
SUBSTANTIVE LEGAL SOFTWARE QUALITY—

A GATHERING STORM?
Marc Lauritsen

Capstone Practice Systems
marc@capstonepractice.com

Quinten Steenhuis
Greater Boston Legal Services

Qsteenhuis@GBLS.org

ABSTRACT

Readily available interactive programs dispense substantive legal

guidance, often including bespoke documents. These are found

across a wide spectrum of commercial and non-commercial

contexts. Consumers are coming to rely on them as alternatives to

expensive lawyer services. Yet their quality is uneven and

difficult to assess. We are in danger of serious harm being done to

unwitting users. How can we avoid an epidemic of artificial

misinformation, systematic inaccuracy, and mechanical

malpractice? This paper reviews how those dangers play out in

real-world application contexts and explores ways in which the AI

& Law community might help address them.

CCS CONCEPTS

• Software verification • Correctness • Interaction design

ACM Reference format:

Marc Lauritsen and Quinten Steenhuis. 2019. Substantive Legal

Software Quality: A Gathering Storm? In Proceedings of the 17th

International Conference on Artificial Intelligence and Law.

ACM Press, New York, NY https://doi.org/10.1145/3322640.3326706

1. Introduction

Effective legal work can require a lot of cognitive and

communicative labor. More often than ever before, machines are

performing that work. We are seeing rapidly growing collections

of automated guidance. Yet there is still a vast unmet need for

reasonably priced, decent quality forms of legal assistance.

Many law-related software applications purport to dispense valid

information and advice about legal situations via their interactive

guidance (in screen-based “interviews”) and assembled

documents. Is there a big problem with quality? We don’t really

know. Which is a problem.

How might we make sure that the substantive legal know-how

expressed in such applications is correct? That they give the

‘right’ (or at least ‘good’) guidance and documents from a legal

perspective for the full range of potential user inputs?

Similar questions have long been asked elsewhere in the software

field, and oceans of words have been spilled about them. Yet few

of those ideas have been systematically applied to the

contemporary world of online legal advice systems.

This article is organized as follows: Section 2 describes the kinds

of applications under consideration and their characteristic

features. Section 3 reviews positive attributes we seek in such

applications. Section 4 lays out ways in which applications may

fail to exemplify several critical attributes, some reasons why, and

the important values at stake. Section 5 takes up questions about

how best to characterize the knowledge (and mis-knowledge)

embodied in such applications. Section 6 reviews strategies that

might be undertaken to ensure decent quality, their limitations,

and practices that developers can be encouraged to follow. Section

7 describes related work. Section 8 considers how the AI & Law

community and its tools and methods might help address these

challenges. Section 9 concludes.

The authors have been deeply involved in developing software

that supports legal work, both by fellow professionals and by lay

people. One has taught law school courses in which students build

applications using several of the tools described here. We are

concerned about the current state of affairs but optimistic that

significant improvements are within reach. Our hope is that this

article frames useful questions and offers fertile suggestions. It is

intentionally exploratory. We welcome input from and

collaboration with members of the AI & Law community.

2. The world of automated legal expertise

The kinds of programs addressed here are found in a rich variety

of contexts. Here is an illustrative list:

 Commercial providers of online assistance such as Legal

Zoom (www.legalzoom.com) and Rocket Lawyer

(www.rocketlawyer.com) offer collections of reasonably

priced packages, some bundled with lawyer services.

 Specialized services like FlightRight (www.flightright.com)

have arrived, and there have long been area-specific products

like TopForm (topform.law) from Fastcase, a bankruptcy

application. Upsolve (www.upsolve.org) provides free

assistance in bankruptcy matters.

 Applications have been built for public and private purposes

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICAIL '19, June 17–21, 2019, Montreal, QC, Canada

© 2019 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM 978-1-4503-6754-7/19/06…$15.00

https://doi.org/10.1145/3322640.3326706

mailto:marc@capstonepractice.com
mailto:Qsteenhuis@GBLS.org
http://www.legalzoom.com/
http://www.rocketlawyer.com/
http://www.flightright.com/
https://topform.law/
http://www.upsolve.org/

using expert system and workflow automation development

environments such as Autto (autto.io), Neota Logic

(www.neotalogic.com), and Bryter (bryter.io).

 Innovative platforms like DoNotPay (donotpay.com) and

QnA Markup (qnamarkup.org) have emerged that use

chatbot-style mechanisms to deliver legal expertise.

 Legal document automation products such as Contract

Express (www.contractexpress.com), Exari

(www.exari.com), HotDocs (www.hotdocs.com), Leaflet

(leafletcorp.com), Rapidocs (www.directlaw.com), and

XpressDox (xpressdox.com) are widely used in law firms,

legal departments, insurance companies, and other firms to

bottle up legal know-how for use by staff and clients.

 Several dozen law schools now offer courses in which

students write software applications as part of their

education. Some culminate in public events like the Iron

Tech competition at Georgetown Law School.

 There are labs, incubators, and related initiatives at many

schools, bar associations, and other organizations.

 Hackathons around legal technology have proliferated,

including global ones. Results are often prototypes or flash-

in-the-pan demos, but some end up used by real people.

 The A2J Author system (www.a2jauthor.org) developed by

the Center for Computer-aided Legal Instruction is widely

used in legal aid, academic, and court contexts. CALI has

recently launched a new platform at A2J.org via which

student projects can be made available to the general public.

 Tyler Technologies offers an analogous system for

unrepresented litigants called Odyssey Guide & File

(www.tylertech.com). Many other vendors provide at least

rudimentary form preparation as part of e-filing services.

 Local, state, and federal government agencies have fielded

knowledge-based tools for citizens to get answers, apply for

benefits, and otherwise access needed functions.

 The LawHelp Interactive service operated by Pro Bono Net

is used in over 40 US states and territories, and several

Canadian provinces. It has delivered about five million

documents for free, and was used just under one million

times in 2018 alone, powered by A2J Author and HotDocs.

 A multi-disciplinary research project is currently exploring

the role of automated legal advice technologies (ALATs) in

Australia. The project identified many applications in its

recent report [2], but only touched on a few of the above.

All of the applications described above provide interactive access

to codified legal knowledge. Sometimes this access is linear and

conversational, and sometimes it is menu driven. Some offer

ongoing assistance across multiple stages of a legal matter. They

support a range of functions, including information gathering,

answer giving, and document generation.

These programs are sometimes referred to as ‘substantive’

systems, since they embody legal knowledge in addition to

performing generic automation functions. (The SubTech

conference series has been devoted to such applications and their

use and study in legal education since 1990. It met in Tallinn,

Estonia in 2018 and will meet in Nashville, Tennessee in 2020.)

Most of the programs are deterministic and procedurally coded,

similar to those highlighted by the technology report in the

inaugural issue of the AI & Law Journal over 25 years ago. [10]

Many of the platforms allow for graphical or menu-driven design,

without requiring low-level coding. The material below

summarizes aspects of how these platforms work and the artifacts

they enlist and engender.

There are many names for the programs built using these tools:

interviews, guided interviews, and applications being among the

most common. For clarity, we will call all of the programs built

using these platforms interactive legal applications, or apps.

This article will focus on how these issues play out in nonprofit

contexts, but very similar ones occur in the other contexts

mentioned above. Purveyors of legal knowledge-based systems

take many different approaches, but face common challenges.

Among the tools described here, HotDocs (www.hotdocs.com)

has the biggest market presence and most developed ecosystem.

Over a half million copies have been distributed. Spun out of a

research project at Brigham Young University law school, and

later owned by LexisNexis, HotDocs is now part of AbacusNext.

HotDocs is a proprietary document assembly platform. Its

applications are expressed in an XML format, but authors

generally use development tools that offer dialog boxes to edit

screens, create variables, and script computations. HotDocs uses a

relatively expressive language for application logic and custom

markup tags for formatting. Textual templates are edited in

Microsoft Word or WordPerfect; graphical ones in a specialized

editor that overlays dynamic fields on PDF forms.

Unlike the other listed systems, which provide a mostly linear

user experience, HotDocs applications present sets of dialogs that

can be freely navigated among to enter information in an order of

the user’s choice. Authors can alternatively limit forward

navigation and encourage a linear flow for ease of use.

HotDocs has a long history and has wide adoption in the

authoring of document-oriented applications for both legal aid

organizations and commercial firms. It offers a very complete tool

for automating graphical forms, with finished applications

accessible both on the Windows desktop and online in a web

browser. HotDocs has been the primary engine behind the

LawHelp Interactive service, which has thousands of templates,

some designed to generate dozens of forms from a single set of

user answers.

HotDocs provides a broad set of tools for developer effectiveness

and quality assurance.

 An Outliner is available to inspect and navigate the logical

structure of document templates under construction.

 Interactive syntax checking is available.

https://autto.io/
http://www.neotalogic.com/
https://bryter.io/
https://donotpay.com/
https://qnamarkup.org/
http://www.contractexpress.com/
http://www.exari.com/
http://www.hotdocs.com/
http://leafletcorp.com/
http://www.directlaw.com/
http://xpressdox.com/
http://www.a2jauthor.org/
http://www.tylertech.com/
http://www.hotdocs.com/

 A robust debugger can step through and into code

components in order to diagnose problems.

 The Component Manager and Template Manager provide

facilities for browsing and revising components.

 A Text Management Tool has been developed by the US

legal services community that can extract all textual strings

in an interview, generate a document in which versions in a

second language can be inserted, and automatically build an

interview in the second language.

A2J Author (www.a2jauthor.org) is a web-based application

platform for building interactive legal applications that it calls

“guided interviews.” Early versions used Macromedia Flash, but

the latest version no longer requires the Flash plugin. The order of

questions is determined at authoring time, but typically is linear,

with ways to navigate out of order by linking to other screens and

the ability to control paths with branching logic. Previously

restricted to use by courts, legal aid, and law schools, it will soon

be available under an open source license. A2J Author has served

as a user-friendly overlay for HotDocs, but recent releases have

included native document assembly, with a graphical template

editor.

A2J Author stores applications in an XML format, but authors

ordinarily create them on A2Jauthor.org using dialogs.

Applications can include ‘learn mores’ in audio, image, and video

format. Question text can include basic formatting, links, and

popup helps. Applications can include logic with a syntax similar

to HotDocs.

A2J Author includes some error checking via its preview function,

which allows authors to view interview variables and evaluate test

expressions. Authors can view completed applications as visual

maps. Texts and logical expressions can be viewed separately, the

latter with syntactical errors highlighted. Authors can run several

kinds of reports. A2J Author also provides ‘citation’ fields to

capture statutory or case law behind particular components.

Docassemble (docassemble.org) is an open source platform for

building interactive applications based on a combination of

procedural code and dependency satisfaction. The app author sets

goals (such as assembling a document), and the Docassemble

engine asks the questions needed to arrive at each goal. It is

possible to force the engine to ask questions in a particular order.

At any time, a Docassemble developer can view the goal that led

to a particular question being asked.

Docassemble makes use of several technologies and is highly

extensible. The core engine is written in Python. App authors use

a mix of a human readable text markup language called YAML

and logic written in Python. Docassemble provides an online

editor with syntax highlighting, basic error checking, and variable

insertion. There are also graphical “no code” front-ends for

Docassemble that hide some of the complexity, including

Community.lawyer and HelpSelf Legal. Docassemble apps can be

accessed through a web browser (most common), automated via

the REST API, through emails, or even through SMS text

messaging. Docassemble apps can connect to external data

sources, with some such integrations built-in, such as Twilio (for

SMS and fax integration), Google Maps, and email.

App authors can extend Docassemble through modules that may

include: custom object-oriented classes usable directly in the

application; sets of reusable data (such as drop-down menus); or

integrations with external data sources. App authors can share the

modules they create on PyPi or Github, and then reference them

directly in new applications. In general, Docasemble promotes a

high level of code reuse and abstraction. Docassemble’s package

management and application authoring system also includes

version control, through integration with Github, which can aid in

code introspection and catching regressions. Basic input

validation is included, as well as custom validation functions for

run-time checking of user input.

Automated testing of Docassemble interviews has been performed

using the Docassemble API and through the use of Gherkin

scripts. Docassemble has built-in features for natural language

classification as well as Random Forest regression.

Neota Logic (www.neotalogic.com) is a web-based “low-code”

platform for developing applications that gather information from

users, apply rules, and produce tailored outputs. It has been

widely used in law schools, including in Georgetown’s Iron Tech

Lawyer competitions. Neota Logic describes itself as a rules-

based AI platform that non-technical people can use to provide

guidance, direct workflows, and assemble documents.

Neota Logic’s reasoning engine uses both backward- and forward-

chaining mechanisms to apply its rule bases to particular

situations. It can work with external sources of data as well as rule

sets stored in Excel spreadsheets. This can help with subject

matter experts' validation of logic.

Neota has runtime Why Ask and Why Conclude functions, which

show authors the logic paths causing questions to appear and

results to be set. In Studio (its development environment) there’s a

similar function called Static Analysis that can display the logic

path to and from any variable.

Neota Logic’s current code base is a reimplementation of the

Jnana expert system platform that began life in the 1980s. Much

of its vocabulary and many of its design features hark back to that

system. The company provides a deep collection of reference and

training materials. Testing of the platform and its interviews has

been performed with the Selenium web-testing framework.

QnA Markup (www.qnamarkup.org) is a compact language used

to create chatbots, with basic document assembly provided by

integration with Microsoft Word’s mail merge functionality via a

dedicated API endpoint. Applications are a combination of HTML

and JavaScript that can be embedded directly into an existing

website, allowing for quick iteration. A QnA app is written in a

completely declarative and linear way, with branch logic

represented by indenting a question underneath the initial

question. GOTO statements allow more complex navigation

through questions. Creating a basic chatbot uses a very simple

http://www.a2jauthor.org/
https://docassemble.org/
http://www.neotalogic.com/
http://www.qnamarkup.org/

syntax, with Q(label): marking a question and A(label): marking

one of multiple optional responses. Questions can also accept

free-form response text.

HTML tags can be used to extend QnA markup, which can

include arbitrary JavaScript, allowing for theoretically complex

interviews, but the syntax becomes more challenging to debug

when much such code is included. QnA allows authors to abstract

some logic in JavaScript functions, but logic is best suited

exclusively to interview endpoints. Runtime logic uses JavaScript,

so the built-in debugging console in most web browsers is handy

to have open while developing a complex QnA chatbot.

QnA has been used as a teaching tool inside law school

laboratories as well as in legal aid and public defender websites,

both for assembling simple forms and as a website navigation aid.

3. What We Seek

There are many desiderata when it comes to legal knowledge

tools. You might think of them in the form of a pyramid of goals,

some layers of which build on or pre-suppose ones below.

Some of these qualities are foundational. Applications need to

reflect a base level of technical feasibility vis-à-vis currently

available tools, environments, and other resources. They need to

work. They should offer reasonable returns on the investments

they require. The platforms and associated software should be

secure, stable, and the delivery mechanisms reasonably accessible.

Most importantly, they should produce desired results.

Ideal applications are well designed and usable. The user interface

and experience can be critical in achieving other objectives.

Applications should also be:

 Readable at median grade levels, in plain language

 Available in multiple common languages

 Consistent both in language and visually

 Mobile-responsive

 Ethical and lawful

 Annotated with sources of related resources and information

 Efficient to maintain

 Architecturally elegant

 Complete (within their specified domain)

 Compact and concise

 Explicable (logic should be transparent and auditable)

 Supportive of users’ emotional needs

There are thus all kinds of reasons to prefer one tool or approach

to another. They pose inevitable tradeoffs. Verbose explanations

and disclaimers, for instance, may reduce readability and trust.

Attempting to cover a wider range of information may reduce the

quality of guidance.

All of the above qualities are important. But a key question to ask

about a legal application is Is it substantively right? A system

can be highly usable but incorrect, inconsistent, or incomplete.

Even a system that satisfies these goals when it is completed must

be kept correct over time as the relevant legal world changes.

Correctness is orthogonal to usability and other desiderata. It

should be front and center. That quality is the focus of this article.

How do we get to ascertainable correctness? Put another way –

how can we make systems that not only earn but deserve the trust

of their users?

4. Where We’re At

Even beautifully presented and highly usable inteactive legal

applications can give wrong or misleading guidance to users.

Many lack appropriate disclaimers and scope limits. Few can

withstand critical analysis. An insightful analyst can readily

discover and document defects and holes. This is especially

troubling because consumers may suspend, or be unable to use,

normal techniques for judging the quality of advice they get.

Apps may have all kinds of latent defects. Substantive errors can

be more subtle than functional ones, where it’s usually obvious

that something is broken. Errors may arise from:

 Failure to correctly translate legal rules into program logic,

due to lack of development expertise by lawyers, and lack of

legal expertise by developers.

 Unclear understanding by the user of what the application is

asking or saying, leading to incorrect input. This risk may

increase when there is an intermediary advocate or navigator.

 Use of an application in the wrong circumstances, because of

a lack of appropriate screening or ‘triage’ of the user.

 Failure to maintain software, which then becomes incorrect

or “orphaned” over time. Often this is due to failure to

budget the cost of maintenance in the original project scope.

Translation errors in particular can arise because apps often are

the product of informal collaboration among non-professional

developers and SMEs, some with conflicting views about

substantive logic. When application logic is embedded in

unfamiliar computer code, it can be difficult for an SME to verify

it, and it can be hard for a developer to explain how the program

operates.

4.1 Some reasons

What are the main drivers of software quality problems in

interactive legal applications? Even basic applications can quickly

become complex when all of their paths and configurations are

considered, which to borrow a term from physics we can call the

“phase space” of the application. Both the Is and the Ought (what

a program does and should do) are hard to definitively describe.

The sheer quantity of scenarios is combinatorial and eludes

exhaustive enumeration.

These projects are often committee projects, with multiple SMEs

and reviewers. Many teams only work episodically on the

applications. Their members have largely non-overlapping mental

models. They often have not had prior experience with a software

development project, and they are generally not co-located.

In the nonprofit sector, these risks may appear more often. Meager

resources may mean that projects lack experienced professional

project management and planning, and the nonprofit sector often

values wide stakeholder input at the expense of clear project

direction. This can result in a cacophony of voices from clients,

stakeholders, and subject matter experts. Many projects proceed in

a very ad hoc way. Projects may launch without clear setting of

requirements or interview scripts. Ongoing maintenance and

outreach is generally unfunded, which may lead projects to

wither, still available online but unmaintained.

Lack of software engineering rigor and standards in the

development process can make maintaining code created by a

different developer especially challenging in the interactive legal

application realm. Software projects with graphical editors,

particularly, can lead to program logic being buried and hard to

visualize as a whole. Solved problems in the wider software

engineering culture are not familiar to many legal application

developers.

Compromises are made out of expedience. Design choices can be

driven by non-substantive considerations, like data integration

aspects with case management or e-filing systems. The rationales

for programming and design decisions often are lost. Little

adjustments can cause inadvertent substantive degradation.

Systems may make assumptions that end users would not endorse

or understand, such as resolving doubts by checking things on a

form despite uncertainty in the associated facts or implications.

Users can be too forgiving when services are free or inexpensive.

Providers perceive immunity from liability, and disavow

responsibility, offering apps on an ‘as is’, no-warranty basis.

Consumers are told to use them at their own risk. Providers take

comfort in the fact that authors and publishers of do-it-yourself

books and videos are generally not liable for misinformation.

On top of all this, there is a seduction of novelty over bullet-

proof-ness, of quantity over quality. Apps can be shiny objects

that sponsors can brag about, without looking too closely.

4.2 What’s at Stake

When we use a program like Microsoft Word or Excel, we expect

it to behave semi-intelligently. We know that it has a rich variety

of features and functions, and mechanisms to invoke them. We are

pleasantly surprised when it anticipates our needs or corrects our

errors. But we don’t expect such programs to communicate

substantive knowledge about the world. Legal apps are different –

they should behave as expected; but we also expect them to give

valid guidance and generate appropriate documents.

“Bad” apps and errors in either the substance or use of otherwise

good apps provide fodder for critics of the very concept of online

self-help tools. Failure to self-police quality could lead to a chilly

regulatory environment. Needed experts may lose confidence and

become cynical if a system misbehaves too obviously.

Despite these risks, we recognize that only a tiny fraction of the

legal know-how that could be codified for interactive delivery has

been. In most situations people without lawyers are out of luck.

Many populations live in legal advice deserts. Users come to our

applications with questions, intentions, problems, hopes, and

dreams. Such users are ordinarily dealing with a personal plight or

small business problem, and are not being assisted by a lawyer or

other expert. The usage context is one of high dependence and

vulnerability. They deserve ‘food’ that is safe to eat, and ‘water’

that is potable. Our primary obligation is to users who depend on

apps like those reviewed here.

4.3 Setting expectations

Some software quality problems are inevitable in interactive legal

applications, just like they are in multi-million dollar projects

engineered by large technology firms. We have to accept a certain

level of fallibility in both machines and people, as well as

understand the alternative. After all, we can’t exhaustively test

people on their knowledge either. We let inexperienced

professionals advise and represent people. Should that incline us

to be nonchalant about interactive content that is of unknown

quality? Or should we demand more from rule-based systems?

There’s a great chasm between what can reasonably be done with

current resources and what ideally should be done. So, should we

settle for ‘adequate’ and tolerate questionable quality? We can’t

avoid amateur developers. How can we better empower them?

5. Characterizing the knowledge

A central problem in this domain is making legal correctness more

transparent, both when the interview author translates subject

matter expertise into computer code, and when a user runs an

application and receives information or documents.

Interactive legal applications contain at least three kinds of logic:

legal rules, interview logic, and formatting and display logic. In

software engineering a common design pattern that covers the

differences among these types of logic is the classic model, view,

controller pattern. Yet, existing application platforms offer few

ways to represent legal rules as distinct from the other kinds of

logic. Legal rules are mixed in with application logic at best, or

worse, embedded in the forms. This makes it difficult for subject

matter experts to review logic for correctness as a matter of law.

Interactive legal applications also contain legal information in the

form of help text, links to external information, and instructions

embedded in the questions. It is important to include this more

traditional information in any reviews for correctness.

Applications can convey information or misinformation by what

they ‘say’ (when interacting with the user as well as in outputs):

 Static information and help screens

 Texts that are personalized to the user’s situation

And by what they do:

 What questions are asked or omitted

 What documents are generated or omitted

 What passages are included or excluded

 What words go where

 What boxes get checked, or words circled or stricken

This information may be substantively correct or incorrect in

several subtle ways:

 It may cover rules, practical considerations, and procedures

for different courts and situations.

 When addressing strategy, it may involve questions of

judgment that vary among subject matter experts.

 It may not fully advise users about its scope or limitations.

Finally, design defects may lead users to misunderstand correct

information or to provide incorrect input.

Even a system that does as intended may result in bad user

outcomes. The user may misunderstand a question, or give an

inaccurate answer. Even if the system operates flawlessly, other

parties may not do as expected.

In order to make reasoning visible and verifiable, the system must

expose the underlying assumptions it makes as well as the logical

inferences it draws and the strength of those inferences. Much of

this behavior is expressible in “If this then that” structures. The

data entered by users mostly controls what happens. But programs

can also react to other information. In any event they pose a finite

set of relevant states to be evaluated, with predictable edge cases.

Much relevant knowledge is expressible as a collection of deontic

propositions: obligations, prohibitions, and permissions. Certain

forms are required in certain circumstances; certain information is

required in certain places in those forms in certain circumstances;

certain kinds of information are permissibly included in certain

places; other kinds are impermissible.

In addition to their explicit utterances, programs cast a penumbra

of implications—understandings that a reasonable person might

draw and rely on. Users expect applications offered by reputable

organizations to embody trustworthy voices of experience.

Data types and validity conditions are kinds of messages.

Affordances can be interpreted as implicit permissions. (“You let

me do ___ even though I said ___.”) They can reasonably be

understood as recommendations and suggestions: “It’s OK to

omit/include this information;” “It’s OK if we abbreviate here.”

Providers of online tools have an affirmative obligation to avoid

misunderstandings. We need to take into account the

competencies and vulnerabilities users bring to the experience.

Dealing well with a legal problem or opportunity involves more

than information and documents: things need to be done with

other parties, courts, agencies. At present these are ordinarily left

as ‘an exercise for the reader.’ But systems will eventually take up

more roles as agents, interacting on behalf of users with those

external parties, such as electronically filing documents.

6. Strategies and their limitations

Making programs behave the way you want can be subtle and

painstaking work. Fixing and updating apps are chores. How can

we make it easier to be right? Quality is expensive. Might there be

ways to radically reduce its cost?

There are a number of approaches (both preventive and remedial)

to development processes, including program architecture and

features. Two venerable software development disciplines of

course can play a big role: specification and testing. Although

discussed below as independent phases, these should be

considered iterative cycles, consistent with Behavior and Test

Driven Development principles.

6.1 Specification

Externalizing logical rules would aid in some of the goals

mentioned in Section 3, and various authors have made efforts to

represent logical rules in a platform-independent way. Some

authors have used Google Sheets to represent rules. In the case of

HotDocs, such rules need to be compiled into code, but

Docassemble can make direct use of those rules. [14] Neota Logic

also allows for external representations of logical rules.

Jason Morris has adapted the Legal Case Based Analogical

Reasoning Tool to create applications with logic independent of a

specific interview, reasoning by analogy to previous cases, and

directly usable within a Docassemble interview. [11]

From the business process world, the Decision Model and

Notation (DMN) representation can express complex logical rules.

Rules expressed as DMNs could be directly integrated into

systems such as Docassemble, or compiled into code for other

platforms. This is a promising avenue for improving interactive

legal application quality and maintainability. Dimyadi et al. [4]

report one successful effort along these lines.

Another interesting approach to specifying legal rules is to write

them as functions or object-oriented classes with abstract

interfaces. Rather than embody the logic inside an interview, then,

the interview can just present the relevant variables as parameters

to the function, and let the function tell you whether the rule

applies or not. The code still must be written by a developer and

reviewed by a subject matter expert. The main advantage is when

the same legal rules are used in multiple interviews. This

approach would also assist authors in developing unit tests to

avoid regressions as an interview is amended over time.

Proscriptively, in the planning and implementation phase, authors

should use methods to inventory and codify the legal and business

rules that the system will be implementing. Often the legal rules

may derive from a body of case law and statutes, but subject

matter experts should translate any rules that the system will

follow into plain English, in a form analogous to a syllogism (IF

A and B, then C)1. Then it can be the author’s project to translate

those rules into computer code. Methods of externally expressing

1 In case-based reasoning approaches, the SME would help classify cases and select

appropriate probabilistic thresholds, rather than writing deterministic rules.

the legal rules that can be directly used by the reasoning engine

discussed above will cut down on translation errors to the extent

that they can reviewed or authored by the SME more easily than

traditional code can be. This is likely to be an iterative process.

Business rules that are familiar to the subject matter expert

through their daily practice may be unwritten or invisible, but

become clear when the automated system is used.

The same care and attention must be given to the information that

is not expressed in a rule, but is still delivered to the user, through

help texts or materials produced for the user. Such texts should be

written and reviewed completely by the SME, with editing for

plain language and usability also subject to SME review. If

alternate information is delivered to the end-user, rules should be

written to clearly express in which circumstance a given set is

delivered. This information can be referenced in comments.

Visual representations of interview paths can be useful, but a

flowchart representing an interview with hundreds of paths will

often be harder to read than the code. Legal applications can be

visualized as finite state automatons, but this representation may

not be useful when it is too hard to translate from this state into

working code or difficult for a subject matter expert to review.

6.2 Testing

Testing is often the least rewarding (and perhaps uncompensated)

phase of an application development project. Yet steps can be

taken to make it more feasible. In the testing phase, authors

should take systematic efforts to comprehensively validate the

business and legal rules that were made explicit in the planning

phase. Automation can be useful here.

Users of API-driven platforms such as Docassemble can develop

test answer sets to validate logic against interviews, verifying that

variables are correctly set. A similar facility exists in Neota Logic.

Almost all application platforms offer interaction via a web

browser, and web automation platforms such as Selenium or

cucumber.io can be used to drive the interview exactly as an

interview user would.

Neota authors have a testing mechanism called App Test to

identify regressive errors in application logic. An author can save

any session as a Test Case, and accumulate them into a Test Set,

which can be run automatically. Test Cases can also be imported

from Excel. Deviations from expected results are displayed. NLS

Solver enables authors to generate large sets of permutations of

input parameters to use in functional and regression testing.

Overall, automated tests are best at capturing the errors that the

interview author has already considered, and then for catching

regressions caused by later changes. Even with automation, there

is no substitute for testing by real-world users.

The primary barriers to testing are the lack of testing expertise in

the application development world, lack of budget and planning

for the testing phase, and lack of purpose-built tools that take

advantage of the rich semantic meaning in an application. Each

legal application has much more in common with other such

applications than the wider universe of software applications, and

that similarity should be used to advantage. Most testing platforms

are built to validate web sites, not for semantic or legal

correctness, but for elements staying in the correct place on the

screen. A purpose-built legal application-testing platform could

take advantage of knowledge about legal rules and semantic data

validation, for example, to generate automated testing data that

follows realistic patterns. This would make it easier to test new

features without writing completely new test cases, and just as in

the specification phase, tests that directly pull from external rule

sources will minimize translation errors.

6.3 Validation by users

End-users rightfully want to understand the reasons for the legal

information that they were given or the form that was produced

for them. Systems that can externally express business rules might

also allow for the user to receive an audited report that shows their

singular path through the “phase space” of the interview. This is

possible in systems without externalized logic as well, but likely

would require writing rules twice, leading to possible errors. Short

of a fully audited path, feedback provided to the user in the course

of the interview will deliver most of the benefits. After reaching a

key branching point, expressive applications should tell the user

the impact of the information they just entered. For example:

“Because you requested discovery, your court case will be

postponed by two weeks until June 20, 2019.” Users can also be

given a chance to watch brief overview videos or read a short

summary that explains the basics of what they will do.

Providing interim feedback can keep users from feeling that they

are trusting their legal outcome to a black box. Because users

know more about the outside world than can be codified into an

application, these validations can also help subject matter experts

catch errors in the logic early. For example, a user may recognize

that the system is relying on an answer that they did not provide,

or know a real-world fact (such as the fact that the court is closed

on the rescheduled date) that the author did not take into

consideration. If the decision isn’t explained, the user may be left

feeling that the interview knows something they don’t and blindly

follow incorrect advice. User testing leads to actionable

improvements; leaving answers unexplained means some users

may never know that they received bad advice.

Leveraging end user error-catching requires having easy ways for

them to bring them to the attention of developers. Systems could

allow reports of erroneous or dubious results, and include

anonymized dumps of answer sets, when that happens.

6.4 Formal Verification

Formal verification overlaps with testing, and is possible for code

sets that can be reduced to a finite state automaton. Such sets can

probably be limited to the business and legal rules, and omit the

questions of judgment, usability, and correctness of generalized

advice that requires a human’s review. Focusing on a specific

aspect of the legal problem, contract enforceability, Meng Wong

and others have created L4, a domain-specific language for

expressing formally provable legal agreements. [16] This area of

research is new and may provide important lessons.

Formal verification is only useful to the extent that it is performed

on exactly the same rules that are relied upon by the reasoning

engine. Externalized rules are a great aid here. Without external

rules, logic must be translated into the provable language, which

can itself be a source of errors. It’s not a replacement for manual

review for correctness, but can supplement such review and aid in

preventing regressions.

One of us has proposed a debugger that could inspect the de facto

network of pages in an A2J interview and

 identify which pages can never be reached;

 plot the various paths that can be traversed;

 for a given page, identify the path(s) via which it can have

been reached (and the associated ‘statements’ the user is

assumed to have made by pressing certain buttons)

The approach essentially is to translate the interview into a finite

state automaton. Once in this state, it can be easier to evaluate the

its endpoints and verify that they are correct. The “phase space” of

the interview can then be walked in an automated way, similar to

API-driven testing of a Docassemble or Neota Logic interview.

6.5 Other tools and approaches

Solutions to the visibility question can target three different

aspects of application development: planning and initial

implementation, testing and auditing, and explicability. Systems

that limit the steps in translation between the SME and developer,

and those that allow for verification at the level of individual

variables rather than relying on parsing generated output, will be

more likely to succeed in achieving validation goals.

Mechanical Turk approaches, where humans are paid or otherwise

incented to test and comment on applications, are worth

exploring. When gamified, tedious but socially valuable tasks can

be eased. One interesting example is Learned Hands, a gamified

project to train a legal classifier. [6] Social production approaches

in general could be promising, such as collaborative code review.

There are things that platform operators can do: track ‘freshness,’

require updates, or channel feedback. Developers can seek to

make their applications bullet-proof by anticipating problems.

When combinations of answers would lead to branches of

unknown quality, it is best to prevent users from going down

them. Input validity checking should be used aggressively.

Having subject matter experts actively participate in a system

project is critical, both for purposes of specifying and validating

the its knowledge. Even if it is impossible for such a person to

thoroughly confirm every possible behavior of the system.

One thing that legal advice software can and should be clear about

is that there’s a lot of important legal knowledge that can’t yet

effectively be expressed in software. We should document and

declare all compromises with quality. Opinion or advocacy should

also be labeled as such. There should be clarity about provenance

and scope in order to avoid misleading users.

A worthy effort might be to develop coding guidelines like the

PEP8 Python style Guide. [15]

6.6 Standards

For such an active and growing field, surprisingly few standards

of practice have emerged.

How can we best characterize and measure the distance of

mismatch between a system’s performance and some ideal? How

do we define ‘good’ advice or forms? What’s the standard of

care? Is it the same standard we would apply to a paralegal or

attorney taking the role of the interactive legal application? What

ideal should we aspire to? Avoid things that would be malpractice

if done by a lawyer? The ‘whole truth and nothing but the truth?

Both the end(s) and the means can be murky – that is, what

standards to seek, and how to meet them. But much of the time

the rules are straightforward. What’s ‘right’ is often uncontested

and non-controversial.

At a high level of abstraction, system behavior consists of

presenting texts, images, and sounds to users that communicate

and elicit information. Those presentations vary based on user

responses (and sometimes other information about the presenting

situation that the system can ascertain, such as the user’s profile,

the device they are using, data previously gathered and stored, or

their nonverbal behavior in the present session.)

In analyzing these exchanges it is important to adopt a wide-angle

lens. Systems should be accountable not just for data explicitly

entered into fields by users, but for everything they can

reasonably ‘know’ and infer about a user and their current session.

Likewise, they should be accountable not just for the

communications they explicitly render, but those that reasonable

users may infer from the system behavior. Users also bear some

responsibility for how they use these applications, and what they

make of their results.

One reasonable approach is to ask what a human expert would say

and do if he or she were presented with the same set of facts and

requests. He or she should not need to be a credentialed lawyer;

many paralegals have equal expertise in legal procedures.

We suggest this general framework:

 For every possible set of user inputs, the system should

behave in a way that a human reasonably proficient in the

relevant legal ‘art’ would not find objectionable. That could

either be by providing information and/or documents that

represent the, or at least a, ‘right’ response, or by advising

the user that such a response cannot be given. (This of course

is a high bar. The ability to say “I don’t know” or “I’m not

sure” however provides considerable wiggle room.)

 It should not ever behave in a way that a similarly situated

human expert presented with the same fact pattern would

regard as wrong. (Many points are uncontroversial. Strategic

guidance, like whether to ask for a jury trial in an eviction

case, can be more contentious.)

6.7 Ethical and policy issues

Software doesn’t have principles, or a code of ethics. But lawyers

and software developers do. Even if lawyers involved in software

projects are not acting in a trusted relationship with a specific

client that triggers the full panoply of their professional

responsibilities, they still have generalized duties to promote the

public good and not do harm. And computing professionals have

frameworks like the Association for Computing Machinery’s

Code of Ethics and Professional Conduct, which includes

mandates to ‘avoid harm’ and ‘strive to achieve high quality in

both the processes and products of professional work.’

Besides issues of social desirability these applications raise

questions of legality. In some jurisdictions authorities contend that

they represent the unauthorized practice of law. Current

developments in North Carolina and Washington State warrant

attention.

7. Related Work

Hokkanen and Lauritsen long ago pointed out that legal

knowledge tool makers can and should make better use of

knowledge tools themselves. [7]

Conrad and Zeleznikow [3] remind us of the critical role of

evaluation in research projects, especially those that produce

applications intended for real-world use. Most of the applications

described in the present paper are not products of academic

research, but nonetheless would benefit from the kinds of multi-

faceted assessment that Conrad and Zeleznikow outline. That

includes performance evaluations where the system is compared

to known baselines, ideally using publicly available data sets.

Ramakrishna et al. [13] lay out techniques for bridging the gaps

between domain experts and knowledge modelers. Their goal is to

represent knowledge in a way that can easily be understood by a

practitioner yet be expressive enough for a knowledge modeler to

formalize. Semi-formal and more formal representations are

required. They propose a process based on competency questions.

While this is applied to the case of developing ontologies, such

work involves qualities like accuracy, completeness, and

consistency that are central to the present paper.

Al-Abdulkarim, Atkinson, and Bench-Capon [1] outline an

‘Angelic’ methodology for designing case-based reasoning

systems using an Abstract Dialectical Framework. While this

method is intended for applications that reason using factors and

dimensions rather than ones embodying rules and document

models, it offers practical ideas for tackling problems in a

systematic and reproducible manner, using a database that

encapsulates a domain theory, tools for visualizing and querying

that data, and tools to facilitate collection and use of test data.

Faciano et al. [5] describe a tool called FormaLex that checks

legal documents for coherence problems. Three state-space

reduction strategies are described. Along the way their article

reminds us that there is a vibrant community of model checkers

and the performance challenges they have faced.

Muthuri et al. [12] explore how normative spaces can be made

accessible at the information architecture level so as to enable

non-experts to manage legal risks. They use Value Delivery

Modeling Language (VDML) and the Easy Approach to

Requirements Syntax (EARS) framework to present legal jargon

in an accessible form to engineers. EARS provides six patterns for

expressing preconditions, triggers, and responses to events.

Argumentation schemes are used to reduce the complexity in

interpreting legal provisions, which can be summarized in

compliance patterns following a context-problem-solution format.

Several efforts in the area of contract formalization and

verification raise similar themes to those explored here. Tom

Hvitved’s dissertation “Contract Formalisation and Modular

Implementation of Domain-Specific Languages” [8] is one.

Professor Finale Doshi-Velez at Harvard University’s School of

Engineering and Applied Sciences is doing important work

around interpretability, which includes extracting explanations

from arbitrary models.

The Essence framework proposed by Ivar Jacobson and his

colleagues [9] offers promising ideas for legal software

developers. By reifying practices – such as scrum, kanban boards,

use cases, and user stories – its visual language facilitates

conversations about ways of working and surfaces convenient

places to ask and answer questions, including via interactive

games. Some challenges described in this article could be

addressed by implementing, or emulating, aspects of the Essence

kernel.

We could also pay much more attention to foundational content-

driven standardization, such as is being pursued in initiatives like

Akoma Ntoso and Discourse Representation Theory.

8. AI to the rescue?

So, what’s to be done?

One short answer is that some of us doing this work need to do a

better job. We should start following better development

paradigms.

A lot of real-world legal knowledge work automation is

happening. It may not be dealing directly with advanced AI &

Law themes. But the contexts described here present an

opportunity rich space, with powerful R&D challenges. How

might the AI & Law community help? You might consider this

the unfinished business of earlier AI & Law.

Should we devise programs that ‘exercise’ other programs; that

define and document them? A program that interrogates other

programs might extract a decision tree or truth table from an

interview so that it can be validated by domain experts. It might

notice gaps and contradictions. What else might such utilities do,

and how? Could they find faulty ‘circuits’ and generate catalogs

of potential errors and deficiencies? Might they set cognitive

breakpoints, so as to more easily surface intermittent inferences,

and shine a light on the middle layers of reasoning at play?

9. Conclusion

Achieving progress along the lines imagined here presents

enormous challenges. Applications shouldn’t just be correct, but

ascertainably correct. And that should be true not only with

respect to the explicit messages being communicated in interviews

and documents, but with respect to all of the implicit ones users

might receive. We’re dealing with complex communicative

processes, both during development and at runtime.

Are those of us who have been enthusiastically building the kinds

of apps described here in danger of flooding the legal ‘roads’ with

vehicles that are Unsafe at Any Speed? That may be overdramatic.

But if there’s a storm coming, we’re not very ready for it. In a

world of imperfect tools, imperfect developers, and imperfect

users how do we avoid an epidemic of bad legal software?

These are ancient issues and ideas. Many were current in the

heyday of expert systems in the 1980s. But regrettably few are

front-of-mind in any of the contexts mentioned. There are clearly

many existing tools and techniques that are not yet routinely

exploited. Yet the thorny challenges described above will be

increasingly central as more and more legal work is done with

machine assistance.

Machines can’t yet do a lot of things that human lawyers can do.

But those things they can do they should do flawlessly. Which

requires better machine tools, and better machinists.

Automated legal services may be the best hope for access to

justice and legal wellness for billions of our fellow humans. AI &

Law activists are encouraged to find ways to bring their utensils to

the feasts of knowledge automation that lie ahead.

Acknowledgments

We are grateful to Bart Earle, Claudia Johnson, Gabe Teninbaum,

Karen Cannata, Jonathan Pyle, Kevin Mulcahey, Michael Mills,

and anonymous reviewers for their thoughtful reactions to drafts

of this article.

References

[1] Al-Abdulkarim, L., Atkinson, K. and Bench-Capon, T., 2017.

Angelic Environment: Support for the Construction of Legal KBS.

Technical Report ULCS-17-002, University of Liverpool.

[2] Bennett, J. et al. Current State of Automated Legal Advice

Tools, Networked Society Institute Discussion Paper. April 2018.

https://networkedsociety.unimelb.edu.au/__data/assets/pdf_file/00

20/2761013/2018-NSI-CurrentStateofALAT.pdf

[3] Conrad, J.G. and Zeleznikow, J., 2015. The role of evaluation

in AI and Law: an examination of its different forms in the AI and

Law journal. In Proceedings of the 15th international conference

on artificial intelligence and law (pp. 181-186). ACM.

[4] Dimyadi, J., Bookman, S., Harvey, D. and Amor, R., 2019.

Maintainable process model driven online legal expert systems.

Artificial Intelligence and Law, 27(1), pp.93-111.

[5] Faciano, C., Mera, S., Schapachnik, F., Di Iorio, A.H., Clara,

B.L., Uriarte, V., Giaccaglia, M.F., Ruffa, M.B. and Marcos, C.,

2017. Performance improvement on legal model checking. In

Proceedings of the 16th edition of the International Conference on

Articial Intelligence and Law (pp. 59-68). ACM.

[6] Hagan, M., Colarusso, D., 2018. Learned Hands: What is It.

Retrieved from https://learnedhands.law.stanford.edu/, archived at

https://perma.cc/2VXG-CYHT

 [7] Hokkanen, J. and Lauritsen, M., 2002. Knowledge tools for

legal knowledge tool makers. Artificial Intelligence and Law,

10(4), pp.295-302.

[8] Hvitved, T. “Contract Formalisation and Modular

Implementation of Domain-Specific Languages”—Ph.D.

dissertation, The Faculty of Science, University of Copenhagen.

https://drive.google.com/file/d/0BxOaYa8pqqSwbl9GMWtwVU5

HSFU/view

 [9] Jacobson, I., 2019. What is Essence? Retrieved from

https://www.ivarjacobson.com/services/what-essence

[10] Lauritsen, M., 1992. Technology report: Building legal

practice systems with today’s commercial authoring tools.

Artificial Intelligence and Law, 1(1), pp.87-102.

[11] Morris, J., 2018. Legal Expert Systems Just Got Smarter.

(October 2018). Retrieved from

https://medium.com/@jason_90344/legal-expert-systems-just-got-

smarter-e7e12b75e872, archived at https://perma.cc/URL5-

HQSA

[12] Muthuri, R., Boella, G., Hulstijn, J., Capecchi, S. and

Humphreys, L., 2017. Compliance patterns: harnessing value

modeling and legal interpretation to manage regulatory

conversations. In Proceedings of the 16th edition of the

International Conference on Articial Intelligence and Law (pp.

139-148). ACM.

[13] Ramakrishna, S. et al., Legal Vocabulary and its

Transformation Evaluation using Competency Questions, 2015. In

Proceedings of the 15th International Conference on Artificial

Intelligence and Law (pp. 211-215). ACM.

[14] Steenhuis, Q., 2018. Separating Interview Logic from the

Law. (June 2018). Retrieved from

https://www.nonprofittechy.com/2018/06/28/separating-

interview-logic-from-the-law/, archived at

https://perma.cc/2M3S-S5X6

[15] Von Rossum, G., Warsaw, B., Coghlan, N., 2013. PEP 8 --

Style Guide for Python Code. (August 2013). Retrieved on April

24 2019 from https://www.python.org/dev/peps/pep-0008/.

[16] Wong, M. et al, 2019. L4: a domain-specific language

(DSL) for law. Retrieved from https://legalese.com/#L4, archived

at https://perma.cc/V8T7-3AZT

https://networkedsociety.unimelb.edu.au/__data/assets/pdf_file/0020/2761013/2018-NSI-CurrentStateofALAT.pdf
https://networkedsociety.unimelb.edu.au/__data/assets/pdf_file/0020/2761013/2018-NSI-CurrentStateofALAT.pdf
https://learnedhands.law.stanford.edu/
https://perma.cc/2VXG-CYHT
https://drive.google.com/file/d/0BxOaYa8pqqSwbl9GMWtwVU5HSFU/view
https://drive.google.com/file/d/0BxOaYa8pqqSwbl9GMWtwVU5HSFU/view
https://www.ivarjacobson.com/services/what-essence
https://medium.com/@jason_90344/legal-expert-systems-just-got-smarter-e7e12b75e872
https://medium.com/@jason_90344/legal-expert-systems-just-got-smarter-e7e12b75e872
https://perma.cc/URL5-HQSA
https://perma.cc/URL5-HQSA
https://www.nonprofittechy.com/2018/06/28/separating-interview-logic-from-the-law/
https://www.nonprofittechy.com/2018/06/28/separating-interview-logic-from-the-law/
https://perma.cc/2M3S-S5X6
https://www.python.org/dev/peps/pep-0008/
https://legalese.com/#L4
https://perma.cc/V8T7-3AZT

