1. Let \(p \) be a prime number greater than 5. Prove that there exists a positive integer \(n \) such that \(p \) divides \(20^n + 15^n - 12^n \).

2. Let \(a, b, c \) be real numbers such that \(a + b + c = abc \). Prove that \(\frac{1}{a^2+1} + \frac{1}{b^2+1} + \frac{1}{c^2+1} \geq \frac{3}{4} \).

3. Let \(ABC \) be a triangle with incenter \(I \), and let \(D \) be the foot of the angle bisector from \(A \) to \(BC \). Let \(\Gamma \) be the circumcircle of triangle \(BIC \), and let \(PQ \) be a chord of \(\Gamma \) passing through \(D \). Prove that \(AD \) bisects \(\angle PAQ \).

Please write complete, concise and clear proofs. Have fun! – PUMaC Problem Writers