1. Alice places down n bishops on a 2015×2015 chessboard such that no two bishops are attacking each other. (Bishops attack each other if they are on a diagonal.) Her friend Bob notices that he is not able to place down a larger number of bishops such that any two still cannot attack one another. Find, with proof, n.

2. On a circle ω_1, four points A, B, C, D lie in that order. Prove that $CD^2 = AC \cdot BC + AD \cdot BD$ if and only if at least one of C and D is the midpoint of arc AB.

3. For an odd prime number p, let S denote the following sum taken modulo p:

$$S \equiv \frac{1}{1 \cdot 2} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{(p-2) \cdot (p-1)} \equiv \sum_{i=1}^{p-1} \frac{1}{(2i-1) \cdot 2i} \pmod{p}$$

Prove that $p^2 | 2^p - 2$ if and only if $S \equiv 0 \pmod{p}$.