Airborne Networking for Augmented Positioning, Navigation and Timing

AIRBORNE NETWORKING SYMPOSIUM
31 January 2012

Alison Brown
NAVSYS Corporation
14960 Woodcarver Road
Colorado Springs, CO 80921
Phone: 719-481-4877

Distribution A: Approved for public release; distribution is unlimited
A Space Enabled Reconnaissance-Strike Complex: The New American Way of War

<table>
<thead>
<tr>
<th>Location</th>
<th>Guided Type</th>
<th>Cost (K$)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTO, 1991</td>
<td>Unguided</td>
<td>245,000</td>
<td>92%</td>
</tr>
<tr>
<td>(Desert Storm)</td>
<td>Laser/EO-guided</td>
<td>20,450</td>
<td>8%</td>
</tr>
</tbody>
</table>
| | | 1 Mbps/5K | 37 Days, 5K Forces | 1 Mbps/5K
| Serbia, 1999 | Unguided | 16,000 | 66% |
| (Allied Force) | Laser/EO-guided | 7,000 | 31% |
| | GPS-guided | 700 | 3% |
| Afghanistan, 2001-02 | Unguided | 9,000 | 41% |
| (Enduring Freedom) | Laser/EO-guided | 6,000 | 27% |
| | GPS-guided | 7,000 | 32% |
| Iraq, 2003 | Unguided | 9,251 | 32% |
| (Iraqi Freedom)| Guided | 19,948 | 68% |
| | | 51.1 Mbps/5K | 29 Days, 5K Forces | 51.1 Mbps/5K

Use or disclosure of the data on this page is subject to the restrictions on the title page.
GPS and Precision Strike
Fewer Sorties for a Greater Effect

Position, Navigation and Timing - GPS ➔ Precision Engagement

1500 B-17 sorties
9000 bombs (250#)
One 60’ x 100’ target
W.W.II

30 F-4 sorties
176 bombs (500#)
One Target
Vietnam

1 F-117 sortie
2 bombs (2000#)
Two Targets/Sortie
Desert Storm

1 B-2 sortie
16 bombs (2000#)
16 Targets/Pass
All Weather

Use or disclosure of the data on this page is subject to the restrictions on the title page.
What is the threat to PNT?

- GPS Degradation
 - RF emitters can create areas where GPS signals are not available
- GPS Denial
 - Cyber attack could disable GPS control or spoof UE reception
- GPS Destruction
 - Anti-satellite (ASAT) attack
Commercial GPS Threat

- Designed to Block GPS and GSM signals
- Available for purchase over the Internet

- U.S. Communications Act prohibits blocking or interfering with radio communications
- FCC can fine up to $11K per device sold
GPS Spoofing Threat

- Iranian engineer claimed US. drone “tricked” into landing in Iran by electronically hacking into its navigational weak spot and 'spoofing' its GPS system

RQ-170 seen on display in Iran
Takeaways from Schriever Wargames on GPS destruction

• “A day without space” will be years without space until we can constitute our air/space capability

• We must develop concepts of operation that assure continuity of mission operations in a variety of threat conditions

• We must train for contingencies and be able to fight through the threat to continue to provide capabilities (e.g. navigation without GPS)
Benefits of Network Assisted GPS for Military Users

- Precision GPS Ephemeris (PGE)
- Jammer effects SA (JLOC)
- GPS Anti-Jam
- PNT using Comms
- Backup PNT

Use or disclosure of the data on this page is subject to the restrictions on the title page.
5 deg Mask Angle

With PGE corrections < 1 m HPE, 1 m VPE

Without PGE corrections > 5 m HPE, 10 m VPE

Iraq / Afghan Theater

March 2010

Any poor geometry conditions are excluded (PDOP > 6)

Use or disclosure of the data on this page is subject to the restrictions on the title page
How Precision RELNAV Works

- Precision GPS Ephemeris is applied to tightly coupled GPS/inertial soln
- P-RELNAV generates vector \vec{e}^* from the inertial differences and observed range residuals
- Vector \vec{e}^* is transformed by attitude and offset data into vector \vec{u}

Use or disclosure of the data on this page is subject to the restrictions on the title page.
UH-1 Flight Test at Eglin AFB 9-12 August 2010
Carried dual GPS/inertial systems + truth reference
Relative Position – Difference between GPS/INS Solutions (no PGE)

- GPS/INS solution “trends” between biased position offset when GPS satellites change, even when two GPS units track the same satellites

Use or disclosure of the data on this page is subject to the restrictions on the title page.
Relative Position – Difference between GPS/INS Solutions (with PGE)

- PGE corrections remove GPS system biases
- Relative position solution < 0.35 m 1-sigma (per axis)
- Peak axis excursions reduced to < 1 m
- Further improvements possible using KF residual updates

Use or disclosure of the data on this page is subject to the restrictions on the title page
Current JLOC Operations

<table>
<thead>
<tr>
<th>SENSORS</th>
<th>PORTAL</th>
<th>CLIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS UE C/N0 Sensors</td>
<td>NGA JLOC Master Station</td>
<td>JLOC Client</td>
</tr>
<tr>
<td>GPS Threat Locations</td>
<td>JLOC Portal</td>
<td>JLOC Client</td>
</tr>
</tbody>
</table>

SIPRNET

Use or disclosure of the data on this page is subject to the restrictions on the title page.
JLOC Sensor Types

- C/N0 Sensors
 - JLOC reports generated when signal degradation or I/S increase observed

- Threat Sensors
 - Provide estimated geolocation of threats

- AOA Sensors
 - Provide angle of arrival (direction) of threat

- TDOA Sensors
 - Provide raw data for estimating threat location
Multiple GPS UE C/N0 sensor reports indicate region of GPS jamming.

Use or disclosure of the data on this page is subject to the restrictions on the title page.
Android C/N0 Data Collect at White Sands
Example Airborne Networking JLOC Reports

Simulated JLOC display

Use or disclosure of the data on this page is subject to the restrictions on the title page.
Example JRU real-time display showing AOA of jammer and I/S diagnostics
JLOC AOA Sensor Network Concept

<table>
<thead>
<tr>
<th>SENSORS</th>
<th>PORTAL</th>
<th>CLIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA Sensor Network</td>
<td>AOA networked geolocation</td>
<td>JLOC Client</td>
</tr>
<tr>
<td>JLOC Master Station</td>
<td>Civil JLOC Portal</td>
<td></td>
</tr>
<tr>
<td>INTERNET</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use or disclosure of the data on this page is subject to the restrictions on the title page.
JLOC TDOA Sensor Network Concept

<table>
<thead>
<tr>
<th>SENSORS</th>
<th>PORTAL</th>
<th>CLIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JLOC Snapshot TDOA Sensor Network</td>
<td></td>
<td>JLOC Client</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results showing TIDGET TDOA Sensor Geolocation

Use or disclosure of the data on this page is subject to the restrictions on the title page.
Link-16 RELNAV can be used as a Navigation Back-Up to GPS

- Link-16 RELNAV performance can be improved using existing terminals
- Robust time back-up for network allows operation independent of GPS if needed
Conclusion

• US military is heavily dependent on PNT to support precision operations
• GPS can be degraded, denied or destroyed
• Network augmentation can enhance GPS performance and provide SA on GPS attacks
• Airborne networks can provide back-up PNT services independent of GPS
• All airborne networks need to include RELNAV services (similar to Link-16) but with precision PNT capability
JLOC Program Objectives

- **Situational Awareness** of jammer effects to the warfighter for use in mission planning and execution
 - **Detect** GPS interference by exploiting GPS user equipment as JLOC sensors
 - **Locate** precisely the sources of interference by processing the GPS JLOC sensor data
 - **Disseminate** jammer alerts and reports

- The JLOC system approach:
 - Use various **sensors** and reporting systems to **collect information** about GPS jamming and interference
 - **Analyze** the navigation **denial impacts** of this data and centralizes jamming/interference information
 - **Publish** alerts, reports, and effectiveness plots essential to **warfighters** and mission planners reliant on GPS.

Use or disclosure of the data on this page is subject to the restrictions on the title page.
GPS JLOC History

- ‘98: AFRL initial JLOC contract awarded
 - Developed JLOC system design and lab units
- ’00: GATOR Space Battlelab Initiative: JLOC prototype testing at White Sands & Woomera
 - Built prototype JLOC system for field testing
 - Located jammers from ground and airborne units using conventional and modified GPS UE
- ’04: AF TENCAP JLOC Phase III contract
 - Built and tested operational JLOC system
- ’07: JLOC Operational Capability
 - JLOC Master Station located at NGA’s Monitor Station Network Control Center (MSNCC)

Use or disclosure of the data on this page is subject to the restrictions on the title page.
JLOC Client Predicts Jammer Effects from Calculated J/S

- Loss of Lock
- Loss of Acquisition
- Power Detection
- TDOA Detection

Ground to Ground

- 1 km
- 1.4 km
- 2.1 km
- 3.2 km

Airborne, Line of Sight

- 38 km
- 145 km
- 65 km
Examples of Potential Civil JLOC Feeds

<table>
<thead>
<tr>
<th>SENSORS</th>
<th>PORTAL</th>
<th>CLIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGA JLOC Master Station (JLOC Threat Sensor)</td>
<td>Civil JLOC Portal</td>
<td>JLOC Client</td>
</tr>
<tr>
<td>JLOC CN0 Sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US CivilSources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORS/IGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDGPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAAS/LAAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USCG AIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAARDIAN (UK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAS (Australia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QZSS (Japan)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use or disclosure of the data on this page is subject to the restrictions on the title page.
Example Jammer Simulation

- 1 watt jammer from London Eye with receiver J/S= 41 dB
- Cigarette size battery pack gives 10 hrs jammer operation

Scale:
20 x 20 km
Google Sketch-Up Simulation with Jammer Propagation

Use or disclosure of the data on this page is subject to the restrictions on the title page.