Algebra B

1. The right hand side is x^3, so $x^x = x^3$, so $x^x = 3$. Thus, the answer is \boxed{27}.

 The problem had an unintended alternate solution of \boxed{1}, which was also accepted at PUMaC 2017.

 Problem written by Eric Neyman

2. $x^7y^6 = (xy)^5x = (xy)^5x^2y$. $(xy)^6x$ can be formed by choosing 6 xy’s, 1 x, and 1 3, which can be done in $\binom{8}{3}(\binom{5}{1}) = 56$ ways. $(xy)^5x^2y$ can be formed by choosing 5 x’s, 2 x’s, and 1 3y, which can be done in $\binom{8}{2}(\binom{5}{1}) = 168$ ways. Thus the final coefficient is $56 \cdot 3 + 168 \cdot 3 = \boxed{672}$.

 Problem written by Eric Neyman

3. Note that $a \circ b = (a - 4)(b - 4) + 4$, so $4 \circ b = a \circ 4 = 4$ for any a, b. Since a 4 appears in the expression, the answer is \boxed{4}.

 Problem written by Matt Tyler

4. Let $w = z + \pi$. Then, we have

 $w^3 = (z + \pi)^3 = z^3 + 3z\pi(z + \pi) + \pi^3 = (2 + 2i) + 3|z|^2w + (2 - 2i) = 4 + 6w,

 so the product of all possible values of w is 4. Since the real part of z is $\frac{7}{5}$, the answer is \boxed{1}, which gives \boxed{3}.

 Problem written by Matt Tyler

5. Suppose

 $\log_{30}(a + b + c) = \log_{8}(3a) = \log_{2}(3b) = \log_{125}(3c) = x$

 for some x, so that $2^{2x}5^x = a + b + c$, $2^{3x} = 3a$, $3^{2x} = 3b$, and $5^{3x} = 3c$. Then,

 \[
 (a + b + c)^3 = 2^{3x}3^{2x}5^{3x} = 27abc,
 \]

 so equality holds in AM-GM, so $a = b = c = \frac{1}{3}$. Therefore, the maximum possible value of $a + 3b + 9c$ is $\frac{1}{3} + 1 + 3 = \frac{13}{3}$, which makes our final answer \boxed{16}.

 Problem written by Matt Tyler

6. Let $b_n = a_{n+1} - a_n$. Then, we have

 $b_n = 10a_n - (n + 1)$
 $= 10(11a_{n-1} - n) - (n + 1)$
 $= 11(10a_{n-1} - n) - 1$
 $= 11b_{n-1} - 1.$

 Therefore, if $b_1 < \frac{1}{10}$, then the sequence b_1, b_2, \ldots is decreasing, and in fact goes to $-\infty$, which means that the sequence a_1, a_2, \ldots does the same, and in particular becomes negative. Therefore, $b_1 \geq \frac{1}{10}$, so we have $a_2 - a_1 \geq \frac{1}{10}$, or equivalently $a_1 \geq \frac{21}{100}$. Since the sequence a_1, a_2, \ldots is increasing if $a_1 = \frac{21}{100}$ (because $b_n = \frac{1}{10}$ for all n), our answer is \boxed{121}.

 Problem written by Eric Neyman

7. If $a + b = 1$, then $a^3 + b^3 = a^2 - ab + b^2$ and $a^2 + 2ab + b^2 = 1$, so

 $a^2(3 - 2a) + b^2(3 - 2b) = a^2 + 2(a^2 + b^2 - (a^3 + b^3)) + b^2 = a^2 + 2ab + b^2 = 1.$

 Therefore, by induction, $f_n(a) + f_n(b) = 1$ for all n, so the sum is always \boxed{2018}.

 Problem written by Matt Tyler
8. Let ξ be a primitive thousandth root of unity, meaning 1000 is the least positive integer n for which $\xi^n = 1$, so that $\{\xi^k \mid 0 \leq k < 1000\}$ are the thousand thousandth roots of unity. Then, Kenneth’s answer is

$$\sum_{k=0}^{999} \frac{1}{\xi^k - a} = \frac{-1000a^{999}}{a^{1000} - 1}$$

because $\{\xi^k - a \mid 0 \leq k < 1000\}$ is the set of roots of the polynomial $(x + a)^{1000} - 1$. Similarly, Ellen’s answer is

$$\sum_{k=0}^{999} \left(\frac{1}{\xi^k} - a \right) = -1000a,$$

because $\{\xi^k \mid 0 \leq k < 1000\}$ is the set of roots of the polynomial $x^{1000} - 1$. These answers are equal iff

$$a^{1001} - a^{999} - a = 0.$$

By Descartes’ rule of signs, this equation has one positive solution and one negative solution. Since 0 is also a solution, there are 3 possible real values of a.

Note: The use of the word “surprised” in the problem statement led to the interpretation that $a = 0$ would not be a possible value, as the outcome would certainly not be surprising in that instance. Therefore, 2 was also accepted for this problem.

Problem written by Matt Tyler

If you believe that any of these answers is incorrect, or that a problem had multiple reasonable interpretations or was incorrectly stated, you may appeal at http://tinyurl.com/PUMaCappeal2017. All appeals must be in by 1 PM to be considered.