1. Alice is placing bishops on a 2015-by-2015 chessboard such that no two can attack one another.
(Bishops attack each other if they are on a diagonal.) Her friend Bob notices that he is not able
to place down a larger number of bishops such that any two still cannot attack one another.
If there are \(\prod p_i^{a_i} \), with \(a_i > 0 \) and \(p_i > 0 \) prime for all \(i \), ways Alice could have placed her
bishops, find \(\sum p_i + a_i \).

2. For an odd prime number \(p \), let \(S \) denote the following sum taken modulo \(p \):
\[
S \equiv \frac{1}{1 \cdot 2} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{(p-2) \cdot (p-1)} \equiv \sum_{i=1}^{\frac{p-1}{2}} \frac{1}{(2i-1) \cdot 2i} \pmod{p}
\]
Prove that \(p^2 \mid 2^p - 2 \) if and only if \(S \equiv 0 \pmod{p} \).

3. Let \(I \) be the incenter of a triangle \(ABC \) with \(AB = 20 \), \(BC = 15 \), and \(BI = 12 \). Let \(CI \)
intersect the circumcircle \(\omega_1 \) of \(ABC \) at \(D \neq A \). Alice draws a line \(l \) through \(D \) that intersects
\(\omega_1 \) on the minor arc \(AC \) at \(X \) and the circumcircle \(\omega_2 \) of \(AIC \) at \(Y \) outside \(\omega_1 \). She notices
that she can construct a right triangle with side lengths \(ID, DX, \) and \(XY \). What is the length
of \(IY \)?