1. Let \(f(x) = \frac{x^2 + a}{x + b} \) satisfy \(f(f(f(x))) = x \) for real numbers \(a, b \). If the maximum value of \(a \) is \(\frac{p}{q} \), where \(p, q \) are relatively prime integers, what is \(|p| + |q| \)?

2. Let \(C \) denote the curve \(y^2 = \frac{x(x+1)(2x+1)}{6} \). The points \((\frac{1}{2}, a), (b, c), \) and \((24, d) \) lie on \(C \) and are collinear, and \(ad < 0 \). Given that \(b, c \) are rational numbers, find \(100b^2 + c^2 \).

3. Let \(\{x\} = x - \lfloor x \rfloor \). Consider a function \(f \) from the set \(\{1, 2, \ldots, 2020\} \) to the half-open interval \([0, 1) \). Suppose that for all \(x, y \), there exists a \(z \) so that \(\{f(x) + f(y)\} = f(z) \). We say that a pair of integers \(m, n \) is valid if \(1 \leq m, n \leq 2020 \) and there exists a function \(f \) satisfying the above so \(f(1) = \frac{m}{n} \). Determine the sum over all valid pairs \(m, n \) of \(mn \).

4. Let \(P \) be a 10-degree monic polynomial with roots \(r_1, r_2, \ldots, r_{10} \neq 0 \) and let \(Q \) be a 45-degree monic polynomial with roots \(\frac{1}{r_i} + \frac{1}{r_j} - \frac{1}{r_ir_j} \) where \(i < j \) and \(i, j \in \{1, \ldots, 10\} \). If \(P(0) = Q(1) = 2 \), then \(\log_2(|P(1)|) \) can be written as \(\frac{a}{b} \) for relatively prime integers \(a, b \). Find \(a + b \).

5. Suppose we have a sequence \(a_1, a_2, \ldots \) of positive real numbers so that for each positive integer \(n \), we have that \(\sum_{k=1}^{n} a_k \lfloor \sqrt{k} \rfloor = n^2 \). Determine the first value of \(k \) so \(a_k > 100 \).

6. Given integer \(n \), let \(W_n \) be the set of complex numbers of the form \(re^{2q\pi i} \), where \(q \) is a rational number so that \(qn \in \mathbb{Z} \) and \(r \) is a real number. Suppose that \(p \) is a polynomial of degree \(\geq 2 \) such that there exists a non-constant function \(f : W_n \to \mathbb{C} \) so that \(p(f(x)p(f(y)) = f(xy) \) for all \(x, y \in W_n \). If \(p \) is the unique monic polynomial of lowest degree for which such an \(f \) exists for \(n = 65 \), find \(p(10) \).

7. Suppose that \(p \) is the unique monic polynomial of minimal degree such that its coefficients are rational numbers and one of its roots is \(\sin \frac{2\pi}{7} + \cos \frac{4\pi}{7} \). If \(p(1) = \frac{a}{b} \), where \(a, b \) are relatively prime integers, find \(|a + b| \).

8. Let \(a_n \) be the number of unordered sets of three distinct bijections \(f, g, h : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\} \) such that the composition of any two of the bijections equals the third. What is the largest value in the sequence \(a_1, a_2, \ldots \) which is less than 2021?