Also Available

- Altering Fate: Why the Past Does Not Predict the Future
 Michael Lewis

- Emotion and Consciousness
 Edited by Lisa Feldman Barrett, Paula M. Niedenthal, and Piotr Winkielman

- Lying and Deception in Everyday Life
 Edited by Michael Lewis and Carolyn Saarni

- The Mind in Context
 Edited by Batja Mesquita, Lisa Feldman Barrett, and Eliot R. Smith

- The Psychological Construction of Emotion
 Edited by Lisa Feldman Barrett and James A. Russell

- The Rise of Consciousness and the Development of Emotional Life
 Michael Lewis

- The Wisdom in Feeling: Psychological Processes in Emotional Intelligence
 Edited by Lisa Feldman Barrett and Peter Salovey
ABOUT THE EDITORS

Lisa Feldman Barrett, PhD, is University Distinguished Professor of Psychology and Director of the Interdisciplinary Affective Science Laboratory at Northeastern University, with research appointments at Harvard Medical School and Massachusetts General Hospital (MGH), and is a faculty member at the MGH Center for Law, Brain and Behavior. Dr. Barrett’s research focuses on the nature of emotion from both psychological and neuroscience perspectives, and incorporates insights from anthropology, philosophy, linguistics, and the history of psychology. She is the recipient of a Pioneer Award from the National Institutes of Health, among numerous other awards, and is a Fellow of the Royal Society of Canada, the American Association for the Advancement of Science (AAAS), and the Association for Psychological Science (APS). Dr. Barrett was a founding editor-in-chief of the journal Emotion Review and cofounder of the Society for Affective Science. She has published more than 170 journal articles and book chapters.

Michael Lewis, PhD, is University Distinguished Professor of Pediatrics and Psychiatry and Director of the Institute for the Study of Child Development at Robert Wood Johnson Medical School. He is also Professor of Psychology, Education, Nursing, Cognitive Science, Biomedical Engineering, and Social Work at Rutgers, The State University of New Jersey, where he serves on the Executive Committee of the Center for Cognitive Science and is an Associate of the Center for Mathematics, Science, and Computer Education. Dr. Lewis is a Fellow of the New York Academy of Sciences, the American Psychological Association (APA), the AAAS, and the Japan Society for the Promotion of Science, and is currently in the top 1.5% of scientists referenced in the Social Science Index. He is a recipient of the Uri Bronfenbrenner Award for Lifetime Contribution to Developmental Psychology in the Service of Science and Society from the APA, the Hedi Levenback Pioneer Award from the New York Zero-to-Three Network, and the Distinguished Scientific Contributions to Child Development Award from the Society for Research in Child Development. Dr. Lewis has published over 450 journal articles and book chapters and 35 books, including The Rise of Consciousness and the Development of Emotional...
EMOTION AND AGING

Mara Mather and Allison Ponzo

Emotions depend on a complex circuitry of brain regions interacting with neurotransmitter systems and stress and sex hormones. They are shaped by experience and current circumstances. Feedback loops and self-directed control mechanisms regulate emotions and help curtail how long they last and how intense they get. All of these basic mechanisms and contextual factors change in normal aging and so it is not surprising that emotional experience and processes change with age as well. The changes are not what one might initially predict, however. With aging come health challenges, physical declines, and the loss of friends and family because of illness and death. Furthermore, prefrontal control processes that help regulate behavior, attention, and memory deteriorate, which should make it more difficult to regulate negative emotions. Despite these constraints and challenges, emotional well-being does not tend to decline in normal aging. Why do older adults not revert back to the emotional intelligence of teenagers, a time when their frontal lobes were not yet functioning at full capacity? The surprising lack of decline in emotional functioning makes aging a fascinating test case for understanding the mechanisms of emotional well-being. In this chapter, we review some key issues regarding emotion and aging: How emotional well-being is maintained across the lifespan, how aging affects specific emotions, how emotions predict longevity, the age-related positivity effect in attention and memory, which aspects of emotion regulation processes are influenced by aging, changes in arousal and stress response processes during aging, and strategies for using emotional abilities as a resource for psychological adaptation.

Emotional Well-Being

As we review below, emotional functioning holds up remarkably well in normal aging. Given the limitations and bases of memory (e.g., Kennedy, Monther, & Carstensen, 2004; Levine & Safer, 2002; Redelmeier, Katz, & Kahneman, 2003), emotional well-being should ideally be assessed in the moment, with enough moments sampled over time to estimate an average. One landmark study used experience sampling methods to assess frequency and intensity of 19 emotions across a 1-week period in a representative sample of healthy adults, and repeated the assessment across three waves of data collection each 5 years apart (Carstensen et al., 2011). Emotional well-being was defined by subtracting the average frequency of negative emotions experienced from the average frequency of positive emotions experienced. At each wave, the balance of positive to negative emotional experience increased into the late 60s and then stopped increasing. The same pattern was seen within individuals who were assessed at multiple waves. In contrast, the intensity of experienced emotions did not vary based on age.
Happiness

When he drafted the U.S. Declaration of Independence, Thomas Jefferson wrote that all men have the right to life, liberty, and the pursuit of happiness (Boyd, 1950). After mostly neglecting the topic, in recent years both economists and psychologists developed a stronger appreciation of the importance of happiness (e.g., Frey & Stutzer, 2010; Seligman, 2012). Happiness predicts success in many domains (Lyubomirsky, King, & Diener, 2005) and can help people develop resilience to challenging and shifting circumstances (Cohn, Fredrickson, Brown, Mikels, & Conway, 2009).

A widespread belief is that people become less happy as they get older—but this belief conflicts with happiness self-reports. For instance, in one study, both younger and older adults estimated significant decline in happiness with age, although in fact the younger group was less happy than the older group (Figure 18.1; Lacey, Smith, & Ubel, 2006). In cross-sectional studies, happiness increases with age among cohorts in their mid-50s to mid-70s, then stabilizes or declines slightly in late life (Mroczek & Kolarz, 1998; Stone et al., 2010).

One question is how much happiness declines in very late life (after age 85). One perspective is that although things look good for the “young old” (in Western cultures, this often refers to those in their 60s and 70s), things are still bleak among the oldest old that “living longer seems to be a major risk factor for human dignity” (Baltes & Smith, 2003, p. 128). Baltes and Smith argue that aspects of eminence and well-being that show no decline in the young old show prominent decline among the oldest old. Part of their pessimism about this place in life is that Alzheimer’s disease is common among the oldest old. They state, “It may be a sad commentary, but dying before reaching the oldest ages is currently the only way to avoid succumbing to Alzheimer-type dementia” (p. 129).

Indeed, in the face of physical dysfunction (e.g., dementia or other age-related chronic disease), it is natural to expect dramatic increases in depression. Yet, contrary to this expectation, a population-based sample of German centenarians indicated as much happiness as representative middle-age and older Germans (Jopp & Rott, 2006). This counters the notion that happiness declines precipitously in the oldest old and is a striking finding given that 8% of the centenarians surveyed needed nursing care.

Anger

In contrast with happiness, anger can be hazardous to one’s health (Suinn, 2001; Williams, 2012). Anger is especially likely to trigger and exacerbate cardiovascular disease, the leading cause of death in the United States (Heidenreich et al., 2011). People who generally have poor anger control are more likely to develop cardiovascular disease in the next 10–15 years (Haukkka, Konrinen, Laatikainen, Kawachi, & Uutela, 2010) and outbursts of anger increase the likelihood of an acute cardiovascular event in the next 2 hours (Montoskyy, Pener, & Mittelmann, 2014).

The frequency of self-reported anger increases during young adulthood but then decreases steadily until old age (Kuzmann, Richter, & Schmukle, 2013; Kuzmann & Thomas, 2014; Stone et al., 2010). When specifically asked about interpersonal tensions, older adults report experiencing less anger and using more loyalty strategies such as apologizing, than younger adults (Buditt & Fingerman, 2003, 2005; Buditt, Fingerman, & Almeida, 2005; Blanchard-Fields & Coats, 2008). More generally, in representative samples in both the United States and Japan, there was stability in positive interactions and decreases in negative interactions in close relationships (Akiyama, Antonucci, Takahashi, & Langish, 2003).

Older adults also respond to triggers with less anger than younger adults in laboratory studies. When confronted with a recorded conversation of two people ostensibly talking about them, older adults reported less anger but equal levels of sadness compared with younger adults, and their comments seemed less negative to raters (Charles & Carstensen, 2008). Compared with younger adults, older adults showed decreased visual cortex-evoked potentials in response to angry but not to sad or happy faces (Mennella, Corbalis, Blanchard-Fields, Parks, & Hilmire, 2014), a finding that may relate to older adults being more likely to display an anger in a videotape as less angry than younger adults do (Charles, Carstensen, & McFall, 2001). The decreases in anger as people age may be critical for survival, given that anger increases the risk of cardiovascular events and that rates of cardiovascular disease are so high among older adults (among people free of cardiovascular disease at age 50, the lifetime risk to develop it was 52% for men and 39% for women; Lloyd-Jones et al., 2010).

Sadness

Losses trigger sadness (Bowby, 1998). Losing a loved one is the most obvious example, but loss of social roles, places, or things can all lead to sadness. Older adults tend to have older peer groups and spouses, making them susceptible to loss of close loved ones. They also have a lifetime of accumulated roles, familiar places, and things that are all at risk of loss, while they suffer age-related declines in some physical and mental abilities. And they are closer to the end of their own lives. Thus, among the biggest emotional challenges older adults face is how to cope with loss, both past and future, and these challenges seem likely to lead to increases in sadness.

Although some studies show increases in older age, others show no change in sadness. Self-reported everyday sadness shows an almost flat profile across age groups, with studies showing either no age differences (Kuzmann & Thomas, 2014), a middle small bump that decreases in later life (Stone et al., 2010), or a flat profile across most of adulthood with an increase among those in their late 70s and 80s (Kuzmann et al., 2013). When reporting on emotional reactions to interpersonal conflict, participants show no significant age differences in reported sadness (Buditt & Fingerman, 2003). In the lab, there are no age differences in sadness elicited by conversations involving disparaging comments about the participant (Charles & Carstensen, 2008), or by a film clip about a boy...
mourn ing his father’s death (Tiit, Levenson, & Carstensen, 2000), but older adults felt more sadness than younger adults after watching other film clips involving themes of death or Alzheimer’s disease (Kunzmann & Gruhn, 2005; Seider, Shott, Whalen, & Levenson, 2011).

Thus, while some (but not all) studies suggest that sadness is a more accessible emotion for older adults, there is less of an increase in sadness than might be expected given the losses associated with aging. This discrepancy between circumstances and reactions is particularly striking in a longitudinal study in which German participants ages 58–81 estimated perceived deficits in performance and losses in abilities and also rated how contented they were with themselves and their present functional state in the respective domains (Rothermund & Brandstätter, 2003). Perceived losses and deficits increased significantly with age, but contentment with performance did not decline.

Regret

Regret involves sadness or remorse over past acts. Having a longer life to look back on means that there are more things to regret and also potentially fewer opportunities to address the regrets via new behaviors. Surprisingly, given their longer lives and increased opportunities to regret, older adults are less likely than younger adults to report regrets. For instance, nearly 4,000 Dutch and German adults 40–85 years old were asked to complete the sentence: “I am not happy because I . . .” (Timmer, Weberg, & Dittmann-Kohli, 2005); the likelihood of reporting nothing regret increased with age. In addition, among 825 Swedish adults between 18 and 85 years old, self-reported frequency of regret decreased with age, along with the intensity and duration of everyday regrets (Vastfjäll, Peters, & Bjälkebring, 2011; see also Bjälkebring, Vastfjäll, & Johansson, 2013).

Even when regrets are induced in the laboratory as part of risky gamble choices and to younger and older adults have the same temporal distance from their choices, there are age differences in how much people focus on potential or past regrets. For instance, when asked why they made the choices they did in a risky gamble task, older adults were more focused on receiving some positive reward and cared less about avoiding potential regret than younger adults (Mathé, Mazur, Giorigo, Lighbrath, & Asliy, 2012). In another study, feedback about missed chances on one risky-choice trial predicted risk-taking behavior on the next trial in healthier younger and depressed older adults (suggesting their choices were modulated by regret), but not in healthy older adults (Rosa, Gomer, Peters, Glath, & Bischel, 2012). In addition, the healthier, younger, and depressed older adults showed decreased brain activation in reward processing regions when shown their missed opportunities, whereas healthy older adults did not. In contrast, only the healthy older adults showed more anterior cingulate activation during presentation of missed opportunities relative to trials without a missed chance, potentially reflecting cognitive control efforts to disengage from regret.

An increased likelihood of resolving regrets among older adults was also seen in a study of 455 caregivers of terminally ill patients, who interviewed 6 months after their loved ones died (Torges, Stewart, & Nolen-Hoeksema, 2008). The likelihood the caregivers had resolved their regrets increased linearly with age, and regret resolution predicted lower depressive symptoms and higher well-being 18 months after their loved one’s death. The most effective strategies for defusing regrets may shift with age. In one study, older adults experienced less regret when they felt little control over the event, whereas younger adults felt less regret when they felt high levels of control (Wrosch & Heckhausen, 2002). The authors argued that the attributions of control could be an adaptive strategy when feeling that there is little time left for active attempts to change regrettable behavior. In another study, older adults’ lower levels of regret were mediated both by postdecision reappraisal (“I try to reevaluate the decision”) and by predecision avoidance (“Delay the decision”; Bäckström et al., 2013). Other studies also suggest older adults are more likely to avoid decisions to postpone negative affect and regret (Marber, 2006). Thus, research suggests that older adults use various strategies including decision avoidance as well as more cognitively engaging strategies to defuse regret and that, with decreasing time left in life to change regrettable things, older adults may be better off if they attribute less self-control to themselves about the things they regret.

Emotions Predict Longevity

People who experience relatively more positive than negative emotions in their everyday lives live longer (Carstensen et al., 2011; Diener & Chan, 2011). Subjective well-being consistently predicts longevity among those who are healthy, albeit with a weaker relationship with longevity among those suffering from a disease (Diener & Chan, 2011). For instance, positive emotional content in nouns’ early life autobiographies predicted longevity six decades later (Belsky, Snowdon, & Friesen, 2003). Likewise, baseball players who smiled authentically (moving muscles both around the mouth and eyes) in their photos in the 1952 Baseball Register were half as likely to die in any subsequent year compared with nonsmilers (Figure 18.2; Abel & Kruger, 2010).

In addition to predicting mortality, negative emotions are associated with physical health in late life. For instance, among older adults, higher levels of intense life regrets are associated with more control secretion and health problems (Wrosch, Bauer, & Miller, 2007). One question the survival effects raise is how much the decrease in negative affect among older cohorts results from the happiest people surviving the longest. So far, no studies have tackled the question of how much of the variance in cohort comparison studies is related to survival effects. Longitudinal studies, however, show emotional well-being increases within individuals across adulthood (Carstensen, Pasupathi, Mw, & Neselroade, 2000; Carstensen et al., 2011; Charles, Reynolds, et al., 2001) indicating that it is not just a matter of all the people who are chronically unhappy dying off, instead, across the adult lifespan emotional experience tends to improve.

Another question these findings raise is if negative emotions are associated with shorter and less healthy lives, why do we even have them? According to functionalist theories of emotion, all emotions have some adaptive benefits (Farb, Chapman, & Anderson, 2013; Keltner & Haidt, 1999; Levenson, 1999). For instance, sadness and depression can focus and enhance analysis of social problems and signal to partners the need to help or make concessions (Watson & Andrews, 2002). Depression also facilitates disengagement from unattainable goals (Wrosch & Miller, 2009). Anger, in contrast, promotes readiness to take action and persistence (Frijda, Kuppens, & ter Schure, 1999; Lench & Levine, 2008).

The adaptations of specific emotions may change with age. For instance, goal disengagement may play a more important role for older adults as they perceive diminishing opportunities to undo the consequences of their regrets (Wrosch, Bauer, & Scheier, 2003). Consistent with the idea that certain negative emotions may promote well-being most at certain life phases, the relationship between participants’ negative emotions in response to a thematically ambiguous film and their subjective well-being depended on age, with anger responses associated with higher well-being for middle age but lower well-being for older adults, and sadness responses associated with higher well-being for older but not the other groups (Haase, Seider, Shott, & Levenson, 2012).

Age-Related Positive Effect

In the research reviewed thus far, a picture emerges of late life as a time of surprising emotional resilience, with well-maintained positive emotions and somewhat decreased negative emotions. It turns out that there is also an age-related positive effect in attention and memory (Mathé & Carstensen, 2005). For example, in one study we where younger, middle-age, and older adults completed a recall test of positive negative and neutral pictures, the
Contrary to this aging-brain model, however, older adults show intact threat detection advantages in visual search (Leclerc & Kensinger, 2004; Mather & Knight, 2006) and less structural decline in the amygdala than in most of the rest of the brain (Mather, in press; Nazhiro, Sakaki, & Mather, 2012). And although older adults show less amygdala activity in response to negative stimuli than do younger adults, this does not seem to be due to decline but instead to what they are most attuned to, as they show more amygdala response to positive than to negative stimuli (Kensinger & Knight, 2011; Mather et al., 2004; Waldinger, Kensinger, & Schultz, 2013). Another problem for the decline story is that the positivity effect is stronger in older adults who do well on tests of cognitive control than in those who do poorly (Mather & Knight, 2005; Perrigan, Moscovitch, & Schmack, 2008) and emerges in visual search tasks that require controlled attentional processes, but not in those that require only automatic processes (Hahn, Carlson, Singer, & Gronlund, 2006). When presented with stimuli while engaged in a task that taps cognitive control resources, older adults no longer show a positivity effect (Knight et al., 2007; Mather & Knight, 2005). Thus, cognitive control mechanisms seem to promote older adults’ positivity in attention and memory. Indeed, the effect size of the positivity effect is larger when participants are free to process stimuli as they choose rather than being constrained by specific task instructions (Reed et al., 2014).}

1B. Emotion and Aging

Emotion Regulation

Given the findings covered so far about how the balance of positive to negative affect improves with age, an obvious assumption is that older adults get better at regulating their emotions. Consistent with this possibility, older adults give themselves higher ratings than younger adults in response to the question, “Overall, how much control would you say you have over your emotions?” (Gross et al., 1997). In addition, older adults are less likely to ruminate on negative emotions (McCorath & Huha, 1999). Life experience might also help people become expert emotion regulators (e.g., Blanchard-Fields, 2007), just as it helps to increase their social expertise (Hess & Kotter-Gruhn, 2011). Yet laboratory studies that compare younger and older adults’ performance when they are instructed to regulate emotional responses to emotional stimuli reveal no consistent age advantages for either younger or older adults (see Mather, 2012, for a review). Instead, where age differences are more likely to emerge is in which regulation strategies people tend to use. Older people are more likely to report using suppression and less likely to report using reappraisal, rumination, and active coping than younger adults (Nolen-Hoeksema & Addis, 2011; Manique-Gonzalez, de Trocino, Cerrato, & Balsar, 2008; but see John & Gross, 2004). Older adults also report prioritizing avoiding emotional situations more than do younger adults (Lawson, Klehan, Rajajyal, & Dean, 1992). This pattern of age differences is more challenging to investigate using laboratory methods, as what needs to be measured are people’s habitual modes of processing rather than their skill at any one type of processing.

A recent framework explains why younger and older adults spontaneously select different strategies to regulate their emotions. The framework—inclusion, optimization, and compensation with emotion regulation (Urry & Gross, 2012)—follows previous theoretical thinking (Baltes & Baltes, 1990) that by sticking to three core tenets (selection, optimization, and compensation), soc-
Emotion and Physiology

Arousal

Common aging ailments like peripheral neuropathy and cataracts can impact arousal responses, including skin conductance and pupill dilation. As people age, their arteries become less plastic and elastic, muscles become weaker, resulting in lower heart rate variability and peripheral peripheral resistance and poorer blood circulation efficiency (Lakatou, 1990). These changes in the cardiovascular system influence some psychological-physiological measures of arousal, like blood pressure and heart rate. Aging also causes changes in the electrosensory system, resulting in a decrease in the quantity of sweat glands, the amount of sweat produced (Foges & Fox, 1996), and the accuracy with which we may be able to measure skin conductance. Thus, not surprisingly, age-related decreases in measures such as heart beat interval, skin conductance, respiration rate, pupil transmission, and systolic blood pressure have been found in people’s responses to emotional cues (Kuntzmann, Kupferbusch, & Leventon, 2005; Leventon, Friesen, Ekman, & Cartensen, 1991; Tsai et al., 2000; but see Denburg, Buchanan, Travell, & Adolphs, 2003; Hess, LeGrand, Carlson, & Jaroszewy, 2009, for studies finding no significant age differences for skin conductance). In a longitudinal clinical–pathological cohort study, researchers found that a higher density of non-selective neurons in the locus coeruleus, a structure in the brain important for physiological responses to arousal, was predictive of a slower rate of cognitive decline (Wilson et al., 2013). This suggests that there is a relationship between the integrity of non-selective neuronal processes and cognitive performance during late life (Watson et al., 2006). One intriguing possibility is that, via attune novel, arousing events throughout life by having an engaging career and social life maintains brain (and builds “cognitive reserve”) even as neurodegeneration increases (Robertson, 2013).

Stress

Cortisol, a hormone responsible for stress regulation, on average shows a different diurnal rhythm in younger and older people. Although both younger and older people experience a peak (and subsequent slow decline) in the hormone after waking, older adults never reach the lowest level as young adults (van Cauter et al., 1996; see also Nicolson, Storms, Ponds, & Salin, 1997). In another study that examined subgroups, 50% of older adults in the sample maintained typical cycles, while most of the rest of the sample had depressed rhythms that varied with day-to-day (ice, Katz-Stein, Hines, & Kone, 2004). This indicates that, while day-to-day variation may increase, normal diurnal rhythms of cortisol can be maintained in late life.

Older and younger people show similar cortisol responses to acute physical stressors such as holding a hand in ice water (Mather, Gorlick, & Lighthall, 2009; Lighthall, Gorlick, Schoeke, Frank, & Mathet, 2013) and to the Trier Social Stress Test, an acute social stress task (Koelsch, Buke, Kirschbaum, Hohlhammer, & Kirschbaum, 2004; Rohleder, Kudielka, Kirschbaum, Wolff, & Kirschbaum, 2002). One study looking at adrenal and nonadrenaline (norepinephrine) responses for the right-outlight response effects on psychophysiological responses in older men, found that, after experiencing a psychosocial stressor, blood pressure and adrenaline levels increased steadily in both middle-age and older men, but were slower to return to non-stress levels in the older men (Poschke, Bourlez, Pauvin, & Dupuis, 1981). A meta-analysis that included studies using pharmacological challenge found that, on average, older adults (and especially women) showed greater cortisol responses to both drug and visual challenge (Ort et al., 2009). So, in general, older adults’ cortisol response to acute stress is as strong or stronger than that of younger adults.

According to strength and vulnerability integration (SAVI) theory, in order to understand goals such as cooperating, forming a new relationship, showing affection, seeking help, deferring to others, and fighting Emotions are conveyed in many ways, but faces are often the most specific and clear signal of emotions.

Recognition of some emotions is more impaired by aging than others (see Isacowitt & Stanley, 2011; Ruffman, Henry, Livinston, & Phillips, 2008, for review). Older adults are typically worse than younger adults at recognizing fear and sadness. They also sometimes are worse at recognizing angry expressions. They typically are as good as or better than younger adults, however, at recognizing disgusted expressions. Older adults also show age equivalence, smaller deficits, or even advantages in recognizing happy and surprised facial expressions.

Older adults’ maintained ability to identify facial expressions of disgust is particularly striking because disgust is one of the emotions younger adults find most difficult to identify (Ruffman et al., 2008). Disgust recognition seems to depend in particular on the insula (Adolphs, Tranel, & Damasio, 2003; Calder, Keane, Manes, Antoun, & Young, 2000). Thus, impairment in body sensations or in emotions. Signals from brain regions that track body sensations such as heartbeats, breath, digestion processes, and skin flushing help shape our emotional experience (Barrett, Quigley, Blascovich, &

Intereception

Since the work of William James and Carl Lange (Lange & James, 1922), research in the field of emotion has been focused on the role of cognition in generating emotions. Acting also causes changes in the insula maintains its influence over face-processing networks more effectively with age than other brain regions that are more important for other types of facial emotions, such as the ventral striatum or amygdala (Adolphs, 2005; Calder, Keane, Lawrence, & Manes, 2004). For instance, while encoding fearful faces, younger adults showed more amygdala and hippocampal activation than older adults, while older adults showed more insula activation than younger adults (Eisenberger, Su, & Reiman, 2005). Another age difference was apparent during encoding of neutral faces. Likewise, another study found that older adults showed greater increases in emotional self-awareness than younger adults during rating emotional expressions (Keogh, Chwin, Winocur, & Grady, 2007). Thus, shifts in the brain regions most likely to contribute to face processing may contribute to which types of facial expressions are most likely to be recognized.

Another possibility is that age-related shifts in which emotions are easiest to identify result from changes in which facial features are most noticeable. When viewing faces, older adults fixate less on the eyes than younger adults do, and more on the mouth and nose (Firestone, Turk-Browne, & Ryan, 2007; Murphy & Isacowitt, 2010; Sullivan, Ruffman, & Hatton, 2007; Wong, Crammond, Adolphs, & Neugarten, 2005), especially when the faces have
already been seen recently (Heise & Rain, 2011). In addition, older adults are less likely than younger adults to follow the eye gaze cues of younger adults (Slessor, Phillips, & Bull, 2008).

Clinical Issues

Depression

Contrary to common perception, rates of depression in older adults are lower than in younger adults (Blazer, 2003; Hasin, Goodwin, Stinson, &Grant, 2005). But older adults’ symptoms of depression may be more harmful than younger adults’ symptoms (Fiske, Wetherell, & Ortz, 2009). Depression at older ages is associated with increased cognitive, physical, and social functioning; increased risk of morbidity; increased risk of suicide; increased self-neglect; and increased mortality (Blazer, 2003). Clinical presentation at old age is the sum of a lifetime of social, environmental, and physiological risk and protective factors (Fiske et al., 2009). Depression has also been associated with increased frailty (Menck, Edwards, Lohman, Choi, & Lapane, 2012). Stressful life events have been associated with an increased risk of depression at all ages (Nolen-Hoeksema & Alloy, 2002). The types of events would likely differ for younger and older people. Precipitating events in later life include financial difficulties, a new illness or disability, a family member with a new illness or hospitalization, or change in living situation (Fiske et al., 2009). Older adults who experience socioeconomic disadvantage are more likely to have higher rates of depression (Mojtabi & Olis, and lived experiences are more likely to lead to an increased risk for depression, including cardiovascular disease (Carney & Freedland, 2003) and diabetes (Li, Ford, Strine, & Mokdad, 2008). Depressed in older people can present as either a lifetime illness with recent depressive symptoms across the lifespan, or solely as a late-life condition. Differences in depression in late life as compared with early life exist in etiology, prognosis, and risk factors (Fiske et al., 2009). There are some important differences between early and late onset. Those with early onset of depression are more likely to have a family history of depression, suggest possible genetic influence (Heun, Papassotiriopoulos, Jessen, Maes, & Breitner, 2001). Older adults with late-onset depression are more likely to have vascular risk factors, experience disruption in cognitive functioning, and are more likely to develop dementia (Hickie et al., 2005; Switzer, Turk, O'Brien, & Ames, 2002). Depressed older adults often present with more physical than emotional symptoms (Buchanan, Luppa, Bramesfeld, & Riedel-Heller, 2012). Older adults with depression are less likely to endorse dysphoria (a state of unease or general discontent with life and feelings of worthlessness or guilt. Older adults with late-onset depression display sleep disturbances, fatigue, psychomotor retardation, loss of interest in living, and hopelessness about the future, more so than younger adults or older adults who had early-onset depression (Fiske et al., 2009). Depressed older adults are also more likely to complain about poor memory and concentration (Christensen, Jorm, MacKinon, Korten, Jacomb, et al., 1999).

Anxiety

Anxiety symptoms are likely twice as prevalent as depression symptoms in older people (Singleton, Bumpstead, O'Brien, Lee, & Melzer, 2019). Anxiety and depression are common (Wetherell, Maier, & Balkum, 2005). Depression and anxiety often present together and have similar risk profiles (Vink, Aarnout, & Schoenes, 2020). Though anxiety is a common psychiatric symptom at any age, it has several older-age specific facets (Wolzick-Taylor, Castriotta, Lenz, Stanley, & Craske, 2010). Anxiety related to fear of falling and mobility comorbidity to other illnesses are most common in older ages. Fear of falling has a strong relationship with limiting physical and social activity, and therefore has an impact on independence and mobility. Anxiety also predicts limited activity independent of depression (Nsen et al., 2012). Poor balance and reduced activity levels make individuals fear falling and its serious health outcomes, such as hip fractures (Cumming, Salkeld, & Mitchell, 2001). Sometimes referred to as “postural syndrome,” this disorder has been cited as the most common anxiety reported in older people (Howland et al., 1995). Anxiety can often be comorbid to other diseases. In anxious older adults with cardiovascular diseases, subthreshold anxiety was found to be highly prevalent, suggesting that anxiety could be comorbid with high blood pressure and depression in older adults (Braun, 2016). This review indicated that there is a relationship between anxiety and menopause. Specifically, menopause was linked to both vasomotor symptoms and panic disorder (Bryant, Judd, & Hickie, 2012).

Dementia and Alzheimer’s Disease

Alzheimer’s disease and other dementias impair thinking and reasoning and increase in prevalence with age (Corrada, Brookmeyer, Paganiinis, Berlin, & Kowal, 2010). Population-based studies that surveyed community-dwelling patients estimated 51% in Denmark had dementia (Andersen-Ranberg, Vestergaard, & Jeune, 2001) and 70% in Japan (Asaia et al., 1996). While normal aging has the biggest impact on frontal-striatal brain systems, Alzheimer’s disease targets medial temporal lobes and cortical networks involving the posterior cingulate and retrosplenial cortex (Buckner, 2004). These different trajectories are also apparent for emotions, which fare worse in Alzheimer’s disease than in normal aging. A community-based sample study of dementia found that apathy was the most common emotional symptom, followed by depression and agitation or aggression (Lyketsos et al., 2000). Both depression and Alzheimer’s disease involve chronic inflammation and hyperactivation of the hypothalamic-pituitary-adrenal axis (Caraci, Copani, Niccolleti, & Drago, 2010). The aggression and other psychiatric symptoms sometimes seen with Alzheimer’s disease have been linked to damage to the dopaminergic and nigrostriatal systems in the brain (Katz et al., 1999; Assal & Cummings, 2002).

Cultural Caveats in How Age Relates to Emotion

One limitation of this review is that the majority of age-related comparisons in emotion and associated processes have been conducted in English-speaking countries. It is unclear if there are similar age associations elsewhere or if there are cultural differences. One study suggests that culture can have a significant impact on how emotional well-being differs across age cohorts (Seputoe, Deaton, & Stone, 2015). While English-speaking wealthy countries showed the general pattern of increasing emotional well-being with age, regions such as the former Soviet Union and Eastern European satellites showed a decreasing ratio of positive-to-negative emotional ratings, and other regions such as Africa and Latin American regions showed few age differences or mixed patterns. Differences in these cross-sectional trends among countries may be the result of societal upheavals in some regions of the world that deprive older adults of security and economic resources. Further research is needed to better understand cultural factors influencing well-being, ideally, longitudinal studies that involve experience sampling.

Only a few studies examining how valence influences emotional attention or memory have been run in non-Western samples (Reed et al., 2014), however, among those studies, there is significant positive effect age x valence interactions among Koreans (Ko, Lee, Yoon, Kwon, & Mathew, 2011; Kwon, Scheibe, Samanes-Larkin, & Tsai, 2009) and Hong Kong Chinese (Fung, Lam, Lu, & Li, 2010; but see Fung et al., 2008), suggesting that the shift toward remembering positive relatively better than negative information occurs in Asian as well as Western cultures.

Do individuals within a culture take on more of their culture’s values over time? If so, this would predict that cultural differences would be more pronounced among older cohorts. Indeed, there are some initial findings suggesting that social val- ues and personality traits such as optimism differ more across cultures among older cohorts (Fung, 2013). But cultural differences are sometimes most pronounced among younger cohorts (Fung & Ko, 2011; Ko et al., 2011). Whereas younger Koreans versus Americans show the expected cultural difference in which Asians integrate the emotional context more when rating images (Fung & Ko, 2011), younger Americans show no difference in culture integration (Ko et al., 2011). Thus, emotional differences across cultures are likely influenced by factors other than a deepening identification with one’s culture over time.

Conclusion

Whether addressing the topics of discrete emotions, psychophysiological arousal, or emotion regulation in terms of aging, the results are never always what people initially assume. Even though people believe that they will get less happy with age, older adults tend to self-report being more happy and less angry than their younger counterparts. As they age, people are more likely to lose those they care about, yet they do not necessarily become sadder with time. A lifetime of learning from emotions and regulating affect, older adults report feeling more in control of their own emotions. Older adults may experience declines in systems important for feeling emotion (i.e., electrodermal and cardiovascular systems) but some measures of psychophysiological
III. DEVELOPMENTAL PERSPECTIVES

annual show similar results between younger and older people. Depression is less frequent in late...ten about a limited future enhances...tions for sociocognitive selectivity theory. Memory and

Bedros, K. S., & Fingerling, K. L. (2013). Age and gender differences in...leading to interference among the cognitive, and physical domains. Current theoretical models have helped explain some of...as well as short-term memory, and...sciences, and Social Sciences, 56(03), P12-L120.

depression, and anxiety symptoms: A structural equation modeling analysis of data...and negative affect over 23 years. Journal of Personality and Social Psychology, 80, 136-141.

Barber, S. J., Oppen, P. C., Morris, B., Sakaki, M., & Mehta, M. (in press). The impact about a limited future enhances...tions for sociocognitive selectivity theory. Memory and

Burston, L. F., Quatley, K. S., Blom-Moreau, E., & Anstine, K. R. (2004). Interceptive sensitivity and self-esteem in...stressful experiences, a decrease in social networks, and an increase in...adults, and it is often...towards falling and, for example, among older people, they are often...rageful emotions in older...ience is a domain in which older adults fare surprisingly well. This is, in part, especially considering declines in their cog...pective and physical domains. Current theoretical models have helped explain some of the age differences in emotional processes, but more research is needed to see whether (if any) of the theoretical frameworks outlined above can be ruled out or further supported.

References

Aydin, T., Yasutani, Z., Konohana, T., Kinosita, A., Kuri...a Vienna, and...Japan, and the American Geriatrics Society, 44(2), 151-155.

Barber, S. J., Oppen, P. C., Morris, B., Sakaki, M., & Mehta, M. (in press). The impact about a limited future enhances...tions for sociocognitive selectivity theory. Memory and

Burston, L. F., Quatley, K. S., Blom-Moreau, E., & Anstine, K. R. (2004). Interceptive sensitivity and self-esteem in...stressful experiences, a decrease in social networks, and an increase in...adults, and it is often...towards falling and, for example, among older people, they are often...rageful emotions in older...ience is a domain in which older adults fare surprisingly well. This is, in part, especially considering declines in their cog...pective and physical domains. Current theoretical models have helped explain some of the age differences in emotional processes, but more research is needed to see whether (if any) of the theoretical frameworks outlined above can be ruled out or further supported.

References

Aydin, T., Yasutani, Z., Konohana, T., Kinosita, A., Kuri...a Vienna, and...Japan, and the American Geriatrics Society, 44(2), 151-155.

