), we directly plot the output power versus the input power. Under typical
operation condition, we send 30 W of input power into the doubling crystal, getting 9.3
W (or 9.8 W after correction of transmission loss) of output. The conversion efficiency is
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Figure 3.2: Schematic of the single-pass frequency doubling setup. The output power of
the Mephisto MOPA is used for seeding another fiber amplifier and also frequency doubling.
Lens 1 (700 mm) corrects for the slight divergence of the Mephisto MOPA output. Lens
2 focuses the 1064-nm beam (see text) through the nonlinear crystal and Lens 3 defocuses
the output frequency-doubled beam. Two dichoric mirrors (only one is shown) separates the
1064-nm input and 532-nm output light. A window is used to pick off < 1% of power for
monitoring. Legend: L/2, half waveplate; PBS, polarizing beam splitter; BD, beam dump;
DM, dichroic mirror; WD, window; PD, photodiode. We acknowledge Alexander Franzen
for making the vector graphics library which provides templates used in this figure, as well
as Fig. 3.6, 3.8, 3.9.
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Figure 3.3: Frequency doubling efficiency. Variation of 532-nm output power versus 1064-nm
(a) input power and (b) input power squared.
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Figure 3.4: Temperature tuning of the frequency-doubling crystal. (a) Normalized output
power of the doubling crystal at two different input powers (10 W and 30 W) measured with
fixed beam alignment. (b) Optimized crystal temperature at different input powers.

31% at this input power, consistent with the spec value. In Fig. 3.3b, the same data are
plotted with the input power squared. The data show nice quadratic dependence until the
input power goes above

√
600 ' 24 W. This deviation can be attributed to depletion of the

fundamental wave or thermal dephasing [60]. Thermal dephasing is a common problem in
second harmonic generation associated with absorption of the optical power in the crystal.
It therefore causes local variations in the refractive index and breaks the phase-matching
condition.

The crystal temperature, as stabilized by a thermoelectric cooler in the setup, is a crucial
parameter as it affects the refractive index of the crystal and sets the phase matching con-
dition. We measure the variation of the output power as a function of crystal temperature
at different values of input power. In Fig. 3.4 (a), two such measurements taken at 10 W
and 30 W of input power are shown. In both cases, a clear maximum can be identified,
which corresponds to the temperature that best satisfies the phase matching condition given
a particular beam alignment. The lineshape, however, deviates from the theoretically pre-
dicted sinc2 function. A Gaussian fit to the 30 W data excluding those at < 0.2 normalized
power gives a FWHM of 1.39(2)◦C, slightly larger than the predicted value of 1.08◦C [60].
In Fig. 3.4b, we plot the dependence of the optimized temperature on the input power. At
increasing operating power, the crystal absorbs more power from the beams and heats up. A
lower set temperature corrects for that to maintain the optimized phase matching condition.
A linear fit to the data gives -0.03(1) ◦C/W.

Fig. 3.5 shows the second harmonic power as a function of time. Two data sets taken
under different conditions. The first data set was taken after a major alignment of the
doubling crystal was performed, and the temperature of the crystal was scanned to maximize
the conversion efficiency before the measurement. The power drops by about 5% in the first
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Figure 3.5: Time variation of the output power of the frequency doubling. The first set of
data (blue circles) was taken after beam alignment and temperature optimization. After a
few days, the input beam was realigned at a constant temperature, and a second set of data
was taken (orange circles).

hour, and a couple percent more over the next few hours. The fluctuations in the power also
grow, presumably due the input beam drifting away from the optimal position and thus the
system becoming more susceptible to pointing noises in the input beam. This drift in beam
alignment is attributed to thermal equilibration of the crystal and its mount. The second
data set was taken after the system was realigned without changing the temperature a few
days after the first data set was taken. For this data set, the output power is much more
stable. It is important that every time the temperature of the crystal is adjusted, perhaps for
the reason of accommodating the change in beam alignment and phase matching condition,
the system needs to be realigned after some time for stable operation.

3.3.3 SW lattice system

The frequency doubled light enters a lattice-preparation section, where the 532-nm light
generated is split up and manipulated by optical devices. The overall amount of power going
into the lattice section is controlled by a combination of halfwave plate and Glan-Calcite
Polarizer (Thorlabs GL15-A), which is designed to offer purely polarized transmitted light
at high beam power.

In the lattice section, the beam is split into three paths using non-polarizing beam split-
ters. To control the intensity and phase of the lattice beams, an acousto-optic modulator
(AOM) is added to each path. We drive these AOMs with RF signals generated by waveform
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Figure 3.6: SW lattice setup. The frequency-doubled light is split into three beams for the
construction of the SW lattice. Each beam goes through an AOM, which is independently
driven. The reference beam (beam 2) also goes through an EOM. All three beams are
delivered through photonic crystal fibers to the science table, where they are combined with
the LW lattice light to generate the superlattice. A small fraction of power is picked off
from each beam twice for intensity and phase stabilization respectively. Legend: BS, beam
splitter; PBS, polarizing beam splitter; WD, glass window; PD, photoiode; DM, dichroic
mirror; BD: beam dump.

generators (Keysight 33512 A/B) and amplified by exponential amplifiers and fixed gain am-
plifiers [50]. The RF output power and phase of these generators are controlled by electronic
feedback systems, so that the intensities and phases of the first order diffraction beams are
set to desired values. We use only the first-order diffracted beam of the AOM and dump
the zeroth order. One of the beams, which serves as the reference beam to which the phases
of the other two lattice beams are locked relative to, also goes through an electro-optical
modulator (EOM), which puts on sidebands on this beam as part of the phase lock scheme
(see next section).

The lattice beams are then delivered to the science table (where the experiment actually
takes place) through polarization-maintaining photonic crystal fibers (LMA-PM-10 from
NKT Photonics). These fibers are high index guiding fibers made up of pure fused silica.
In such a fiber, a solid core with high refractive index is surrounded by a patterned array
of hollow cores. This microstructured pattern can be engineered to make photonic crystal
fibers go beyond the limitations of conventional optical fibers. For example, the photonic
crystal fibers we use have a mode field diameter of 8.4 µm at 532 nm. This is a factor of
2− 3 larger than that for a conventional polarization maintaining optical fiber that works at
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532 nm. The peak intensity in the fiber is thus reduced by the same factor squared, reducing
the risk of damages.

On both sides of the fiber, collimators 60FC-4-A18-01 from Schäfter Kirchhoff are used.
These collimators are monolithic aspherical lenses, which are good for handling high power
beams.

Immediately after coming out of a fiber and going through a polarization clean-up cube,
each lattice beam is sampled by a window. A small amount of picked off power is directed
onto a photodiode with logarithmic scaling for intensity stabilization purposes. See Ref.
[50] for details. Because of the position of the photodiode, the power to voltage conversion
does not change with day-to-day drift in beam alignment. The transmitted beams through
the window combine with the 1064-nm beams that are prepared in a separate section [50]
on dichroic mirrors. The combined beams are then directed onto the atoms along three
directions intersecting at 120◦ degrees. The SW lattice beams have in-plane polarization
and are focused down to 75 µm at the location of the atoms, creating a SW triangular
lattice.

As explained earlier in this section, the phases of the lattice beams need to be actively
stabilized. We sample the lattice beams with glass windows, and measure their phases
interferometrically. This will be the focus of section 3.4.

3.3.4 Stability test

The main purpose of constructing this new frequency doubled SW lattice system is to create
a bichromatic lattice with geometry that is stable and immune to drifts in laser frequency.
We test the stability of the system with the most sensitive superlattice we have worked with
- the trimerized kagome lattice.

Fig. 3.7 shows the results of two different tests. In the first test, we repeatedly take
diffraction images of superfluids in an optical trimerized kagome lattice at (VSW, VLW) =
h× (50, 13) kHz. From the diffraction images, we extract the P̃ quantities which reveal the
populations in the four sites of a unit cell of the superlattice (see Section 2.5 or Ref. [45,
54, 50]). For an ideal kagome lattice, trimerized or normal, the three P̃ values should all
be 1/9 = 0.11. The data clearly show that the superlattice keeps its geometry throughout
30 shots, which takes about half an hour to finish. As explained earlier in this chapter,
with the original system, a stable trimerized kagome lattice is possible only when the lasers
temporarily pauses their random drifts. It is quite often the case that the superlattice
geometry drifts away only a few minutes after we adjust the glass wedges to a good setting.
With the new system, a stable superlattice geometry is guaranteed by construction.

In the second test, we look at the stability of the TKL over a longer time scale. We take
3-5 repeated shots to look at the superfluid diffraction as before at three different times in
a day, with time intervals of 1.5 hours and about 3.5 hours respectively. The frequency of
the Mephisto MOPA drifted by about 30 MHz between each set of measurements. From
the extracted P̃ values, we see that in the first 1.5 hours, the change in P̃ is smaller than
statistical error and thus is insignificant.
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Figure 3.7: Stability of TKL created with the new lattice system. (a) Repeated measure-
ments of P̃ values measured with superfluid diffraction. (b) Averaged P̃ values over 3-5
shots measured at three different times in a day. The Mephisto MOPA frequency changes
by 30 MHz between the first and second data set, as well as the second and third data set.

In the third measurement, the geometry has clearly drifted away. We thus put a lower
bound of 1.5 hours on the stability of the trimerized kagome lattice geometry. Further
investigations are needed to identify the cause of the drift in the last measurement . Inter-
leaved lattice balance checks throughout this experiment rule out the possibility that the
superlattice geometry change comes from power imbalance in individual triangular lattices.
The relative phases of the lattice beams might change for reasons other than laser frequency
change. For example, a change in air pressure in the laboratory may cause a sufficient change
in the path length difference ∆L of intereferometers (see Section 3.2) to explain these data
[51].
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3.4 Arbitrary phase control system

In the previous section we assume that a boundary phase condition is enforced by feedback
at the position where lattice beams are combined, and we focus on maintaining the mapping
between this phase condition and the one at the atoms’ location. In this section, we switch
our focus to the scheme for establishing such a boundary phase condition. The idea of
the original scheme [51] is summarized as follows. Suppose we want to lock the phase θ
of a lattice beam relative to a reference beam. We phase-modulate the reference beam by
an EOM to put on two sidebands to its carrier frequency so that lock-in detection can be
implemented. We combine these two beams and measure their interference on a photodiode.
By demodulating the photodiode output, a signal that varies with sin(θ) is obtained. This
serves as an error signal which, after being processed by a loop filter, can be fed to the signal
generator whose output drives the corresponding lattice AOM in the setup (see Fig. 3.6).

The major limitation of this setup is its limited lock range. The error signal is derived
from a sinusoidal interference signal. We typically lock to the zero crossing of the error
signal. If one attempts to adjust the lock point by π/2, the slope of the error signal becomes
zero and the lock fails. Therefore the adjustable range for lock points is limited to ±π/2.
The dispersive glass wedges can be used to adjust the relative phases of the lattice beams
at the atoms over a large range (multiple 2π) by changing the propagation phases of the
beams in the interferometer (see Section 3.2 and Ref. [50]). However, the glass wedges are
controlled by actuators and can only respond on the time scale of seconds. Therefore they
are only used for adjusting superlattice geometry between different experimental runs.

The capability of changing the relative phases dynamically (with sub-ms timescale) over
a wide range (beyond ±π/2 or even multiple 2π) opens the door to various possible experi-
ments. For example, it would allow quick distortion of the unit cell, which can be useful for
initial state preparation (e.g. loading into an inverted triangular lattice [50]), wavefunction
engineering (e.g. phase imprinting [44]), as well as state detection (e.g. site mapping [44]).
Sweeping the relative phases continuously, one can also implement moving lattices to study
atoms with non-zero quasimomenta in ground and excited bands in the lattice frame [61].

For retroreflecting lattices, the phase boundary condition is enforced physically with a
mirror. The relative phases of lattice beams at the atoms’ position can be changed rapidly
by jumping the lattice beam frequencies. In our experiment, we cannot do the same because
changing frequency would result in the disengagement of the phase lock.

In this section, we discuss an upgraded phase lock system which is based on a new scheme
to generate the phase lock error signal. Under this scheme, the relative phases can be locked
to an arbitrary value. A couple of examples will be given to illustrate to use of this system.

3.4.1 Scheme of generating error signals

The idea of the new scheme is essentially the IQ modulation technique in RF technology. In
this technique, phase modulation is implemented by amplitude-modulating two sinusoidal
signals, commonly referred to as the I (in phase) and Q (quadrature) components, that are
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π/2 out of phase. This is easy to understand if one considers the following basic trigonometric
relation

sin(θ − φ) = − sin(φ) cos(θ)︸ ︷︷ ︸
I

+ cos(φ) sin(θ)︸ ︷︷ ︸
Q

(3.4)

From this relation we can see that appropriate amplitude modulation on the I and Q com-
ponents is equivalent to pure phase modulation on the combined signal. For example, to
shift the phase offset φ of the combined signal from 0 to π/2, we change the scaling factors
of I and Q from − sin(0) = 0 and cos(0) = 1 to − sin(π/2) = −1 and cos(π/2) = 0.

The same idea can be applied to generate an error signal with a flexible lock point in our
phase lock system. In our case, I and Q correspond to two π/2-shifted sinusoidal signals
whose arguments are the relative phase θ between two lattice beams. In the original phase
lock system, the interference between the sidebands on the reference beam and the other
lattice beam provides a sin(θ) term (Q). All we need is to generate the other quadrature
(I).

With RF signals, I and Q can be generated by splitting a sinusoidal signal and delaying
one of them by a quarter of a cycle, say with a delay line. In optics, a quarter-waveplate can
achieve the same purpose – it introduces a π/2 differential phase shift between light linearly
polarized along its slow and fast axes. To obtain I and Q for the phase lock, we let one of
the two beams become circularly polarized by passing through a quarter-waveplate. We then
combine the two beams on a beamsplitter cube. The combined beam show interference along
its two orthogonal polarizations, but with phases of θ and θ + π/2 respectively. Measuring
these interference signals on separate photodiodes, we obtain the I and Q components we
need. The two components are then scaled and summed to produce the desired signal. This
technique is referred to as quadrature detection in the literature, and has various applications
including image reconstruction and lidar [62, 63].

Optical signal

Let’s be more concrete and describe the scheme in mathematical terms. Suppose we have
two beams2 with electric field E1 and E2 with equal amplitude E0. Beam 2 with electric field
E2 serves as the reference beam and is phase-modulated by an EOM at a frequency Ω with
small modulation depth M . Initially, both beams have linear polarization x̂ (say parallel
to the optical table). To perform quadrature detection, we send beam 2 through a quarter
waveplate such that it becomes circularly polarized. We write down the electric field of the
two beams at the location of the combing cube:

2In the experiment, these are low-power beams picked off from the lattice beams. In this section, they
are referred to by the name (Beam 1,2 and 3) of the beams they are picked off from.
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E1(t) = E0e
iωt+iθx̂

E2(t) = E0e
iωt+iM sin(Ωt)

(
x̂+ iŷ√

2

)
' E0e

iωt(1 + iM sin(Ωt))

(
x̂+ iŷ√

2

)
(3.5)

Here θ is the phase of beam 1 relative to beam 2 at the combining cube, and x̂ ⊥ ŷ. We
analyze the combined electric field on a PBS that is rotated by π/4 with respect to the
table such that the analyzing basis vectors are x̂′ = (x̂ + ŷ)/

√
2 and ŷ′ = (−x̂ + ŷ)/

√
2.

The reflected and transmitted beams from the rotated PBS are measured on two separate
photodiodes. Consider the intensities of those two beams:

Ix̂′ = |(E1(t) + E2(t)) · x̂′|2

' I0(1 + cos(θ) +M sin(ωt) sin(θ))

Iŷ′ = |(E1(t) + E2(t)) · ŷ′|2

' I0(1− sin(θ) +M sin(ωt) cos(θ)) (3.6)

where I0 = |E0|2/2, and we ignore O(M2) terms. From the expression we see that we have
created the I and Q components we want optically. Next we need to extract those terms
electronically.

Electronic signal

We measure the power of the two beams on two separate photodiodes with transimpedance
stages. We obtain electrical signals V1(2) = αPŷ′(x̂′), where α is the product of the responsivity
of the photodiode and the transimpedance gain, and P is the beam power (which relates to
I0 by some effective area of the beam, which is represented by a plane wave in this simplified
model). After high-pass filtering the signal to remove the 1 + cos(θ) and 1− sin(θ) terms, we
multiply the two signals V1 and V2 by scaling factors S1(φ) = − sin(φ) and S2(φ) = + cos(φ)
respectively. The two scaled signals are then added up to give

V = αPM sin(Ωt)(S1(φ) cos(θ) + S2(φ) sin(θ))

= αPM sin(Ωt) sin(θ − φ) (3.7)

Finally, we demodulate the signal with sin(Ωt) and low-pass filter it. The following signal is
obtained:

Verr = α′ sin(θ − φ) (3.8)
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Figure 3.8: Optical part of the new scheme for generating phase lock error signals. Two low-
power beams that are picked off from the lattice beams are directed into an interferometer.
One of the two beams passes through a quarter waveplate and becomes circularly polarized.
The two beams are then combined on a beam splitter. A polarizing beam splitter rotated
by π/4 with respect to the optical table analyzes the combined light and sepeartes it into
two orthogonally polarized components. A dichoric mirror separates the two colors for each
component. All the beams are detected by separate photodiodes. In the experiment, there
are two copies of this setup for the two pairs of relative phases (θ12 and θ23) for each color.
Legend: L/4, quarter waveplate; BS, beam splitter, PBS: polarizing beam splitter; DM,
dichroic mirror; PD, photodiode.

which gives us an error signal whose zero crossings are determined by φ, a tunable param-
eter that parametrizes the scaling functions S1 and S2. Hence, we obtain an error signal
whose lock point φ can be tuned by setting S1 and S2 appropriately. Here α′ combines the
modulation depth and all the gain parameters involved in the process that turns the optical
signals into electrical signals [51].

This scheme is applied to both pairs of beams (beam 1-2 and beam 2-3) for each color,
providing a full control over the relative phases of all the lattice beams.

3.4.2 Hardware

In this subsection, we discuss the important hardware components used in the upgraded
setup. Components that were present in the original phase lock system and described in [51]
will be omitted here.
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Figure 3.9: Electronic part of the new scheme for generating phase lock error signals. The I
andQ components of the optical signal are measured on two separate photodiodes, generating
electrical signals V1 and V2. These signals are high-pass filtered, multiplied by scaling factors
S1(φ) and S2(φ) respectively, and added up. The combined signal is then amplified by a
variable-gain amplifier, whose gain is set by an external voltage VVGA. Finally, after the
signal is demodulated and low-pass filtered, an error signal for the phase lock is generated.

Optical Part

Quarter waveplate In our setup, the lattice beams of the two colors are combined before
they are picked off for the interferometer. Therefore dual-wavelength quarter waveplates
are needed to circularly polarize both colors. We use the product QWPD-1064-4-532-4-10
purchased from CVI Laser optics. The product has tolerance of λ/100 on phase retardance.

Combining beam splitter We use the product BSW26 from Thorlabs, which is a thin
film plate beam splitter, to combine the lattice beams. The product has angle-dependent
birefringence, which limits us from getting true quadrature pairs that are π/2 out of phase.
This problem is addressed in the next subsection.

Polarizing Beam Splitter We use the product PBS1005-SBB from AT Films. It works
over a wide range of wavelengthss that cover 532 nm and 1064 nm, and offers good extinction
ratio of 2000:1. To avoid extra birefringence from optics (especially the dichroic mirrors
needed for separating the two colors) messing up the phases, we let the combined beams be
analyzed by this PBS rotated by π/4 immediately after the combining beam splitter.

Dichroic Mirrors A combination of various dichroic mirrors from Thorlabs (DMLP and
DMSP series) and Newport (10SWF series) are used. The extinction ratio is not crucial
as the reference beams of the two colors are modulated at very different frequencies (700
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kHz for 532 nm and 20 MHz for 1064 nm). Demodulation picks out the signal at the right
frequency only.

Photodiodes For 1064-nm light, we use FS1811 from Newport. The detector material is
InGaAs, which has high responsivity at 1064 nm. Those photodiodes have a small detector
area (diameter = 300 µm). Typically, we need to focus the beam down for detection. For
532-nm light, we use a combination of PDA36A and PDA100A. Those photodiodes do not
have particularly high responsivity at 532 nm, and could be replaced to obtain stronger
signals.

Electronic Part

Multiplier To scale the output of the two photodiodes, we use the integrated chip AD835
from Analog Devices. It is a 4-quadrant multiplier – it can handle multiplication of both
positive and negative voltages. It has a 250 MHz bandwidth, which is much higher than the
modulation frequencies we use.

Adder The addition of the two scaled photodiode outputs is done by a simple inverting
summing circuit built with an op amp LM6172.

3.4.3 Practical considerations

In Section 3.4.1, we derived the expression of the error signal assuming that the interference
amplitude measured by the two photodiodes are equal in size and exactly π/2 out of phase.
In practice, there are imperfections in the system that break those assumptions. The major
one comes from the birefringence of the combining beam splitter. While imbalance in the
size of optical signals can be corrected by attenuation (if not limited by signal to noise),
deviation from a true quadrature pair (i.e. relative phase is not exactly π/2) cannot be
corrected easily. Both types of imperfections lead to nonlinearity in phase modulation. In
the extreme case where one quadrature is practically zero, the error signal is predominantly
produced by the other quadrature. Amplitude modulation on the quadrature pair will look
only like amplitude (but not phase) modulation on the combined signal.

In fact, we can solve this problem robustly with modified scaling functions that take the
above two imperfect conditions into account. Suppose the output of the two photodiodes are
V1 = A1 cos(θ) and V2 = A2 sin(θ + β). We set S(φ) according to the following expressions,

S1(φ) = − tan(β) cos(φ)− sin(φ)

S2(φ) =
A1

A2

1

cos(β)
cos(φ) (3.9)

Then, simple algebra shows S1V1 + S2V2 = A1 sin(θ − φ).
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The values of β and A1/A2 can be directly measured by looking at the individual error
signals. One could turn all the lattice beams on to some typical power, frequency-detune the
beams and look at the error signal produced at the appropriate settings VVGA of the variable
gain amplifier. Table 3.2 shows calibration settings and results on a randomly selected day
in October 2020. Even though the error signals generated are far from perfect I and Q
components, Eq. 3.9 keeps the circuit working robustly.

Lattice B2 setpoint (V) VVGA(V) Beam pair A1(V) A2(V) β/π

SW 1.70 1.02
1-2 0.36 0.75 0.48

2-3 0.58 0.71 0.50

LW 2.18 0.42
1-2 0.45 0.29 0.38

2-3 0.70 1.40 0.56

Table 3.2: Calibration of error signals on a randomly selected day in Oct 2020. The B2
setpoints chosen correspond to lattice depth of 4 kHz for both lattices.

3.4.4 Feedforward

With the new scheme to generate an error signal with arbitrary phase offset, we now consider
how to implement a rapid change in lattice phase in the experiment. One approach is to
simply vary S1(φ) and S2(φ) to change the offset and let the feedback system do its job to
follow. Such an approach is limited by the bandwidth of the lock, which is set by the loop
filter in the system. The loop filter being used at the moment is designed to set a bandwidth
of a couple of kHz [51]. However, we would want to change the lattice phases at 10’s of
kHz in some experiments, for example the moving lattice experiment reported in the next
section. This requirement is in conflict with the constraint that the lock becomes unstable
at a few 10’s of kHz (see Section 4.5 of [51]).

We take another approach to achieve rapid changes in lattice phases. This approach is
known as the feedforward technique. The idea of the technique is as follows. In addition
to changing the lock point, we also detune the frequency of one of the lattice beams in a
complementary way such that the error signal remains where it is. To be more specific,
recall that the error signal goes as sin(θ − φ). Suppose we change the offset in a dynamic
way φ → φ(t). To compensate this change, we can intentionally vary the frequency of a
lattice beam as ∆f(t). This leads to a change in the relative phase between the lattice
beams. If the following condition is satisfied
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θ(t) = 2π

∫
∆f(t)dt = φ(t), (3.10)

then θ(t)−φ(t) remains zero, and the feedback system only needs to correct for fluctuations
on top of the dynamic change.

To develop some intuition, consider applying the same technique to a feedback system
that stabilizes the intensity of a laser beam. In that case, the two complementary actions
would be jumping the set point and jumping the laser power. The error signal will remain
unchanged if the two actions precisely match up.

In our experiment, φ can be varied dynamically by sending scaling signals S1(φ(t)) and
S2(φ(t)) to the multiplier circuit, while the frequency of a lattice beam can be changed by
sending a signal Vff(t) to the frequency modulation port of the signal generator which drives
the corresponding lattice AOM. Note that the same frequency modulation port is where the
error signal Verr(t) is fed to. This modulation port has an input range of ± 5V. An inverting
summing circuit3 is used to add up the two signals: VFM(t) = Verr(t) + Vff(t). The voltage to
frequency conversion is determined by ∆f(t) = KVCO × VFM(t), where

KVCO =
2π × frequency deviation

input range
(3.11)

Here, both frequency deviation and input range are parameters that can be set on the
function generator. We set frequency deviation to a value depending on requirements from
the experiment. See next section for an example. The input range is usually set to 5V, but
can be switched to 1V if a higher gain is needed.

From the above discussion, it is clear that the synchronization of the two complementary
actions is crucial, especially when rapid dynamical experiments are to be performed. The
signal generators we use are direct digital synthesizers. Internal analog to digital conversion
causes a delay, which has to be taken account. This delay is empirically determined to be
τ = 13µs. In practice, the feedforward condition is θ(t) = φ(t+ τ).

3.4.5 Demonstrations

In this section, we demonstrate the use of the arbitrary phase lock system through two
examples. The first one is a run-to-run change of the superlattice geometry through changing
the lock point φ. The second one is loading atoms into a moving (bichromatic) lattice using
the feedforward technique. We focus on the technical details, instead of the physics, of these
two demonstrations to illustrate how this new system is used in practice.

Superlattice geometry change The first demonstration shows how the superlattice ge-
ometry can be changed by varying the lock point φ. Here the lock point of one pair of LW
beams is varied, therefore moving the LW lattice along the direction of a lattice vector. In

3This inverts the error signal and shifts the lock point by a constant π.
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particular, we pick the beam 2-3 pair and move the lattice along the a3 = a1 − a2 direction
(Fig. 5.1 (a) and (b)).

We initialize the system by picking φ = 0, such that the two scaling factors are S1 =
− tan(β) , S2 = (A1/A2)× (1/ cos(β) (Eq. 3.9). Using the dispersive glass wedges in the set
up, we prepare a superlattice in the 1D-stripe geometry as a starting point. At this point,
we have not done anything new beyond the function of the original phase lock system.

Now, instead of using the dispersive glass wedge, we vary the offset of the lock point in
the phase feedback to change the superlattice geometry. Before each experimental run, we
vary the values of S1(φ) and S2(φ) such that an error signal with a lock point φ is generated
in the experiment. See Fig. 3.10 (b). Over the whole range, the SW lattice travels a distance
of a lattice spacing aLW = 2/3 × λLW . Half way through this range, the LW repulsive site
is brought to the location of a SW site, creating a kagome lattice. When the offset reaches
2π, the superlattice should return to the 1D-stripe geometry it started with.

The diffraction images as well as the extracted P̃ quantities show the change from a
1D-stripe to a kagome lattice, and then back to the 1D-stripe. The smooth changes between
lattice geometries confirm that the phase lock system works properly to translate the LW
lattice in real space which leads to changes in the superlattice geometry.

Moving lattice The second demonstration involves moving lattices. A lattice is said to be
moving when the potential as a whole translates in real space over time : V (r)→ V (r−r0(t)).
To move a lattice, one can frequency-detune the lattice laser beams. In our experiment, we
achieve that by sweeping the relative phases between the laser beams. Phases of both pairs
of beams (beam 1-2 and beam 2-3) of each color can be swept to move the lattice in a 2D
plane. The velocity of a moving lattice vlat is given by the following expression

vlatt = f12a12 + f23a23 (3.12)

where f denotes frequency detuning and a denotes the lattice vectors.
In our experiment, we turn all the lattice beams on to low lattice depths (sub-recoil) first

such that both the intensity and phase locks can be engaged without affecting the atoms.
After this preloading stage, the lattice can be accelerated immediately or after the lattice
is ramped up to the targeted depth. In the former case, the atoms are still approximately
free particles, excepted that they are boosted to a non-zero velocity in the lattice frame.
Subsequent ramping up of the lattice can connect atoms to Bloch states in excited bands. In
the latter case, the atoms are described by Bloch states of the lattice. Lattice acceleration
leads to Bloch oscillation of atoms. A combination of both allows us to explore freely the
band structure of a lattice. These ideas are further explained in later chapters. See Chapter
5 for discussions on connection between moving free particles and excited Bloch states, and
Chapter 6 for discussions on Bloch states in a moving lattice. In the following demonstration,
we load stationary atoms into moving lattices, i.e. accelerating before ramping the lattice.

We first consider how fast of a moving lattice we need. Suppose we want to have atoms
moving at vlat = 1.25 × (qK/m) in the lattice frame, where qK is the quasimomentum at
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Figure 3.10: Superlattice geometry scan by varying the offset φ of the phase feedback lock
point. (a) At φ = 0, the repulsive LW lattice site raises the energies of sites C and D,
realizing a superlattice with 1D-stripe geometry. (b) At φ = π, the superlattice returns to
the kagome geometry. (c) Scaling factors S1 and S2 for different values of φ. (d) Measured P̃
(filled circles) and theoretical predictions (solid lines). (e) - (i) Diffraction images obtained
at φ/2π = 0.00, 0.22, 0.44, 0.78 and 1.00.

a certain K point of the LW lattice and m is the mass of atoms. Since qK is along the
direction of a lattice vector, we only need to detune one lattice beam, say beam 2-3. In
our experiment, |qK |/m = 4.3 mm/s. By Eq. 3.12, we need to detune the LW lattice beam
by fLW

23 =7.6 kHz and the SW lattice beam by fSW
23 = 15.1 kHz. We use the feedforward

technique to create such frequency detunings.
These required frequency detunings guide us on how to set up the signal generators.

Recall that the frequency modulation port has an input range of ±5V. We typically set an
upper limit for Vff to be around 4V to leave some margin for normal feedback purposes. We
want to keep the frequency deviation parameter at as small as the experiment allows for two
reasons: (1) to use the full range of the frequency modulation port for better signal-to-noise
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Figure 3.11: Diffraction images of atoms loaded into mono-/bichromatic (left) stationary
and (middle) moving lattices. For the velocity chosen (vlat = 1.25qK/m), atoms are loaded
into the n=1 band of the SW lattice, and the n=3 band of the LW and kagome lattice.
For comparison, momentum distributions calculated from non-interacting band theory are
shown on the right.

ratios, and (2) to suppress overall gain of the phase lock system as to avoid feeding back
extra technical noises onto the lattice beams, and also feedback instability. Therefore, we
set the frequency deviation parameter to be (5/4)× fLW

23 kHz = 9.5 kHz/V and (5/4)× fSW
23

kHz = 18.9 kHz/V for the signal generators in the LW and SW setup respectively. One
should calibrate this voltage-to-frequency conversion empirically to avoid errors due to small
offsets in the circuits. This can be done by disabling the feedback system and checking the
frequency of the oscillatory error signal with a chosen Vff.

Now we are ready to perform the experiment. The experimental sequence is as follows.
Again, we initialize S1 and S2 according to Eq. 3.9 and Vff to 0. As a BEC is created and
the lattice is preloaded, Vff is jumped to 4V. After a delay of τ = 13µs, S1 and S2 are
varied according to Eq. 3.9, with φ(t) = 2πf23t. Finally, the lattice is ramped up to its
full depth VSW = 25kHz and VLW = 15kHz. In Fig. 3.11, we show single-shot diffraction
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images taken with atoms loaded into the moving SW, LW and kagome lattices, all moving
at vlat = 1.25(qK/m). The images obtained agree qualitatively with calculations from non-
interacting band theory.

It is also possible to implement multi-stage acceleration sequences by concatenation. One
has to pay attention to the phases accumulated in each step and make sure S1 and S2 are
continuous everywhere. The delay in the signal generators is also important to be included
every time when a new acceleration step begins.

V
ff

S
1

S
2

time

T
1

T
2

T
3

T
40

τ

Figure 3.12: Illustration of the implementation of a 2-step acceleration experiment described
in the text.

Example traces of Vff and S1/2(t) for implementing a 2-step lattice acceleration is shown
in Fig. 3.12. The sequence is divided into four steps, labeled by numbers 1-4. To keep things
generic, we write the voltage-to-frequency conversion factor as α [kHz/V]. In step 1, the first
acceleration takes place. Vff is linearly increased to some targeted value. As a result, the
scaling factors should vary according to Eq. 3.9 with φ(t) accumulates as 2πf(t)t ∼ t2. In step
2, Vff is held at a constant value. This corresponds to a lattice moving at a constant velocity.
After a delay of τ , S1 and S2 are set to vary with linearly increasing phase = 2π(Vff/α)t+Θacc1,
where Θacc1 = 1/2(Vff/α)T 2

1 is a constant phase coming from the phase evolution during step
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1. Ignoring such a phase leads to a glitch in S1/2 that could disengage the phase lock. Step 3
and 4 are similar to step 1 and 2, except with additional terms in the phase to include phase
evolution from earlier steps. In Chapter 6, we will present results from a 2-step acceleration
experiment performed with a honeycomb lattice that explores the singular nature of the
Dirac points.
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Chapter 4

Breathing of the Trimerized Kagome
Lattice

This short chapter concerns our studies on the spatial coherence of strongly interacting
bosons in an optical trimerized kagome lattice. Major results of the work are reported
in publication [46] and Thomas Barter’s dissertation [51]. In the following, we discuss an
important aspect of our data analysis method – the consideration of the “lattice breathing”
effect – that is not reported in the above references.

4.1 Introduction

The trimerized kagome lattice (TKL) can be regarded as a triangular lattice of trimers
(triangular plaquettes), where the intra-trimer tunneling (J) and inter-trimer tunneling (J ′)
are different (see Fig. 2.3 (c)). The ratio of J ′/J (the degree of trimerization) is a knob that
tunes the lattice between two geometrically frustrated settings. In the limit of J ′/J → 0, we
obtain a collection of independent trimers, which represents an exemplary setting for spin
frustration (see Chapter 1). For J ′ ∼ J , the trimers are coupled, and the overall lattice
supports macroscopic frustrated quantum states like spin liquids, similar to the regular
kagome lattice.

From a theoretical point of view, TKL is important in providing a model through which
insights into understanding the kagome antiferromagnet can be obtained [64]. It has at-
tracted a lot of theoretical interest, both in the condensed matter [64, 65, 66] and atomic
physics communities [67, 68, 69]. In recently years, solid state materials with TKL structure
have been synthesized and studied [70, 71]. To the best of our knowledge, our work is the
first reported realization of an optical TKL for ultracold atoms.
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Summary of the published results

We perform three experiments that demonstrate the features of the optical trimerized kagome
lattice. First, we reveal the broken inversion symmetry of this lattice by studying the coher-
ent diffraction of a weakly interacting superfluid after its transient dynamics induced in the
lattice. Second, we study the transitioning into the strongly interacting regime. We mea-
sure the nearest-neighbor (NN) coherence of the superfluid as a function of lattice depths
by studying the atomic momentum-space distribution obtained from time of flight images.
We show that there is persistent nearest-neighbor coherence but no long-range coherence
in the system. Third, we directly show the effect of the trimerization by performing inter-
ferometric measurements. We employ our superlattice to imprint complex phases on the
nearest-neighbor coherence and observe asymmetric momentum distributions. This shows
the asymmetry between the strong and weak bonds in this lattice.

The analysis method for the data obtained from the second and third experiment de-
scribed above will be examined in the following. We will refer to the two experiments as the
lattice depth scan and the phase imprinting experiment respectively.

Comparison of two analysis methods

To extract NN coherence of a strongly interacting bosonic gas in TKL, we fit time-of-flight
images obtained in experiments to the following function [46]:

n(k)

N
= |W̃ (k)|2

(
1 +

∑
i<j

[αij cos(k · aij) + βij sin(k · aij)]

)
(4.1)

where

αij =
2

ν
Re(〈a†iaj〉J + 〈a†iaj〉J ′)

βij =
2

ν
Im(〈a†iaj〉J + 〈a†iaj〉J ′) (4.2)

Here, n(k)/N is the momentum distribution of atoms normalized by total atom number,
W̃ (k) is the Fourier transform of the Wannier function, aij is the lattice vector going from

site i to site j, ν is the number of atoms per trimer, and 〈a†iaj〉J(J ′) is the correlation function
evaluated over a bond between site i and j with tunneling energy J(J ′). The summation in
Eq. 4.1 runs over the three sites in a unit cell: i, j ∈ {A,B,C}.

In our original data analysis, we fix the length of the lattice vectors aij (referred to as
bond length for the rest of the chapter) at a value extracted from diffraction images of a
superfluid loaded into TKL. The underlying assumption is that the spacing between sites
is constant throughout the experiment. Such an analysis method leads to results (shown
in Fig. 4.1 (a) and (c)) that have two puzzling features. First, the NN coherence measured
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Figure 4.1: A subset of the experimental data obtained from the U/J ′ scan experiment ((a)
and (b)) and the phase imprinting experiment performed at U/J ′ = 571 ((c) and (d)). For
data presented in (a) and (c), analysis is performed under the assumption that the bond
lengths are constant. For data presented in (b) and (d), bond lengths are treated as fitting
variables in analysis.

in the lattice depth scan continues to droop as U/J ′ is increased. It conflicts with our un-
derstanding that at increasing U/J ′, the total coherence becomes dominated by intra-trimer
coherence and reaches a plateau. The droop was first attributed to technical fluctuations
which cause heating. Second, in the phase imprinting experiment, because of the complex
phase φ imprinted, we have



CHAPTER 4. BREATHING OF THE TRIMERIZED KAGOME LATTICE 54

max(αij) = max

(
2

ν
Re(eiφ〈a†iaj〉J + e−iφ〈a†iaj〉J ′)

)
=

2

ν

(
〈a†iaj〉J + 〈a†iaj〉J ′

)
max(βij) = max

(
2

ν
Im(eiφ〈a†iaj〉J + e−iφ〈a†iaj〉J ′)

)
=

2

ν

(
〈a†iaj〉J − 〈a

†
iaj〉J ′

)
(4.3)

Therefore, max(α) and max(β) represent the sum and difference of the inter- and intra-
trimer coherence respectively. We expect max(αij) ≥ max(βij), with the equality condition
holds in the strong U/J ′ regime. However, with the original analysis method, we obtain the
unphysical result of max(αij) < max(βij).

It was later realized that the above puzzles are caused by treating the bond lengths as
a constant. In fact, the bond lengths are variable in our experiment for two mechanisms.
The first one is the so-called “lattice breathing effect”, where physical distances between
lattice sites change as a function of lattice depths (see next section). The second one is the
motion of atoms within individual sites which causes their center of mass to oscillate as a
function of time (see section 4.3). This leads to effective bond lengths that are not equal to
the physical distances between lattice sites. In the phase imprinting experiment, a sudden
change in the physical bond lengths due to the turning off of a lattice beam triggers motion
of atoms within individual lattice sites, leading to an oscillatory effective bond length .

The data were reanalyzed with the bond lengths being fit parameters. Both of the above
two puzzling features are resolved (Fig. 4.1 (b) and (d)).

Lattice breathing

As explained in Chapter 2, the optical kagome lattice is constructed by overlaying an in-
plane polarized SW lattice and an out-of-plane polarized LW lattice. In the lattice unit
cell, the attractive LW lattice site is placed in the middle (centroid) of one of the two
trimers. Therefore, the SW lattice sites are situated on potential gradient of the LW lattice
attractive site. When the ratio of lattice depths rV = VLW/VSW increases, those SW sites
are pulled towards the attractive center. This is easy to understand if one considers that
a harmonic potential has a shifted minimum when an extra linear potential is added. The
bond lengths (commonly denoted by aJ) between the sites in a trimer therefore decreases
with vr. The breathing of TKL also implies the bond length across two neighboring trimers
(commonly denoted by aJ ′) increases with vr. The dependence of aJ and aJ ′ on rV is shown
in Fig. 4.2 (d).

In theory, for any non-zero value of rV , there are two different length scales (aJ and aJ ′)
in the lattice. In fitting our time-of-flight images to Eq. 4.1, we assume that there is only one
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Figure 4.2: Breathing of the TKL. (a) Potential of TKL. (b) Potential of the SW and LW
lattice along a one-dimensional cut through indicated by the dashed line in (a). (c) Combined
potential along the same cut through. (d) Dependence of aJ and aJ ′ (normalized to the SW
lattice spacing a) on rV .

length scale. This is a justified approximation. At low lattice depths, the breathing effect
is weak and we have aJ ' aJ ′ . At high lattice depths, the total coherence of the system is
dominated by intra-trimer coherence. Therefore modulation of n(k) due to the inter-trimer
coherence is negligible.

4.2 Lattice depth scan

We discuss the fitting of the lattice depth scan data for both the triangular lattice and TKL
in this section.

For the triangular lattice, which is a monochromatic lattice, increasing the lattice depth
has no effects on the physical lattice spacing. We expect that the extracted bond length has
no dependence on the lattice depth.

For TKL, we expect the bond length to change. In this experiment, U/J ′ is increased
at two constant values of U/J . This involves changing both VSW and VLW. Increasing VLW

reduces coupling between different trimers, suppressing J ′. However, J is increased at the
same time, as sites within a trimer are pulled together and the barrier between them are
lowered. To maintain the ratio of U/J , VSW is increased (which in turn increases U). It turns
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Figure 4.3: Extracted bond lengths as a function of U/J ′ for the (a) triangular lattice data
and (b) TKL data. In (b), the calculated variation of physical lattice spacing with the
corresponding change in rV in the two different experimental settings is shown as dashed
lines.

out that with increasing U/J ′, the ratio of rV increases: at U/J = 5.9 (19), rV increases
from 0.14 to 0.73 (0.12 to 0.49). Therefore the bond length should decrease.

Since the three sites in a trimer are pulled towards the centroid symmetrically, we assume
all three bond lengths to be the same in the fitting.

In Fig. 4.3 (a), we show the extracted bond lengths (denoted by a′J), normalized by
the averaged value of the first five data points, for the triangular data. At relatively low
U/J ′ < 300, the fitted lattice spacing shows no trend of variation. As the system is deep
into the Mott insulating regime at high U/J ′, the modulation on the Wannier function W̃ (k)
becomes too small to be reliably extracted. The fitted lattice spacing thus varies a lot from
shot to shot but shows no overall trend.

The average extracted bond length for the triangular lattice is taken as the lower bound
for the lattice spacing fit for TKL. Such a bound is needed for fitting the TKL data taken at
low values of U/J ′, where atoms are still in the superfluid regime and higher-order (beyond
nearest-neighbor) coherence terms are significant. Without the bound Eq. 4.1 does not work
well and gives unreliable fits. This averaged bond length is also used for normalizing the
data presented later.

In Fig. 4.3 (b) we show the fitted bond lengths for the TKL data. In this case, the fitted
bond length shows a very clear trend that it decreases with U/J ′. Comparing the two data
sets, the lattice breaths more at U/J = 5.9 than at U/J ′ = 19. This is consistent with the
fact that rV increases more in the U/J = 5.9 data set.

Looking back at Fig. 4.1, we now understand the drooping in extracted α with the original
fitting method. It is a systematic underestimation of fitted modulation amplitude due to a
wrong spatial modulation frequency.
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Figure 4.4: Potential and pulling on the trimer sites A, B and C. (a) In the TKL configura-
tion, the attractive center (red dot) is placed at the centroid of the trimer. All trimer sites
are pulled equally towards the centroid (black arrows). (b) In the phase-imprinting lattice
configuration, the potential gradient points along the direction of the LW one-dimensional
lattice. The trimer sites form an isoceles triangular with aAC = aAB 6= aBC . The main
effect of quenching the lattice is displacing sites B and C vertically in the figure, inducing
oscillations of atoms within each site.

Although the breathing effect is observed, the actual change in the bond length does not
agree with our simple calculations with the lattice potential (4.3 (b)). As the effect comes
purely from the lattice construction in this case, it seems that the only possible cause of such
disagreement is miscalibration of the lattice depths. We will revisit this point at the end of
the next section and rule out such possibility.

4.3 Phase imprinting

For the phase imprinting experiment, we turn off one beam of the LW lattice, essentially
turning the LW lattice from a triangular lattice to a 1D lattice. This changes the pulling effect
of the LW lattice and thus the positions of the lattice sites. In the TKL configuration, the
LW attractive site is pulling all the three sites in a trimer equally towards their centroid. In
the new lattice configuration, the LW potential gradient points along the 1D lattice direction.
The trimer sites form an isoceles triangular, instead of an equilateral triangle as in TKL.
This results in two different length scales within a trimer. Hence, we allow two independent
bond lengths – one for the bond perpendicular to the lattice direction, the other for the two
bonds that have nonzero projections onto the lattice direction. See Fig. 4.4. We do not put
any bounds on the bond lengths in this case.

The phase imprinting experiment is performed at three different values of U/J ′ = 75, 215,
571. All the fitting results are shown in Fig. 4.5. We focus on the data taken at U/J ′ = 571,
the setting at which we see an unphysical situation of max(β) > max(α) in the original
analysis as described in the beginning of the chapter. At that setting, clear oscillations of
the bond lengths are observed. Also, the oscillations begin at a minimum position. This
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Figure 4.5: Normalized fitted bond lengths for data from the phase imprinting experiment
at different values of U/J ′. The data at U/J ′ = 217 and 571 are fitted to decayed sinusoids
indicated by the solid lines.

can be understood in a classical picture as follows. Initially, the atoms are located at the
TKL sites. As the lattice is quenched into a new configuration, the sites are pulled to new
positions as explained above. This amounts to putting atoms on a slope of the new lattice
sites. Consequently, the atoms begin to oscillate within their sites. Since the pulling effect
is stronger in TKL, the oscillations begin with the atoms being the closest to each other.
Hence, at t = 0, the extracted bond lengths are at minimum.

The oscillations can also be understood through band theory. As the lattice is quenched,
the ground state of TKL is projected onto the eigenstates of the new lattice. According to
calculations based on non-interacting band theory, around 7% of the population is excited
to one of the p-bands that is associated with the p-orbitals of the lower two lattice sites.
This leads to oscillation between the s- and p-orbitals, and the center of mass of the atomic
wavefunction oscillates in time.

Similar to what we have seen in the previous section, if the bond length is fixed in the
fit function, the extracted NN coherence could be systematically underestimated, unless the
actual bond length oscillates to the same value at particular times. At t = 0, the bond
length is at its minimum, and the underestimation is the most severe. It is also the time
when α attains its maximum. Therefore max(α) is badly underestimated in the original
analysis method. In contrast, max(β) is evaluated at roughly t = 40 µs (Fig. 4.1). The
actual bond lengths happen to be at about the value fixed in the fit function. Hence, there is
no underestimation. This explains why max(β) > max(α) originally. The problem is solved
with the new analysis method.

We fit both sets of data obtained at U/J ′ = 571 to a decayed sinusoidal function. Both
fits give an extracted oscillation frequency of 27(2) kHz. This agrees very well with the
calculated band gap of 28.1 kHz between the ground s-band and the excited p-band at zero
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quasimomentum. This band gap is sensitive to the SW lattice depth only, since at such a
high lattice depth, the s- and p-band separation is approximately given by the local trap
frequency of the individual lattice sites. Our data thus suggest that we did not miscalibrate
the SW lattice. The calibration of the LW lattice is confirmed by the diffraction experiment
of this work [46]. Altogether, we have no reasons to believe that the disagreement between
the observed and calculated breathing is due to lattice miscalibrations.

Calculations show that at U/J ′ = 75 and 217, the lattice quench excites 3% and 5% of
the population up to the p-band, and predicted oscillation frequencies are at 23 and 25 kHz
respectively. From the data at U/J ′ = 217, we are still able to see such oscillations at the
expected frequency despite less satisfying agreement for data at later times. However, at
U/J ′ = 75, we cannot observe any oscillations. This can be due to the fact that in the phase
imprinting lattice geometry, neighboring unit cells are no longer isolated from one another.
The barriers that separate neighboring trimers do not exist anymore, and atoms are more
mobile to tunneling along the direction perpendicular to the LW one-dimensional lattice.
This could lead to faster collision-induced decay from the p-band. This tunneling rate is
determined by VSW only. Among the three settings of the phase imprinting experiment, VSW

is the lowest at U/J ′ = 75, and such tunneling processes should be the fastest.
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Chapter 5

Renormalization of the Kagome Flat
Band

In Chapter 2, we calculate the non-interacting band structure of the kagome lattice and
discuss the importance of the flat n = 3 band. An interesting question is how this band
structure is modified in the presence of interactions between atoms. We address this question
experimentally by probing the band structure of an optical kagome lattice with interacting
bosonic atoms. Main results of our experimental work are published in [47]. In this chapter,
we provide details of the experimental protocol, data analysis, and numerical modeling that
lead to the final data presented in the publication. We also discuss some aspects of the work
which are not well understood and could be the subject of future research studies.

5.1 Introduction

Although band theory gives us an excellent starting point to understand systems with dis-
crete translational symmetry like solid crystals, its single-particle nature limits its scope of
applicability. To make accurate predictions on the properties of a material, electronic inter-
action effects have to be taken into account. At the mean-field level, band structure remains
a good description of the system, but the details of the bands are modified as a result of
interactions. This is referred to as band renormalization.

Band renormalization can add peculiar features to the band structrue of a lattice. For
bosonic systems, it has been shown in theory that interactions can lead to the so-called
looped structure near band crossings of a one-dimensional lattice [72, 73, 74] and several
two-dimensional lattices [75, 76].

For the kagome lattice, the band renormalization effect can potentially have very impor-
tant consequences. In a tight-binding model, the tunneling process between neighboring sites
i and j with an associated energy scale J is given by −J(â†i âj + â†j âi). A kagome lattice has
frustrated tunneling when J is negative. Under that condition, the flat band of the kagome
lattice is the ground band, and an important question concerning the many-body ground
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state of bosons in such a flat ground band thus arises, given that the macroscopic degeneracy
in energy precludes Bose-Einstein condensation. In Ref. [12], this question is addressed by
studying the possibility of band renormalization through interactions. At the mean-field
level, they find that the flat band of the kagome lattice can be significantly renormalized
by interactions such that the degeneracy in energy is lifted, i.e. the band is unflattened. A
remarkable prediction of that work is that the renormalized flat band has minimum energy
at the Γ, K and K ′ points in the Brillouin zone (see Fig. ). Depending on the temperature
of the system, bosons can form a superfluid by condensing at the K(K ′) points, or a trion
superfluid by being in a thermal mixed state occupying all three quasimomenta. While a
superfluid has single-particle, long-range order (〈â†i âj〉 6= 0 for sites i and j with a large spac-
ing), for a trion superfluid, the long-range coherence is seen only in a three-body operator (a
six-field operator). Our experimental findings, taking place in a kagome lattice with positive
J , do not relate exactly to the situation in Ref. [12], but they do illustrate the strong role
of band structure renormalization in unflattening the single-particle flat-band of the kagome
lattice.

A brief review of related experiments

The experimental studies of band structure of optical lattices with bosonic atoms in excited
Bloch states began as soon as the loading of BECs into optical lattices were demonstrated
in the early 2000’s. Early experiments performed with one-dimensional lattices showed
remarkable results that confirm predictions from band-theory [39, 77, 78, 61] . In those
experiments, atoms are accelerated to excited Bloch states in the lattice frame instead of
the laboratory frame. This is achieved by changing the frequency difference between the
two laser beams that form the lattice (see section 3.4). In Ref. [39], band gaps between the
ground and excited bands at various quasimomenta are measured with coherent oscillations
of atoms in a superposition of different energy bands. In Ref. [78, 77], the group velocity and
effective mass of atoms, which represent the slope and the curvature of energy bands, are
measured with atoms with various non-zero quasimomenta in the ground band. In Ref. [61],
atoms are loaded into lattices moving at different speeds, and are placed entirely into excited
Bloch bands. The dispersion of excited Bloch bands is measured through the group velocity
of atoms. In all these experiments, quantitative agreement with band-theory predictions is
obtained.

Interaction effects on band structure have also been studied experimentally. It should be
noted that there are two different aspects of such interaction effects. (1) The band structure
for excitations of an interacting bosonic gas at equilibrium, commonly referred to as the
Bogoliubov bands; and (2) the band structure for a bosonic gas driven out-of-equilibrium
into excited Bloch states. The first type of band structure has been probed with Bragg
spectroscopy for BECs in a one-dimensional lattice [79, 80] and a three-dimensional cubic
lattice [81, 82, 83]. For the second type of band structure, the focus of experimental works
has been on searching for evidence of the existence of looped structure. Indirect evidence has
been obtained by measurement of modified tunneling probability of a bosonic gas undergoing
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acceleration across an avoided crossing of energy bands in a one-dimensional lattice [84, 85,
86], and by measurement of atomic decay rates [87].

Our experimental work belongs to the second aspect described above. It focuses specif-
ically on the effects of mean-field interactions on a flat band. A similar experiment was
performed with the optical Lieb lattice [88], which also has a flat band. In that experiment,
the interaction-induced distortion of the flat band is revealed by oscillations in sublattice
populations with a superposition of band states.

Summary of published results

In our work, we probe the band structure of an optical kagome lattice by measuring the
group velocity vg of interacting Bose gases in excited Bloch states in the ground and excited
bands. To prepare excited Bloch states, we first accelerate a rubidium-87 BEC, essentially
preparing a plane wave with non-zero momentum k 1. Then, adiabatic ramp-up of the
optical kagome lattice connects the plane wave to an excited Bloch state with band index
n, which is determined by the momentum imparted initially, and quaismomentum q = k
modulo reciprocal lattice vectors. To measure vg, we obtain diffraction images of the atoms
and extract the center of mass of these images.

In the experiment, atoms are accelerated along a symmetry line in the direction ŷ = (0, 1)
(see Fig. 2.2). We measure vg of atoms with different initial momenta ky that are connected
to three different bands (n = 1, 3, 4). Then we focus on the n = 3, ky = 1.25×qK Bloch state
at various lattice depths (VSW, VLW) and number densities n0. We compare our data with
calculations based on non-interacting band theory and Gross-Pitaevskii equation (GPE).
The data, in quantitative agreement with the predictions from GPE, show that interactions
distort the kagome band structure, in particular the n = 3 band. Studies on interaction
effects on the real-space atomic density distribution confirms the picture that interactions
lead to an effective lattice potential that deviates from the kagome geometry, and thus does
not support a flat band.

Tight-binding model

In this section, we try to get some insights into the experimental findings by looking at
the predictions from the tight-binding model. We consider some consequences of including
mean-field interactions in this model. The lattice depths chosen for the experiments are
not deep enough to be truly in the tight-binding regime, as evidenced by the non-zero group
velocity even in the non-interacting band theory. However, tight-binding is still a good model
to qualitatively explain the observed band distortion. We focus on the Bloch states probed
in the experiment and provide intuitive understanding on (1) why the n = 3 band acquires
dispersion with interactions, and (2) how the representative n = 3, ky = 1.25qK Bloch state
undergoes density redistribution.

1In this chapter, we denote real and quasi-momentum as k and q respectively so that it is consistent
with Ref. [47].
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We extend the non-interacting tight-binding Hamiltontian in Eq. 2.11 and include the
mean-field interaction part as follows.

HMF = Hk +HU

= −2J


0 cos(k2) cos(k3)

cos(k2) 0 cos(k1)

cos(k3) cos(k1) 0

+ nU


|ψA|2 0 0

0 |ψB|2 0

0 0 |ψC |2

 (5.1)

where ψi (i ∈ {A,B,C}) is the wave amplitude in site i of a unit cell, n is the number of
atoms in a unit cell and U = g

∫
|W (r)|4d2r is the on-site interaction energy.

In general, the Hamiltonian Eq. 5.1 needs to be solved numerically. However, at certain
high symmetry points, the eigenstates in the non-interacting case remain eigenstates in the
presence of interactions.

Degeneracy lifting

Let’s consider a particular pair of neighboring K and M points in the n = 3 band. Below we
show by simple calculations that these two points are no longer degenerate under interactions.
We write |qK | = qK .

K point Take K = (0, qK). The non-interacting part of Eq. 5.1 is

HK = J


0 −1 −1

−1 0 1

−1 1 0

 (5.2)

The highest-energy eigenvector is given by

ψK =
1√
3

(
1, −1, −1

)T

(5.3)

with eigenenergy 2J . This eigenstate has uniform density distribution among the three sites
in the unit cell. Therefore, it is also an eigenstate of the interaction part of the mean-field
Hamiltonian, with eigenenergy U/3. This state has a total energy of EK = 2J + U/3.

M point Take M = (
√

3/4, 3/4)qK . The non-interacting part of Eq. 5.1 is

HM = −2J


0 0 1

0 0 0

1 0 0

 (5.4)
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The highest-energy eigenvector is given by

ψM =
1√
2

(
1, 0, −1

)T

(5.5)

with eigenenergy 2J . This eigenstate has uniform density distribution among the two occu-
pied sites. Again, it is also an eigenstate of the interaction part of the mean-field Hamiltonian,
with eigenenergy U/2. Overall, this state has a total energy of EM = 2J + U/2.

We can see that interactions lift the degeneracy in the flat band. The K and M points
scale differently with interaction energy U . By simple linear interpolation, we see that the
section of the n = 3 band between these two points acquires dispersion on the order of
∆E/∆k = U/(3qK).

Density Redistribution

Generally, non-interacting Bloch states in the n = 3 band have different density distributions,
and most of them do not remain eigenstates in the presence of interactions. In [47], we
perform band-theory and GPE calculations and compare the density distribution of the
n = 3, ky = 1.25 Bloch state with and without interactions. The result is slightly surprising.
Without interactions, most population is equally shared by two of the three sites (B and C),
and the third site (A) is only slightly populated. In the presence of interactions, the atoms
redistribute so that density becomes even higher in sites B and C, leaving site A further
depleted. We can understand this change in density distribution through the tight-binding
model.

The eigenstates in the non-interacting case at (kx, ky) = (0, 1.25) are

ψ1 =
(

0, −0.71, 0.71
)T

ψ2 =
(

0.94, 0.24, 0.24
)T

ψ3 =
(
−0.34, 0.66, 0.66

)T

(5.6)

For the highest energy state ψ3, we see that two out of three sites are highly populated as
described above. Now we consider the effect of interactions. Interactions create an effective
potential for the atoms, where sites B and C are positively detuned by roughly the interaction
energy, making an effective unit cell with one low-energy site (A) and two high-energy sites
(B and C). Since the n = 3 band is the highest energy band in this s-band manifold, the
state changes in a way to maximize the energy of the system. This can be achieved by
redistributing atoms from site A to site B and C. As a result, the population in site A goes
down, and that in sites B and C goes up.

Alternatively, we can consider the coupling between different bands due to interactions.
Suppose we start with the non-interacting Bloch state ψ3 and slightly “turn on” interactions.
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Figure 5.1: Lattice potential modified by mean-field interactions. For the non-interacting
eigenstate ψ3 in Eq. 5.6, one site (A) has much lower population than the two other sites (B
and C). In the presence of interactions, the two sites with large populations are effectively
detuned by the interaction energy U .

The change in eigenstates can be calculated by considering the interaction as perturbation.
We evaluate the interaction matrix with ψ3 such that it is given by

HU = nU


0.342 0 1

0 0.662 0

0 0 0.662

 . (5.7)

We immediately see that there is no coupling between ψ1 and ψ3, i.e. 〈ψ1|HU |ψ3〉 = 0. By
perturbation theory, the coupling between ψ3 and ψ2 leads to decreased population in site
C, confirming the above argument.

In Chapter 6, we will investigate further into the interacting tight-binding model, in
particular what happens to the quadratic band touching point at Γ under interactions.

5.2 Group velocity and Data analysis

In this work, group velocity is the key physical observable that we measure to reveal the
interaction-induced distortion of the kagome band structure. A Bloch wave can be regarded
as a wave packet, or a superposition of plane waves with a fundamental spatial frequency
determined by the lattice spacing. It is natural to define the group velocity vg of a Bloch
wave as follows,

vg =
1

h̄
∇qEn(q) (5.8)

where q is the quasimomentum and n is the band index of the Bloch wave. It can be shown
that the group velocity is equal to the averaged velocity of atoms. Such a relation is usually
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proven in the non-interacting case in introductory solid state physics textbooks. Here, we
provide an alternative proof that applies also to interacting cases.

The Hellmann-Feynman theorem reads

dE

dλ
= 〈ψ|dH

dλ
|ψ〉 (5.9)

where λ is some parameter of the Hamiltonian. For a generic Hamiltonian for a lattice-
trapped system with mean-field interactions:

H =
p̂2

2m
+ V (r) + g|ψ(r)|2. (5.10)

where p̂ is the momentum operator, V (r) is the lattice potential, g = 4πh̄2a/m is the
interaction strength, with a being the s-wave scattering length. Applying Eq. 5.9 to Eq. 5.10
and a Bloch state ψq(r) = exp(iq · r)uq(r),

∇qEn(q) = 〈ψq|∇qH|ψq〉

= 〈ψq|∇q

(
p2

2m

)
|ψq〉

=
h̄

m
〈uq|(p + h̄q)|uq〉

=
h̄

m
〈ψq|p|ψq〉 (5.11)

Therefore, the group velocity, or equivalently the slope of the band, can be measured through
the observable 〈ψq|p|ψq〉. Expressing the Bloch wave in the plane wave basis ψq(r) =√
V
−1∑

G cG exp(−iG · r), we have the following relation,

vg =
h̄

m

∑
G

|cG|2G (5.12)

In cold-atom experiments, vg can be conveniently measured by extracting the center of mass
of atomic gases from atomic diffraction images.

Extracting group velocity

This section concerns the details of our data analysis method. Essentially, the analysis
extracts the following from raw diffraction images obtained in experiments: (1) the quasi-
momentum q of the Bloch state prepared, (2) number of coherent atoms in each momentum
components of the Bloch state and (3) total atom number, including those atoms counted
in (2) as well as decayed atoms in the background.

To begin with, two things are needed to interpret these diffraction images. They are (1)
the origin, the location that corresponds to zero momentum, and (2) the pixel-to-momentum
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conversion, which is the distance on the image that corresponds to a particular magnitude
of momentum. We take repeated images with a stationary BEC loaded into the lattice.
The averaged position of the central G0 peak indicate the origin, and the averaged spacing
between the diffraction peaks, which represent a well defined distance in momentum space,
provides the pixel-to-momentum conversion.

Now we can analyze the images and extract useful physical quantities from them. Through-
out the analysis routine, the number of atoms in each momentum peak is extracted by
Gaussian fitting. This is empirically the most robust fitting function that works for different
images, even the ones with diffraction peaks that look distorted. The flow of the analysis
algorithm goes as follows. First, the value of q is determined every shot by performing a
Gaussian fit around a small region centered at an initial guess position. This initial guess
position is based on the acceleration time in that particular experimental run. Based on the
extracted q, a number of regions of interest (ROI) whose center positions are related by the
reciprocal lattice vectors {G} are defined on the image. The size of each ROI is specified
such that it is only slightly bigger than the most spread out peak in these images (see Fig.
5.2). We point out that because of repulsive interactions, atoms with the same momentum
cannot converge to a single point in real space even with the momentum space focusing
technique. From the raw images (see Fig. 5.9), we can see that different peaks have different
sizes, with the peaks that have higher populations being more spread out. This spreading
has nothing to do with the momentum distribution of the atoms, which is much smaller than
what this spreading would suggest.

Gaussian fitting is performed in each ROI to determine the number of atoms of each
momentum peak. Because momentum peaks sometimes look distorted and do not have their
centers exactly at the expected position based on reciprocal lattice vectors, the analysis
routine calculates the position where the density averaged over a small neighborhood is
maximum and use it as the initial guess for the Gaussian fit. The initial guess for the 1/e2

Gaussian width is just specified as half the size of the ROI. If the fit gives a residual error
that is smaller than a threshold value specified by the user, the fitting result is accepted.

To make the algorithm more robust to the variation in peak sizes, a second fit with half
the original box size, and half the initial guess for the Gaussian 1/e2 width, is performed if
the first one fails. This helps with capturing small peaks with an atom number just above
the noise floor by providing a better initial guess for fitting, as well as reducing the residual
error of the fit so that it is recognized as a good fit by the algorithm. If the second fit also
fails, the number of atoms in that peak is taken as zero.

After counting the atom numbers in each peak, we perform data selection. In this
experiment, we target at the Bloch states on the symmetry line where kx = 0. Therefore we
discard data whose extracted |kx| is greater than a threshold value. States that are too close
to the Brillouin zone boundaries are also discarded due to non-adiabaticity reason (see the
lattice loading section). After data selection, the group velocity vg can be calculated by Eq.
5.12.

Our experiment concerns Bloch states along a symmetry line in the ŷ direction, where
the x component of vg vanishes by symmetry. By data selection, we only keep data near this
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Figure 5.2: Fitting algorithm at work. The position of the G0 peak is determined (green
box), then a number of regions of interest (black boxes) are defined based on reciprocal lattice
vectors. In each region, the number of atoms is extracted by fitting the density profile to
a Gaussian function. The initial guess for the Gaussian center is determined by finding
the position where the density averaged over a small neighborhood is maximum (magenta
circles). If the first fit fails, a new region is defined with half the original size (blue boxes)
and a second fit is attempted. If the residual error of the second fit is still above the threshold
specified by the user, then the fit result is discarded and the atom number in that region
is counted as zero (red boxes). The calculated vg is marked as a red cross. The origin is
marked as a black cross. Note that the diffraction pattern is slightly tilted with respect to
the imaging system.

symmetry line. Therefore, for simplicity, we use the scalar vg to represent the y component
of vg.

5.3 Lattice loading and adiabaticity

In this section, we explain the details of the lattice loading scheme and how various param-
eters are chosen. The scheme is separated into two steps, namely lattice preloading and
lattice loading. Between these two steps, the BEC is accelerated to some momentum. The
acceleration step will be the focus of next section.

Lattice preloading

After the creation of a BEC, the optical lattice is first preloaded such that all the lattice
beams are turned on to low intensity levels. This is for providing some optical signal for
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Figure 5.3: (a) Bandwidth of the kagome n = 3 band and (b) bandwidth ratio of the n = 3
to n = 1 bands as a function of lattice depths (VSW, VLW). Results are calculated with
non-interacting band theory.

both the intensity and phase feedback systems to engage.
It is important to keep the preload intensity levels as low as the feedback system allows in

practice. A non-zero lattice depth opens up small gaps at Brillouin zone boundaries, which
leads to imperfect band transfer when atoms are accelerated at a finite rate across Brillouin
zones. In practice, we need about 1 mW in each lattice beam. This creates a lattice with
Vpre = 0.5 (0.4) kHz for the SW (LW) lattice. Simulations using experimental parameters
suggest that the band transfer fidelity is ' 98 % for the n = 1 to n = 3 band crossing, and
almost perfect transfer for the n = 3 to n = 4 band crossing. However, in our experiments,
we do not observe such imperfect band transfer as we perform band mapping after lattice
preloading and acceleration of atoms. Therefore, in the fidelity calculation explained in the
next section, we ignore the effects of the preloading lattice.

Lattice loading

In this step, the lattices are ramped up from preload depths to their final depths. We first
show some results from non-interacting band theory which guide us how to choose lattice
depths for this experiment. We look at how the third band is flattened as a function of lattice
depths. In figure 5.3, we show the bandwidth of the n = 3 band, as well as the bandwidth
ratio of the n = 3 to n = 1 bands, as a function of lattice depths. To have a reasonably flat
band, we can choose appropriate values of lattice depths such that the bandwidth ratio� 1.

Ideally, we want to work with high lattice depths for both lattices so that a tight-binding
kagome lattice is constructed (see section 2.4). However, there is a challenge in doing so.
In this experiment, excited Bloch states with nonzero q in the ground and excited bands
are explored. Interacting bosonic atoms in excited Bloch states are susceptible to various
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kinds of instability, including Landau instability, modulation instability [89, 90, 91, 92], as
well as inter- and intra-band decay [93, 94, 95]. Such instability is induced by interactions,
therefore the time scale for those physical processes to set in is on the order of 1/µ, where
µ is the chemical potential of the system. With higher lattice depths, lattice sites become
tighter, locally increasing the density of the gas and also the chemical potential. This
makes interaction-induced instability set in faster, limiting the lifetime of the atoms. We
will have a closer look at this issue in section 5.5. As a compromise, we work with lattice
depths of (VSW, VLW) = (25,15) and (20,10) kHz in this experiment. At such depths, the
bandwidth ratios are 0.1 and 0.2 respectively, and the atoms remain coherent for a few
hundred microseconds. This is consistent with estimations based on the chemical potential
of the system, which is on the order of 1 kHz.

Now, we need to find a good ramp function and ramp time that respect the adiabatic
condition and give us good state preparation fidelity. Ideally, if we can ramp up the lattice
in a time that is much longer than the time scale defined by the band gaps, the adiabatic
condition can be easily satisfied with standard linear or exponential ramps. For primitive
lattices, different bands are separated by lattice recoil energies, typically on the order of 10
kHz. For non-primitive lattices like the kagome lattice, bands are further divided into sub-
bands that are associated with atomic orbitals. Those sub-bands are separated by roughly
the tunneling energy, which is on the order of kHz. In particular, for the lattice depths
we choose, the separations between the s-bands are roughly 1 kHz. This is very similar to
the chemical potential of the system. While the adiabatic condition requires a ramp time
that is much longer than (1 kHz)−1 = 1 ms, interaction-induced instability forbids such a
requirement to be satisfied. As a result, the simple strategy of implementing a slow lattice
ramp does not work for us.

To find an efficient ramp function that puts atoms into the excited bands, in particular
the n = 3 band, we numerically evaluate the fidelity of various ramp functions for a range
of Bloch states. The ramp time is fixed at 1.2 ms, which is empirically found to be the
sweet spot between improving adiabaticity and minimizing decay (more details in the next
section). We compare polynomial and exponential ramps with different exponents. Among
the ramps considered, the best one we find is an exponential ramp in the following form,

V (t) = Vpre + (Vfinal − Vpre)×
(
eαt − 1

eαT − 1

)
(5.13)

where Vfinal and Vpre are the final and preload lattice depths, α = 2.57, and T = 1.2 ms. The
SW and LW lattices are simultaneously ramped up following the ramp function Eq. 5.13.
This optimized ramp V (t) gives the highest fidelity over a wide range of qy in the section of
n = 3 band explored in the experiment.

Comparison of state preparation fidelity calculated with band theory between a few
different ramps is shown in Fig. 5.4. For the optimal ramp function (Eq. 5.13), the fidelity
is above 0.95 over a fairly wide range of qy. We confirm that the optimized ramp in Eq. 5.13
has similarly high fidelity in the interacting case. We simulate the dynamics of atoms using
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Figure 5.4: Comparison between different ramps. Fidelity shown in the plot is calculated
with non-interacting band theory for a linear ramp (blue), a quadratic ramp (orange) and an
exponential ramp in the form of Eq. 5.13 (green) with a ramp time of 1.2 ms for a range of ky
values that connect to Bloch states in the n = 3 band. Fidelity is also calculated (by graduate
students Malte Schwarz and Shao-Wen Chang) for Eq. 5.13 with GPE (purple) using actual
experimental values : lattice depths (VSW, VLW) = (25, 15) kHz and n0 = 5.4× 10−13cm−3).
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Figure 5.5: Time variation in vg with different lattice ramp speeds. The kagome lattice is
ramped up with the ramp function Eq. 5.13 to (VSW, VLW) = (20, 10) kHz in 0.4 ms, 0.8 ms
and 1.2 ms respectively. The initial momentum of the atoms is ky = 1.25× qK . The dashed
line indicates the value of vg for the corresponding Bloch state based on GPE.

the time dependent lattice GPE, and compare the final states with the eigenstates of the
time-independent GPE at the final lattice depths (see section 5.6) to evaluate the fidelity.

We test the above ramp function by measuring the time variation in vg of atoms with
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Figure 5.6: Data reproduced from Fig. 2 and 3(a) of [47]. (a) Measurement of vg of atoms
with initial momentum between 1 < ky/qK < 1.5 kHz at fixed lattice depth (25, 15) kHz. (b)
Measurement of vg at various lattice depths with VSW/VLW = 2 with fixed ky = 1.25 × qK .
The red shaded region indicates the range of vg due to imperfect adiabaticity. See publication
for detailed experimental conditions.

initial momentum ky = 1.25 × qK that are loaded into the kagome lattice with different
lattice ramp times. The results are shown in Fig. 5.5. With the shortest ramp time (0.4
ms), we observe big fluctuations in vg. As the ramp time is increased, the fluctuations in vg
become smaller, converging to roughly the value predicted by GPE.

The observed fluctuations in vg with the faster ramps are attributed to non-adiabaticity.
For a non-interacting system where the principle of superposition holds, ramps with imperfect
fidelity put the system in a state of superposition of different bands, resulting in coherent
oscillations in the population of each momentum components, as well as the weighted average
vg. Such oscillations are larger for ramps with lower fidelity. For an interacting system, the
principle of superposition does not hold, and the dynamics of a system that is not in an
eigenstate can be much more complicated. In any case, we still expect the time variation vg
to increase for ramps with lower fidelity.

We point out that the fidelity values shown in Fig. 5.4 are actually not as high as they
may seem. A seemingly small (∼ 0.1) population in some other band could potentially lead
to substantial oscillations in populations of individual momentum components and also vg.
This is because the amplitude of such oscillations goes as the product of the square root of
the fidelity. In the experiment, with 1.2 ms long ramps, we never see oscillations predicted
by calculations. Here, we show that even when imperfect ramp fidelity is taken into account,
non-interacting band theory is insufficient to explain our data. We show a subset of the
data presented in [47], together with the calculated variation of vg due to imperfect ramp
fidelity, in Fig. 5.6. While imperfect ramps could explain the deviation from the band theory
predictions for data taken near Brillouin zone edges , they could not explain such deviations
for data taken at high lattice depths near ky = 1.25× qK .
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5.4 Acceleration and number density

After lattice preloading, atoms are accelerated by a red-detuned Gaussian beam that is
displaced from the trap center along the y direction. Around half a watt of power is focused
into a small beam with 1/e2 beam radius of 85 µm. The beam is turned on for 1-2 ms.
depending on the required initial momentum.

This tightly focused beam has an isotropic transverse trap frequency of ωacc = 2×80 Hz.
This trap frequency is higher than that of the crossed ODTs (see Table 3.1)). Therefore, in
addition to exerting forces for acceleration, this beam also leads to extra confinement to the
atoms. When the beam is on, the gas is compressed in a trap that is temporarily tighter.
The density of the gas is then increased. After the accelerating beam is turned off and
the trap is relaxed, the gas density continues to increase, although at a slower rate. This is
because in the experiment the accelerating beam is turned off after a time less than a quarter
of the combined trap’s oscillatory period. At that instant atoms still have radially inward
velocities, therefore the compression continues. Lattice beams are immediately ramped up
as the accelerating beam is turned off. The atomic motion is then influenced by the presence
of the lattice.

The density of the gas is an important parameter as it sets the interaction energy scale
of the system. This is explicitly shown in GPE (Eq. 5.17). In the following, we model the
dynamics of the gas in the above sequence of events and estimate the increase in density at
the end.

In our modeling, the crossed ODT VODT(r) is treated as a single Gaussian beam with
beam radii wx/y, trap frequencies ωx/y and trap depth V0 measured separately2. The accel-
erating beam Vacc(r) is also a Gaussian beam as described above. This beam is displaced
along ŷ by wa/

√
2 from the crossed ODT center such that the position where its intensity

gradient is the greatest coincides with the ODT center.
The potentials and their derivatives are calculated with experimental parameters and

plotted in Fig. 5.7. Along the x direction, the trap minima of the crossed ODT and accel-
erating beam coincide. Therefore the trap frequencies, which is proportional to the second
derivative of the potential, simply add up quadratically. The total trap frequency is increased
by about a factor of 3. Along the y direction, the two trap minima are displaced from each
other. The accelerating beam does not contribute to the trap frequency along y as ∂2

y Vacc(r)
vanishes at the crossed ODT position. In the following, we ignore the effect of third order
derivative, which could lead to a skewed density distribution in the gas.

We model the dynamics of the system and calculate the change in the gas density following
the formalism presented in [96]. In this paper, a strongly interacting gas in a harmonic
trap with time-varying trap frequencies is studied. Throughout the paper, the Thomas-

2We measure the trap frequencies of the ODTs as follows. We create a BEC in the ODTs, then apply
a magnetic field gradient in the x − y plane to displace the atoms from the center. Measuring the BEC’s
position/velocity in its subsequent oscillatory motion, the in-plane trap frequencies ωx and ωy of the ODTs
can be extracted. The trap depth can then be inferred from the trap frequencies and measured beam radii
w along either x or y according to V0 = (1/4)mω2w2.
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Figure 5.7: Potentials of the crossed ODT and accelerating beam and their derivatives along
x and y. All quantities are calculated using experimental parameters. Units are derived
from the depth of the crossed ODT V0 and its harmonic oscillator length wx along x.

Fermi approximation is adopted. Under this approximation, the peak density of a gas in
equilibrium in a harmonic trap is
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n0 =
152/5

2

(
aN

āho

)2/5

(ωxωyωz)
1/3 (5.14)

where a is the s-wave scattering length, N is the number of atoms, āho is the averaged har-
monic oscillator length of the trap. If the trap frequency ω(t) is time dependent, the Thomas-
Fermi radii rescale Rj → λj(t)Rj according to a set of coupled second-order, differential
equations of motion. As a result, the peak density of the gas scales as (λx(t)λy(t)λz(t))

−1.
We extend their formalism to allow time dependence of the atomic mass. This is to

account for the effects of the optical lattice on the atomic motion through introducing time-
dependent effective mass terms m(t). We obtain the following set of equations,

λ̈j =
m(0)

m(t)

ω2
j (0)

λjλxλyλz
− λ2

j(t)λj −
ṁ(t)

m(t)
λ̇j (5.15)

for j = {x, y, z}.
The effect of the accelerating beam on the overall trap frequency in the x direction is

modeled by a step function:

ωx(t) =

{
ωx(0) t < 0 and Toff < t

αωx(0) 0 < t < Toff

(5.16)

Here ωx(0) = 2π × 23 Hz, α ' 3 and Toff ' 1 ms is the acceleration time (i.e. how long the
accelerating beam is turned on). The value of Toff changes from shot to shot (for different
initial momentum ky) and here a typical value is chosen for calculations. In our model,
along y there is only a boost in velocity and the trap remains unchanged. Furthermore, we
estimate the change in the atoms’ effective mass using non-interacting band theory. The
explicit ramp function of the lattice, which is explained in details in section 5.3, is implicitly
included in m(t). We only take into account the renormalization of mass in the x-direction,
which is posteriori justified by the calculation results that the time scale concerned in the
problem is too fast for cross-dimensional dynamics to take place.

The time evolution of λ’s, as well as the scaling of peak density (RxRyRz)
−1, is shown

in Fig. 5.8. From the calculation, the density is expected to increase by 5% at the moment
the accelerating beam is turned off, and about 20% when the lattice is fully ramped up.
We estimate that the density of the gas in the lattice is increased by ' 15 ± 10% from the
original value when the gas is in the ODTs. This estimate is used in our GPE calculations
as explained in section 5.6.

5.5 Holding and decay

When atoms are held in the excited bands, decay occurs. In this section, we take a closer
look at this decay process at a few different experimental settings. A few observations are
made, based on which the experimental data presented in [47] are post-selected.
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Figure 5.8: Results from solving the coupled equations of motion in Eq. 5.15 with experi-
mental parameters. In the three plots, we show time variation of (a) Rx/y/z and the scaling of
peak density 1/(RxRyRz), (b) trap frequency ωx(t), and (c) effective mass tensor component
∂2
kx
E of atoms, calculated from non-interacting band theory.

First we look at some raw data obtained in the experiment reported in Fig. 3(a) of [47].
These data are taken in an experiment where atoms with initial momentum ky = 1.25qK
are loaded into lattices according to Eq. 5.13 to lattice depths VSW, VLW = (5, 2.5), (10, 5),
(15, 7.5) and (20, 10) kHz in 1.2 ms. The atoms are then held in the lattice for a variable
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Figure 5.9: Atom decay at different lattice depths. Images shown are taken at hold times 50,
350 and 650 µs, at lattice depths (10, 5) kHz ((a)-(c)) and (20, 10) kHz ((d)-(f)) respectively.
(g) Extracted coherent fraction as a function of time at different lattice depths.

amount of hold time, before momentum space focused images are taken.
A set of representative raw images are shown in Fig. 5.9, We see that the diffraction

pattern becomes more and more fuzzy with increasing hold time. More atoms show up as
a diffused background and less in the coherent peaks. This decay is more obvious when the
lattice is deeper.

We quantify this decay by the fraction of coherent atoms from these images. The fraction
is calculated by dividing the sum of the number of atoms in each momentum peak extracted
by Gaussian fitting (see the data analysis section) by the total number of atoms extracted
by simple box counting with background subtraction. The result is plotted in Fig. 5.9 (g).
The decay of coherent fraction is seen clearly from the plot. At (20, 10) kHz, where the
n = 3 band becomes non-dispersive compared to other bands (see Fig. 5.3), atoms remain
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coherent only over a few hundred microseconds.
One practical consequence of the decay is that it leads to a background of diffused atoms

which makes extracting the number of coherent atoms difficult. The background atoms have
a non-trivial density profile which is not straightforward to model. When the density in
the background becomes comparable to that in the coherent peaks, the Gaussian fit suffers
from systematic errors and gives biased fitted qy and thus vg. Specifically, the fitted center is
biased towards the side with more background atoms. For our data, it implies a systematical
shift of extracted vg towards smaller values.

To get around this problem, we post-select data based on the extracted qy. We only keep
data with an extracted qy that falls within a small range of ±0.05qK around the nominal
value determined by the acceleration time. This range is similar to the range of shot-to-shot
random fluctuations of the BEC’s momentum.

In Fig. 5.10 , we show the actual total and coherent atom numbers, as well as vg of
atoms for data post-selected as described above. Although the number of coherent atoms
still shows the decaying trend (compared to the constant total atom number), the measured
value of vg is constant. It suggests that vg is preserved under atom decay. This should not
be surprising, as the momentum of the whole system is conserved. All the data in Fig. 5.10
are included in averaging and used to make Figure 3(a) of [47]. For other data sets reported
in the paper, a hold time of 50 µs is used.

In the process of conducting the experiment and collecting several data sets, we were
initially misled by this decay of the group velocity with hold time. We had been working
initially with linear, rather than exponential, temporal ramps of the lattice intensity. For
the linear ramp, atoms spend a longer period of time in a high-depth lattice. Therefore,
even atoms that are released from the lattice right at the end of the linear ramp had already
decayed a substantial amount, leading to an apparent group velocity that is biased heavily
towards zero. In later iterations of the experiment, where we used an exponential temporal
ramp, we were able to study the Bloch state with much less decay, and were thus able to
measure the correct value of the group velocity.

Another interesting aspect of the decay process is its dependence on which band the
atoms are loaded into. Below we present some data obtained in the early phase of the project.
Atoms are loaded into the kagome lattice with initial momenta (kx, ky) = (1.3, 0), (0, 1.25)
and (0, 1.75), corresponding to the n = 2, 3 and 4 bands. The lattice is ramped up with a
linear ramp function to (25, 15) kHz.

The coherent fraction as a function of lattice hold time is plotted in Fig. 5.11. The
visibility has very different coherence times in the three different bands, with the shortest
in the n = 3 band and the longest in the n = 4 band. We attribute the relatively long
lifetime in the n = 4 band to spatial mismatch between the Bloch states in that band, which
is predominantly associated with the excluded D site of the lattice, and the lower bands,
which is associated with the hybridization of s-orbitals in the A, B and C sites. See [97] for
discussion of related physics in the setting of a bipartite optical square lattice.

In the future, it would be interesting to look more closely at the decayed atoms. Band
mapping technique can distinguish between inter- and intra-band decays.
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Figure 5.10: Total atom number, coherent atom number and vg as a function of time at
different lattice depths.
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Figure 5.11: (a) A picture of the kagome Brillouin zone. The three dots indicate where in the
k-space data shown in (b) are taken. (b) Decay of coherence in different bands. Exponential
fits to the data give a 1/e lifetime of 560, 80, and 2500 µs for the n = 2, 3 and 4 bands
respectively. Images taken at hold time = 50 µs and 450 µs in the n = 3(4) are shown in (c)
and (d) ((e) and (f)).

5.6 GPE simulations

Gross-Pitaevskii equation

To investigate the effects of mean-field interactions on the kagome band structure, we sim-
ulate the system probed in our experiments with the time-independent Gross-Pitaevskii
equation. The equation reads

(
−∇2

2m
+ V (r) + g|Ψ(r)|2

)
Ψ(r) = µΨ(r) (5.17)

where symbols are defined in the same way as in Eq. 5.10. The normalization condition or
the wavefunction is given by
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∫
|Ψ(r)|2d2r = N. (5.18)

When dynamics of the system is concerned, Eq. 5.17 can be generalized to time-dependent
GPE with the right hand side of the equation replaced by ih̄∂tΨ(t). Such an equation is
used to evaluate the fidelity of our lattice ramp in section 5.3.

To solve Eq. 5.17, we assume that the solutions take the form of Bloch states. This is a
self-consistent assumption, as a Bloch state has the same spatial periodicity of the lattice so
the total effective potential supports solutions of Bloch states. Under this assumption, the
solution can be expressed in the plane wave basis {Gs} as in the non-interacting case ( Eq.
2.27 and 2.29). The interaction term is given by,

|Ψ(r)|2 =
N

V

∑
σ,σ′

c∗σ′cσ exp(−i(Gσ −Gσ′) · r) (5.19)

and the matrix element of the mean-field interaction term is

〈Gs′ |g|Ψ(r)|2|Gs〉 =
gN

V

∑
s,s′,σ,σ′

c∗s′csc
∗
σ′cσ (5.20)

for Gs′ − Gs + Gσ′ − Gσ = 0. The state dependence of this interaction term comes in
explicitly through the coefficients cσ and c∗σ′ . For example, when the lattice is weak, the
wavefunction is still approximately a plane wave and only G0 is strongly occupied. In that
case the interaction term does not significantly couple different momentum states. As the
lattice becomes deeper, the wavefunction is strongly modulated by the lattice potential.
More momentum states are populated. As a result the interaction term serves as an effective
lattice for the atoms themselves and couples different momentum states.

There are a couple of experimental parameters that need to be determined. The lattice
depths (VSW, VLW) are determined by modulation spectroscopy [50, 51]. The average density
N/V is determined based on results from section 5.4. We first extract from our analysis
routine the total atom number (not just coherent number). From Eq. 5.14, we calculate the
peak density in the crossed ODT. Based on the modeling detailed in section 5.4, we estimate
the average density of the gas when the lattice is fully ramped up to be the peak density in
the crossed ODT increased by 15± 10%.

To numerically solve for the self-consistent solution of Eq. 5.17, we work in a truncated
basis with −4 ≤ s1, s2 ≤ 4. We write Eq. 5.17 as (2×4 + 1)2 = 81 nonlinear equations. This
system of nonlinear equations, together with the normalization condition Eq. 5.18, is solved
using the root function in the scipy.optimize Python package. The function takes an initial
guess from the user and tries to find a solution in the nearby parameter space. Our strategy
is the following:

1. Pick a value of q where the band concerned is well separated from other bands as to
avoid convergence to unwanted solutions.
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2. Use the eigenstate in the non-interacting case as an initial guess and solve for the
interacting eigenstate.

3. Use the interacting eigenstate obtained as an initial guess, vary q or E to find solutions
nearby in k-space.

4. Repeat the above step to explore trajectories in k-space.

The code for this root finding routine is developed by another graduate student Shao-Wen
Chang.

The above procedure is sometimes complicated by the fact that the nonlinear interaction
term allows the emergence of extra solutions (in which case the number of solutions can be
larger than the dimension of the Hilbert space) and looped structure near band touching
points. At strong interactions, the distortion of the band structure can be so significant that
it leads to crossings and hybridization between bands. This effect is particularly important
for non-primitive lattices, where the spacing between bands within each orbital manifold is
much smaller than recoil energies. Such physics will be further discussed in Chapter 6 with
the tight-binding model. In this work, we focus on the solutions that smoothly connect to
the non-interacting eigenstates.

With the numerically calculated self-consistent solutions, we can calculate vg by Eq. 5.12,
as well as the real space wavefunction by Eq. 2.27 and 2.29.

Momentum distribution

In our publication, we compare the measured vg under different conditions with values cal-
culated with GPE to confirm the interaction effects on the band structure. In fact, we can
also directly compare the calculated momentum distribution of atoms with the data. The
agreement between the two is, however, not as good, as described below.

We consider the n = 3, ky = 1.25 × qK Bloch state at the two lattice depths explored
in this experiment: (VSW, VLW) = (25, 15) and (20, 10) kHz 3. We compare the momentum
distribution of atoms (2) calculated from non-interacting band theory, (2) calculated from
GPE and (3) measured in the experiments reported in [47]. We focus specifically on the eight
most populated momentum peaks that together make up > 95% of the total population (see
Fig. 5.12 (a)).

From Fig. 5.12 (b) and (c), we see how the momentum distribution of atoms is changed
by interactions. Comparing the predictions by band theory and GPE, there is a significant
increase in the population of the G0 peak. In both cases, the GPE momentum distribution
can essentially be reproduced scaling the G0 peak by a factor of ∼ 2 and re-normalizing the
state. In this case, the G0 peak has a positive contribution to vg. Therefore this population

3To be precise, the Bloch state considered at (VSW, VLW) = (25, 15) kHz is at n = 3, ky = 1.32× qK so
that comparison with our experimental data can be made. See Fig. 5.6 (a).
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redistribution in momentum space is consistent with our understanding that vg increases as
a result of interactions.

Our data show an population increase in the G0 peak. However, the increase is not
as much as predicted by GPE. Also, the changes in other peaks do not follow the GPE
predictions very well. The discrepancy is not well understood and could be an interesting
topic for further investigations.
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Figure 5.12: Fractional population of different momentum components of the n = 3, ky =
1.25 × qK Bloch state. (a) Labeling of peaks in momentum space. The eight peaks shown
make up for > 95% of the population. (b) Single-shot image of atoms loaded to the cor-
responding Bloch state. In (c) and (d), fractional population in each momentum peaks
calculated with band theory (blue) and GPE (orange) at (VSW, VLW) = (20, 10) and (25,15)
kHz are shown respectively. In both cases, the G0 population (peak 1c) is enhanced with
interactions, increasing vg.
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Chapter 6

Towards Exploring the Quadratic
Band Touching Point

After reporting the details of our work studying the flat n = 3 kagome band and its distortion
due to interaction effects in Chapter 5, we now look at another interesting aspect of the
kagome band structure, namely the quadratic band touching point (QBTP) at Γ in the
n = 2 and 3 bands.

In the cold atom community, many remarkable experimental works have been done to
explore the physics of another, perhaps more widely known, type of band touching point – the
Dirac point. This includes the measurement of its topological charge [98], the observation
of annihilation of two Dirac points [42], and the study of the topological Haldane model
through the opening and closing of the Dirac points [99] etc. However, to the best of our
knowledge, QBTPs have never been studied in this field, despite all the theoretical interest
they have attracted in recent years [100, 101, 102, 9, 103]. One possible reason is that QBTPs
are less accessible as they show up only in the excited bands for common lattice geometries
(honeycomb, kagome, checkerboard).

With the newly developed arbitrary phase lock system reported in Chapter 3, we have
the capability to put bosons up to n = 3 band and move them around in k-space in arbitrary
directions. This allows us to explore the kagome QBTP, at least in an out-of-equilibrium
fashion. The purpose of this chapter is to present what we have come to understand about
the kagome QBTP so far, propose possible experiments and sketch out ideas that might be
worth pursuing in the future.

We first go through some theoretical basics under the framework of non-interacting tight-
binding model. We then propose a simple experiment to demonstrate the singular nature
of the QBTP, and demonstrate the idea by showing results from preliminary experiments
performed with Dirac points of the honeycomb lattice. Motivated by the experimental
findings of our previous work [47], we consider how interaction effects could change the
properties of the QBTP. Finally, a method of Bloch state reconstruction for characterizing
the QBTP and possible interaction effects is outlined.
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6.1 Basics

Origin of touching point

To begin with, lets try to understand why there is a touching point at the Γ point of the
kagome band structure at all. The non-interacting tight-binding Hamiltonian at Γ is given
by

HΓ = −2J


0 1 1

1 0 1

1 1 0

 (6.1)

This matrix has has three-fold rotation (C3) symmetry. Explicitly, we can write down the
C3 rotation operator as

C3 =


0 1 0

0 0 1

1 0 0

 (6.2)

which corresponds to the cyclic operation A → B → C → A. We can see that [HΓ, C3] =
0, therefore there exists a set of simultaneous eigenstates for the two operators. Those
eigenstates are

|ψ0〉 =
1√
3

(1, 1, 1)T

|ψR〉 =
1√
3

(1, e+i2π/3, e+i4π/3)T

|ψL〉 =
1√
3

(1, e−i2π/3, e−i4π/3)T (6.3)

The above eigenstates have energies E0 = −4J and ER/L = 2J respectively. The two chiral
states

∣∣ψL/R

〉
are degenerate in energy, leading to a band touching point at Γ. From this

perspective, we can see that the touching point is protected by C3 rotational symmetry
and time reversal (T) symmetry – the touching point is robust to any perturbations that
respect these two symmetries. For example, for the trimerized kagome lattice, the inversion
symmetry is broken but the C3 and T symmetries are kept. Therefore, its band structure
also has a touching point at Γ.

Apart from the symmetry perspective, one can also understand the existence of QBTP
through analyzing the completeness of the basis formed by compact local states (CLS). As
explained in [10] and mentioned in Chapter 2 of this thesis, states in the flat band can be
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written in the basis of CLS. Simple counting argument shows that, in a kagome lattice of N
unit cells, only N − 1 CLS are linearly independent. Therefore a complete eigenbasis cannot
be formed with CLS only. It turns out that there are two extra eigenstates for the flat band,
known as the non-contractible loop states (NCLS), which are topologically different than
CLS [10]. This pair of NCLS must be shared with another band through band touching to
avoid over-completeness. Therefore, band touching is required. From this perspective, the
existence of a band touching point is enforced by the flatness of the n = 3 band [9].

Incidentally, the regular kagome lattice also possesses another type of band touching
point, namely the Dirac point, at the K points of the n = 1 and n = 2 bands. This should
not be too surprising given the same underlying Bravais lattice and the shared inversion
symmetry for the kagome lattice and the honeycomb lattice – the lattice in which Dirac
points are famously known to exist and studied. At the K points, the Hamiltonian (Eq. 5.2)
does not have C3 symmetry but inversion (I) symmetry. Noting that the inversion center is
at the hexagon center (see Chapter 2), we can write the inversion operator (A↔ B) for the
kagome lattice as

I =


1 0 0

0 0 1

0 1 0

 (6.4)

Again, we can check that [HK , I] = 0. The lower two eigenstates of HK have two-fold
degeneracy, which is protected by I symmetry.

Effective psuedospin-1/2 model

After showing that there is a touching point at Γ for the n = 2 and n = 3 bands, we now
consider its properties. In the neighborhood of the touching point where the ground n = 1
band is very far away in energy from the two touching bands, the system can be described
with a SO(2) Hilbert subspace spanned by a set of two linearly independent eigenstates at
the touching point. There is flexibility in choosing exactly which basis states to work with.
One option is to work with the chiral basis introduced in Eq. 6.3. Alternatively, we can
choose to work with a basis of real eigenvectors

|ψ+〉 =
1

2
(|ψR〉+ |ψL〉) =

1√
6

(2,−1,−1)T

|ψ−〉 =
1

2i
(|ψR〉 − |ψL〉) =

1√
2

(0, 1,−1)T (6.5)

To derive the effective Hamiltonian, we rewrite the tight-binding Hamiltonian Eq. 2.5 in
the basis defined in Eq. 6.5. We perform an unitary transformation: H → U †HU , where
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U =
1√
6


√

2 0 2
√

2
√

3 −1
√

2 −
√

3 −1

 (6.6)

We then truncate the matrix to keep only the subspace associated with the touching bands
(n = 2 and 3). Taking the limit of k → 0, we obtain

HQBTP =

2− q2
y qxqy

qxqy 2− q2
x


= BI Î + (qxqy)σ̂x + (q2

x/2− q2
y/2)σ̂z

→ BI Î + (qxqy)σ̂y + (q2
x/2− q2

y/2)σ̂x

= BI Î + B · (σ̂x, σ̂y) (6.7)

where

BI = (2− q2
x/2− q2

y/2)J,

B = (Bx, By) = (q2
x/2− q2

y/2, qxqy)J. (6.8)

Here σx, σy are Pauli matrices and Î is the identity matrix. In the second last line the basis is
rotated again so that the Cartesian axis labels are cyclically swapped (X → Y → Z → X).
This does not change the physics but provides us a neat picture to describe the touching
point. Now, the Hamiltonian is written in the basis of |ψ↑〉 = (|ψ+〉+ |ψ−〉)/

√
2 and |ψ↓〉 =

(|ψ+〉 − |ψ−〉)/
√

2. These two states form a psuedospin-1/2 system.
The effective Hamiltonian provides an intuitive picture to understand the physics around

the touching point: the system is equivalent to a spin-1/2 particle placed in a spatially
varying, in-plane magnetic field in k-space. We can immediately apply well-known results
for such a system to learn something about the touching point. The eigenstates of the
system at an arbitrary position (qx, qy) in k-space is a superposition of the two pseudospin
states with a relative phase of tan−1(By/Bx). In the Bloch sphere representation, the ground
(excited) state simply points opposite to (along the same direction as) the field. For example,
if qy = 0, the field is pointing along x direction, and the Hamiltonian is reduced to the σ̂x
operator. In this case, the ground state is (|ψ↑〉 − |ψ↓〉)/

√
2 = |ψ−〉, and the excited state is

(|ψ↑〉+ |ψ↓〉)/
√

2 = |ψ+〉.
Moreover, the energy of the ground state is BI − |B| = (2 − |k|2)J . From this we see

explicitly the quadratic dependence of the ground state energy on |k|. For the excited state,
the energy is BI + |B| = 2J , independent of q. This is consistent with the fact that the
higher energy band is the flat band.
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Γ

Figure 6.1: Fictitious magnetic field (blue arrows) experienced by the psuedospin in the ef-
fective model near QBTP. The field is inversion symmetric about the QBTP. The magnitude
of the field increases quadratically as |q|2.

The fictitious field is plotted in Fig. 6.1. Note that the field has a winding number of
2 around the QBTP (which can also be seen by observing that the off-diagonal terms of
HQBTP are in the form of (qx ± iqy)2). Therefore, the Berry flux through an area enclosing
the QBTP is 2π, which cannot be distinguished from zero with established interferometric
techniques that have been used to measure the Berry flux through a Dirac point with a
winding number of 1 and a Berry phase of π [98]. However, a QBTP can be split into two
Dirac points if perturbations of certain types are introduced to reduce the symmetry of the
kagome lattice [100]. In that case, the total Berry flux of a QBTP can be measured via the
two daughter Dirac points.

6.2 Diabatic state transfer

Exactly at the QBTP, the fictitious field vanishes. The psuedospin can point in any direction
at this point and remain an eigenstate. This is because the two psuedospin states are
degenerate at QBTP, and any combination of them is still an eigenstate. As a consequence,
the actual state of the system at the QBTP depends on the trajectory it took to get there.

Let’s consider what happens if the system takes a trajectory in momentum space that
crosses the QBTP. For example, suppose the system takes a linear trajectory, i.e. it undergoes
one dimensional acceleration. In this case, crossing the QBTP does not lead to any state
transfer. In the pseudospin picture, the fictitious field along such a trajectory points to the
same direction on both sides of the QBTP. Therefore, the orientation of the spin respective
to the field is the same before and after crossing the QBTP.

Now, suppose the system takes a different trajectory that it makes a turn, say at an angle
of π/2, at the QBTP. In this case, as we can see from Fig. 6.1, the fictitious field direction
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Figure 6.2: Path dependent band transfer at the QBTP. (a) A map of Brillouzin zones. Two
paths crossing the QBTP are considered here. Starting from a K point, the first path (b)
goes straight through the QBTP (θ = π) to the opposite K point, and the second path (c)
makes a right-angled turn (θ = π/2) towards M . There is complete band transfer in the
former case, but no band transfer in the latter.

flips upon crossing the QBTP. As a result, the ground and excited states of the system swap
– the psuedospin state that is aligned (anti-aligned) with the field before crossing the QBTP
becomes anti-aligned (aligned) with the field after doing so. The system therefore undergoes
a complete, diabatic change of state. Note that it has nothing to do with how slow the above
process takes place. Such a change in the state of the system reveals the singular nature of
the QBTP.

Based on the above observations, we propose an experiment to indirectly measure the
Berry flux through the QBTP. The idea is as follows. We begin with loading atoms into
either the n = 2 or n = 3 band. Then we perform two-step acceleration, which first takes
the atoms exactly to the QBTP (entry path), and then away from it at a variable angle θ
(exit path). See Fig. 6.2. The population that remains in the original band should vary as
cos2(θ). For instance, as explained above, at θ = π the system remains in the same band
(cos2(θ) = 1), while at θ = π/2, the system undergoes a complete band transfer (cos2(θ)
= 0). The population in the two bands can be measured by the standard band mapping
technique.
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K

(a) (b)

Figure 6.3: (a) Fictitious magnetic field (blue arrows) experienced by the pseudospin in
the effective model near a Dirac point. The field is inversion-asymmetric about the Dirac
point. The magnitude of the field increases linearly with |q|. (b) Experimental scheme with
two-step acceleration. Atoms are first accelerated from Γ to a Dirac point, and then are
accelerated again to a quasimomentum away from the Dirac point along a path at an angle
θ to the entry path.

Measuring band transfer at Dirac point

The experiment proposed above is preliminarily tested in a simpler setting with a Dirac
point of our LW honeycomb lattice. In this section, we will briefly discuss the experimental
protocol, show the data and discuss how we analyze them.

Similar to the case of QBTP, an effective pseudospin model can be derived for describing
the physics in the neighborhood of the Dirac points. We omit the derivations here, as they
can be found easily in the literature [104] and various pedagogical materials available online.
We point out that the fictitious field in the case of Dirac points has a winding number of
1. Therefore, the band population measured in the proposed experiment should vary as
cos2(θ/2) (see Fig. 6.3 (a)).

Experimental Protocol In this experiment, acceleration of atoms happens in the ref-
erence frame of a moving lattice. Employing the arbitrary phase lock system described in
Chapter 3, we can frequency-detune the LW lattice beams to accelerate the honeycomb
lattice along any direction in the lattice plane.

After loading atoms into the ground state of the LW honeycomb lattice, we accelerate
the lattice by linearly increasing the frequency detuning of one lattice beam with respect
to the other two beams from zero to a value corresponding to vK = qK/m, where qK is
the quasimomentum at a particular K point and m is the atomic mass, in 300 µs (see
Chapter 3.4.5 for details on how to implement lattice translation using the arbitrary phase
lock). The atoms are thus taken to a K point in the lattice frame. Immediately after
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that, we accelerate the lattice again by linearly increasing the frequency detunings of two
lattice beams in 300 µs. The ratio of the final detunings is determined by the desired final
quasimomentum q of atoms in the lattice frame. For this experiment we choose to perform
measurements at quasimomenta |q/m−vK | = 0.3|vK | away from the Dirac point at various
angles θ = π/6 +n×π/4, where n is an integer. To measure the band populations, we ramp
down our lattices with the reversed ramp function in Eq. 5.13. Images are taken with the
momentum space focusing technique.

Data Analysis The bandmapping pictures obtained in the experiment are shown in Fig.
6.4. In each picture, atoms show up as density peaks at a few different locations related by
the reciprocal lattice vectors. The number of atoms in these peaks represent the population in
different bands. Importantly, the mapping from density peak population to band population
depends on the quasimomentum of the atoms in the lattice frame. To find out which band
each peak represents, we overlay a map of Brillouin zones on top of each image. The center
of the map is placed at a position that corresponds to the velocity at which the LW lattice
is moving. A peak that shows up in the n-th Brillouin zone of this map represents the
population in the n-th band. In this experiment, some data are taken on a boundary of
Brillouin zones. There, the two bands represented by the Brillouin zones on the two sides
of the boundary have a vanishing gap when the lattice is turned off. As a result, band
transfer can happen during the band mapping procedure, and the number of atoms in the
on-boundary density peaks does not uniquely represent population in a single band.

The bond populations extracted from the band mapping images (excluding the ones
measured on the boundaries of Brillouin zones) are shown plotted in Fig. 6.5. The data
show qualitatively the right behavior we expect. At θ around 0 and 2π, the direction of the
fictitious field is similar to that along the entry path. Therefore the atoms mostly remain
in the ground band of the system. Near θ = π, however, the fictitious field points in an
opposite direction. Atoms undergo a diabatic transition into the upper band upon crossing
the Dirac point.

This preliminary result is promising. Yet, many questions need to be addressed. For
example, how does the time scale of acceleration change the measurement outcome? Ideally
we want to do the measurement slowly as long as dynamic or Landau instability does not have
enough time to set in. Another question concerns the cause of the imperfect contrast at θ = π
in Fig. 6.5. It would be interesting to investigate whether it comes from interaction effects
which are known to significantly modify the band structure around the Dirac point [75].
In fact, interactions can significantly complicate the interpretation of these band mapping
pictures. This will be the focus of the next section.

6.3 Interaction effects

It is natural to ask, especially in the light of our experimental findings about the distorted
n = 3 band, how much of the discussion about the QBTP in the last section is still valid
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Figure 6.4: Band mapping images, with a map of Brillouin zones overlaid, taken in the
experiments performed at different angles θ = π/6 plus increments of π/4. A density peak
within the n-th Brillouin zone represents the system’s population in the n-th band in the
lattice. The locations of the peaks are determined by their centers. For (c) and (g), band
mapping is performed on a boundary of two Brillouin zones and therefore population in each
band cannot be unambiguously determined.
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Figure 6.5: Band populations extracted from band mapping images at different exit path
angle θ. Data taken on a boundary of Brillouin zones are not plotted as band populations
can not be extracted from band mapping images.
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in the presence of interactions. In this section, we take a closer look at the mean-field
tight-binding Hamiltonian HMF = H0 +HI in Eq. 5.1 and investigate how interactions could
modify the QBTP.

Let’s begin by examining the effects of interactions on the eigenstates at Γ. In general,
the eigenstates of a system in the non-interacting limit do not remain eigenstates when inter-
actions are present. However, in some cases, they do. Consider the simultaneous eigenstates
of the non-interacting Hamiltonian H0 and the C3 operator: |ψ0〉 and

∣∣ψL/R

〉
(Eq. 6.5). The

density distribution of all these three states are uniform, with a fraction population of 1/
√

3
in each of the three sites in a unit cell. The mean-field interaction matrix is then given
by (U/3)Î. Therefore, all these three states are eigenstates of both H0 and HI of the total
Hamiltonian (Eq. 5.1), and therefore remain eigenstates of the system. The mere effect of
interactions on these states is that their energies are increased by U/3.

This is not the end of the story. Because of the nonlinear interacting term, the system can
have more solutions than allowed in the non-interacting case. Consider the two superposition
states |ψ±〉 (Eq. 6.5). For |ψ−〉 = 1√

2
(0, 1,−1)T the density is uniform among the two sites

that are occupied, and HI takes the form of an identity matrix within the subspace spanned
by the two occupied sites. Therefore, ψ− is an eigenstate of both H0 and HI, and also an
eigenstate of the total Hamiltonian. Note that its energy scales as U/2, which is different
from |ψ0〉 and

∣∣ψL/R

〉
. Moreover, as the system is C3 symmetric, we can immediately find

two more eigenstates by rotating |ψ−〉 by 2π/3 and 4π/3. In other words, 1√
2
(0, 1,−1)T and

its two cyclic permutations form a set of C3-related degenerate eigenstates.
Finally, let’s look at |ψ+〉 = 1√

6
(2,−1,−1)T . This state has non-uniform density dis-

tribution among the three sites in a unit cell. Unlike the other states we have looked at,
it is not an eigenstate of HI . It is also not an eigenstate of the total Hamiltonian HMF.
This demonstrates that the principle of superposition does not hold for nonlinear systems,
as both |ψR〉 and |ψL〉 are eigenstates of HMF but |ψ+〉 = |ψR〉 + |ψL〉 is not. From what
we have learned about the n = 3, ky = 1.25× qK Bloch state in section 5.1, we expect that
with interactions, atoms will redistribute to enhance density difference which already exists
in the non-interacting limit. With increasing interactions, |ψ+〉 should approach (1, 0, 0).
This makes sense, as (1, 0, 0) is an eigenstate of the system in the strong interaction limit
of J/U → 0. Again, because of C3 symmetry, we have a set of C3-related eigenstates that
occupies mostly one site ((1, 0, 0) and its cyclic permutations). The energy of these states
with single-site occupancy scales as U .

The eigenstates at Γ, their energy dependence scaling and the degeneracy are summarized
in Table 6.1. Instead of having three solutions as in the non-interacting limit, we have nine
different solutions. We have numerically solved Eq. 5.1 to confirm that we have exhausted
all the solutions. Clearly, the pseudospin picture is no longer an adequate description of the
system.
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Eigenstates Energy Degeneracy

1√
3
(1, 1, 1)T -4J+U/3 1

1√
3
(1, e±i2π/3, e±i4π/3) 2J+U/3 2

1√
2
(1,−1, 0)T and C3 partners 2J+U/2 3

1√
6
(2, 1, 1)→ (1, 0, 0) and C3 partners 2J → U 3

Table 6.1: All eigenstates of the interacting tight-binding Hamiltonian HMF (Eq. 5.1) at Γ.

Nonlinear band structure

We have seen that at Γ new eigenstates emerge as a result of non-zero interactions. If we
zoom out and look at the full band structure, we will see new energy bands and a lot of subtle
details around places where different bands touch and cross. Band structure cut-throughs
numerically calculated by solving Eq. 5.1 at a few values of U/J are shown in Fig. 6.6.

(a) (b) (c)

Γ Γ Γ

Figure 6.6: Band structure cut-through numerically calculated with HMF (Eq. 5.1) at (a)
U/J = 0, (b) U/J = 3 and (c) U/J = 6.
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As we have already seen in the previous section (Table 6.1), for nonzero U/J , four
different eigenenergies can be found at Γ. They correspond to nine different eigenstates
with four different energy scalings with U . However, if we move away from Γ, the C3

rotational symmetry is broken and, depending on the specific value of quasimomentum,
more or less eigenenergies can be found. Note that in Fig. 6.6 we plot the band structure
along the symmetry line K − Γ − M , so mirror symmetry is kept and some bands are
still doubly degenerate. When U/J = 3, excited bands cross or merge into each other at
various quasimomenta away from Γ. When U/J = 6, the difference in energy scaling with
U completely separates the bands associated with states that occupy two sites and those
associated with states that occupy mostly one site.

Consider again what happens if we accelerate atoms from K to Γ in the highest band
and make a turn to M (Fig. 6.2). At U/J = 0, atoms undergo diabatic transfer once to
the second band at Γ as explained before. At U/J = 3, atoms undergo band transfer twice.
The first transfer takes place at Γ with the other two degenerate C3 related bands, and the
second transfer takes place some distance away with a band that stems from a |ψ−〉 state
at Γ. At stronger interactions U/J = 6, the two sets of bands stemming from |ψ−〉 and
|ψ+〉 completely separate. There is only one band transfer at Γ, again with the other two
degenerate C3 related bands.

It is unclear how band mapping exactly works for an interacting systems. Bands emerging
from interactions cease to exist below certain interaction strengths. Therefore in the process
of ramping down the lattice, such bands disappear and do not smoothly connect to the free
particle dispersion curve. In this regard, band mapping may not be a useful tool to examine
what is happening in the system.

6.4 Quantum state reconstruction

In this final section, we discuss the possibility of reconstructing the full quantum state of
atoms near the QBTP. The capability to do so will let us directly probe the geometry of the
band around the QBTP, perform a direct measurement of the quantum distance [103], and
study interaction effects.

In section 2.5, we derived the momentum density distribution of atoms for a generic
state (Eq. 2.34). Clearly it is not possible to reconstruct the full quantum state by just
looking at diffraction patterns, as some information of the system is lost when only the
density of the momentum distribution is measured. However, if we combine momentum and
real-space density distributions, then the reconstruction is possible. While the momentum
density distribution is measured with time-of-flight images of atoms, the real space density
distribution can be measured by a technique called site mapping [105]. In this technique,
the lattice depth is suddenly deepened to freeze out the motion of atoms. An extra potential
(e.g. an additional lattice, or external magnetic field) is applied to introduce large and
different energy offsets to lattice sites. If the differences in the offsets are large enough that
there is no coupling between different sites, each site is then exclusively associated with a
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single band. The population in each site can then be measured by standard band mapping
measurements.

Combining these two measurements, we show that it is possible to perform a full re-
construction of the quantum state. We focus on the case where the superlattice has the
kagome geometry (PD = 0). Also, for the purpose of measuring the quantum distance,
we only concern small values of q, such that we can make the following approximation:
|W̃ (q0 + G)|2 ' 1− |q0 + G|2/a2

w. As the population in each site is measured by site map-
ping, we only have 3 unknown variables: θAB, θBC and θAC . We combine equations (2.38)
to (2.40) and obtain the following expression for each pair of i and j:

n(q0 + Gi) + n(q0 −Gi)

n(q0 + Gj) + n(q0 −Gj)

=

(
|W̃ (q0 + Gi)|2 + |W̃ (q0 −Gi)|2

|W̃ (q0 + Gj)|2 + |W̃ (q0 −Gj)|2

)
︸ ︷︷ ︸

'1

1 +
∑

i>j 2 cos(Gi · (Ri −Rj)) cos(θij)
√
PiPj

1 +
∑

i>j 2 cos(Gj · (Ri −Rj)) cos(θij)
√
PiPj

(6.9)

All the populations n(q0±G) are measured in diffraction images. Hence, Eq. 6.9 represents
a solvable system of three equations and three unknowns.
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