Number Theory B

1. [3] What is the remainder when

$$
\sum_{k=0}^{100} 10^{k}
$$

is divided by 9 ?
2. [3] What is the 22 nd positive integer n such that 22^{n} ends in a 2 ? (when written in base 10).
3. [4] What is the sum of all positive integers n such that $\operatorname{lcm}\left(2 n, n^{2}\right)=14 n-24$?
4. [4] A circle with radius 1 and center $(0,1)$ lies on the coordinate plane. Ariel stands at the origin and rolls a ball of paint at an angle of 35 degrees relative to the positive x-axis (counting degrees counterclockwise). The ball repeatedly bounces off the circle and leaves behind a trail of paint where it rolled. After the ball of paint returns to the origin, the paint has traced out a star with n points on the circle. What is n ?
5. [5] Given that there are 24 primes between 3 and 100, inclusive, what is the number of ordered pairs (p, a) with p prime, $3 \leq p<100$, and $1 \leq a<p$ such that $p \mid\left(a^{p-2}-a\right)$?
6. [6] What is the largest positive integer n less than 10,000 such that in base $4, n$ and $3 n$ have the same number of digits; in base $8, n$ and $7 n$ have the same number of digits; and in base $16, n$ and $15 n$ have the same number of digits? Express your answer in base 10.
7. [7] What is the smallest positive integer n such that $20 \equiv n^{15}(\bmod 29)$?
8. [8] Given a positive integer k, let $f(k)$ be the sum of the k-th powers of the primitive roots of 73. For how many positive integers $k<2015$ is $f(k)$ divisible by 73 ?

Note: A primitive root r of a prime p is an integer $1 \leq r<p$ such that the smallest positive integer k such that $r^{k} \equiv 1(\bmod p)$ is $k=p-1$.

