1. [3] Let \(x = \frac{p}{q} \) for \(p, q \) coprime. Find \(p + q \)

2. [3] Triangle \(ABC \) has lengths \(AB = 20, AC = 14, BC = 22 \). The median from \(B \) intersects \(AC \) at \(M \) and the angle bisector from \(C \) intersects \(AB \) at \(N \) and the median from \(B \) at \(P \). Let \(\frac{p}{q} = [AMPN] : [ABC] \) for positive integers \(p, q \) coprime. Note that \([ABC]\) denotes the area of triangle \(ABC \). Find \(p + q \)

3. [4] Let \(O \) be the circumcenter of triangle \(ABC \) with circumradius 15. Let \(G \) be the centroid of \(ABC \) and let \(M \) be the midpoint of \(BC \). If \(BC = 18 \) and \(\angle MOA = 150^\circ \), find the area of \(OMG \).

4. [4] Consider the cyclic quadrilateral with sides 1, 4, 8, 7 in that order. What is its circumdiameter? Let the answer be of the form \(a\sqrt{b} + c \), for \(b \) square free. Find \(a + b + c \)

5. [5] There is a point \(D \) on side \(AC \) of acute triangle \(\triangle ABC \). Let \(AM \) be the median drawn from \(A \) (so \(M \) is on \(BC \)) and \(CH \) be the altitude drawn from \(C \) (so \(H \) is on \(AB \)). Let \(I \) be the intersection of \(AM \) and \(CH \), and let \(K \) be the intersection of \(AM \) and line segment \(BD \). We know that \(AK = 8, BK = 8, \) and \(MK = 6 \). Find the length of \(AI \).

6. [6] \(\triangle ABC \) has side lengths \(AB = 15, BC = 34, \) and \(CA = 35 \). Let the circumcenter of \(ABC \) be \(O \). Let \(D \) be the foot of perpendicular from \(C \) to \(AB \). Let \(R \) be the foot of perpendicular from \(D \) to \(AC \), and let \(W \) be the perpendicular foot from \(D \) to \(BC \). Find the area of quadrilateral \(CROW \).

7. [7] Let \(O \) be the center of a circle of radius 26, and let \(A, B \) be two distinct point on the circle, with \(M \) being the midpoint of \(AB \). Consider point \(C \) for which \(CO = 34 \) and \(\angle COM = 15^\circ \). Let \(N \) be the midpoint of \(CO \). Suppose that \(\angle ACB = 90^\circ \). Find \(MN \).

8. [8] \(ABCD \) is a cyclic quadrilateral with circumcenter \(O \) and circumradius 7. \(AB \) intersects \(CD \) at \(E \), \(DA \) intersects \(CB \) at \(F \). \(OE = 13, OF = 14 \). Let \(\cos \angle FOE = \frac{p}{q} \), with \(p, q \) coprime. Find \(p + q \).