1. You are given that
\[17! = 355687ab8096000 \]
for some digits \(a \) and \(b \). Find the two-digit number \(\overline{ab} \) that is missing above.

2. Find the number of ordered pairs \((a, b) \) of positive integers that are solutions of the following equation:
\[a^2 + b^2 = ab(a + b) \]

3. Find the sum of all prime numbers \(p \) which satisfy
\[p = a^4 + b^4 + c^4 - 3 \]
for some primes (not necessarily distinct) \(a, b \) and \(c \).

4. Find the sum of all integers \(x \) for which there is an integer \(y \), such that \(x^3 - y^3 = xy + 61 \).

5. Suppose that for some positive integer \(n \), the first two digits of \(5^n \) and \(2^n \) are identical. Suppose the first two digits are \(a \) and \(b \) in this order. Find the two-digit number \(\overline{ab} \).

6. Let \(s(m) \) denote the sum of the digits of the positive integer \(m \). Find the largest positive integer that has no digits equal to zero and satisfies the equation
\[2^{s(n^2)} = s(n^2) \]

7. Let \(S = \{ p/q \mid q \leq 2009, p/q < 1257/2009, p, q \in \mathbb{N} \} \). If the maximum element of \(S \) is \(p_0/q_0 \) in reduced form, find \(p_0 + q_0 \).

8. Find the largest positive integer \(k \) such that \(\phi(\sigma(2^k)) = 2^k \). (\(\phi(n) \) denotes the number of positive integers that are smaller than \(n \) and relatively prime to \(n \), and \(\sigma(n) \) denotes the sum of divisors of \(n \)). As a hint, you are given that \(641|2^{32} + 1 \).