
STRESS, SOCIAL AVOIDANCE, NATURALISTIC MOBILE SENSING 

1 
 

CLASSIFICATION: SOCIAL SCIENCES 
 

Stress restricts social interaction in humans: Evidence from a naturalistic mobile sensing 
study 

 
 

Alex W. daSilva1, Jeremy F. Huckins1, Weichen Wang2, Rui Wang3 , Andrew T. Campbell2, & 
Meghan L. Meyer1 

1 Dartmouth College Department of Psychological and Brain Sciences 
2 Dartmouth College Department of Computer Science 

3Facebook 
 

 
 
Corresponding Author: 
Alex W. daSilva 
Dartmouth College 
HB 6027 Moore Hall 
Hanover, NH 03755 
Alexander.W.Dasilva.GR@Dartmouth.edu 
 

 
Keywords: 
Stress, social interaction, mobile sensing, naturalistic experiment 
 
Author Contributions: 
A.W. daSilva, W. Wang, R. Wang., A.T. Campbell, J.F. Huckins, and M.L. Meyer contributed 
to study design.  A.W daSilva, W. Wang, R. Wang., J.F. Huckins collected the data. A.W. 
daSilva analyzed the data.  A.W. daSilva and M.L. Meyer prepared the manuscript.  All 
authors approved the final version of the manuscript for submission and declare no conflicts 
of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



STRESS, SOCIAL AVOIDANCE, NATURALISTIC MOBILE SENSING 

2 
 

Abstract  
 

Although mammals have a strong motivation to engage in social interaction, stress can 
significantly interfere with this desire. Indeed, research in non-human animals has shown that 
stress restricts social interaction, a phenomenon referred to as ‘stress-induced social 
avoidance.’ While stress and social disconnection are also intertwined in humans, to date, 
evidence for stress-induced social avoidance in humans is mixed, in part, because existing 
paradigms fail to capture social interaction naturalistically. To overcome this barrier, we 
combined experience sampling and passive mobile sensing methods with time-lagged 
analyses (i.e., vector autoregressive modeling) to investigate the temporal impact of stress on 
real-world indices of social interaction. We found that, across a two-month period, greater 
perceived stress on a given day predicted significantly decreased social interaction the 
following day. Critically, the reverse pattern was not observed (i.e., social interaction did not 
temporally predict stress), and the effect of stress on socializing was present while accounting 
for other related variables such as sleep, movement, and time spent at home. These findings 
help to substantiate the translational value of animal research on stress-induced social 
avoidance and lay the groundwork for creating naturalistic, mobile-sensing based human 
models to further elucidate the cycle between stress, sociality, and mental health. 

 
 

Significance Statement  
 

Humans are fundamentally a social species and social contact is critical to mental and physical 
health. Yet, stress may dampen our desire to socialize with others, hampering this basic need 
for human connection. Somewhat surprisingly, extant evidence that greater stress leads to 
less social interaction relies heavily on studies conducted on rodents. Here, we tested this 
possibility in humans, using continuously collected data from smartphones. By obtaining daily 
ratings of stress through a smartphone application and measuring time spent around others 
through mobile phone microphones, we found that experiencing higher levels of stress on a 
given day reduced the amount of time people spent in live social interactions the following 
day. These findings are consistent with animal research suggesting stress reduces social 
interaction. More broadly, they underscore the social cost of stress: we may sabotage our 
need to connect with others during the times we need them the most. 
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Few factors diminish wellbeing as much as social disconnection and stress. For decades, 
scientists have shown that restricted social contact and perceived stress are each risk-factors, 
consequences, and maintenance factors in poor mental and physical health (1, 2). Moreover, 
social disconnection and stress may operate in conjunction to compromise wellbeing. Feeling 
socially isolated is a common source of stress (3–5) and social withdrawal is a symptom of 
multiple stress-related disorders (6–8)  
 
Although it is clear from human research that stress and social disconnection are highly 
intertwined, evidence that stress can reduce actual social interaction comes almost exclusively 
from animal research (9–12). For example, rodents randomly assigned to experience stress 
on one day engage in significantly less social interaction  the next day (13). This is true 
regardless of whether the source of stress is social in nature (i.e. ‘social defeat stress’) or non-
social (i.e. electric shocks; (13)). In fact, a typical rodent spends the vast majority of its time 
(90%) exploring a new environment in close proximity to a peer.  However, if a rodent has 
experienced the stressors used in electric shock and social defeat paradigms, this tendency 
is reduced dramatically (< 50%; (13)). Moreover, these findings are often used to understand 
human psychology; for example, the reversal of stress-induced social avoidance in rodents 
has been used to test the effectiveness of anxiolytic pharmaceuticals prescribed to humans 
(14).  
 
Yet, whether stress reduces social interaction in humans is less clear cut.   On the one hand, 
some studies suggest that greater daily stress corresponds with less interest in interaction and 
more avoidant behavior during social interaction (e.g., reduced eye-contact;(15, 16)). 
Likewise, anxiety, a construct highly related to perceived stress, predicts fewer friendships 
(17) and perceived social support (18). Social anxiety in particular is associated with social 
withdrawal (8, 19) and, based on self-report evidence, less frequent socializing with peers 
(20). These findings are consistent with the idea that stress may reduce social connection, 
though notably do not show a temporal link between stress and actual, subsequent social 
interaction. 
 
On the other hand, experimental research designed to measure the impact of stress on 
subsequent social behaviour finds mixed support for stress-induced social avoidance in 
humans (21, 22). For example, in one study, after experiencing a stressor, participants’ social 
avoidance was assessed based on how quickly they pulled a lever away from themselves in 
response to photographs of angry faces (21). Although stress responses were not associated 
with increased social avoidance post-stressor, pulling a lever in response to static photographs 
does not closely mirror how humans engage in or disengage from social interaction in real life. 
To further complicate things, other research suggests that people commonly cope with stress 
by seeking social support (23), which may increase, rather than decrease, social interaction. 
However, evidence in support of this possibility relies on either retrospective or simulated 
assessments of coping strategies  (24–27), rather than measuring actual social interaction in 
response to stress. Collectively, these various threads of research make it challenging to 
determine whether stress reduces real-world, subsequent social interaction in humans.  
  
To help overcome these barriers, we tested for stress-induced social avoidance in humans 
naturalistically. To do so, we used a dataset that assessed participants’ (N=74) daily behavior 
for roughly two months (mean = 64 days; (28). Ecological momentary assessments (EMA) 
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and passive mobile sensing were collected through a single smartphone app (the StudentLife 
app; (29)). EMA sampling allowed participants to report on their daily stress-levels. The mobile 
sensing passively monitored several aspects of participants’ behaviors, including their social 
interaction through face to face conversation. In addition to our variables of interest  (daily 
perceived stress and social interaction), mobile sensing was also used to extract covariates 
of interest, including students’ movement, sleep, and time spent at home. Given that 
movement, sleep, and time spent at home have also been related to stress (30, 31), including 
them in our models allowed us  to examine the predictive relationship between stress and 
subsequent social interaction, above and beyond these related variables. Specifically, just as 
inducing stress on Day 1 restricts social interaction on Day 2 in rodents (13), we were able to 
test whether self-reported stress on a given day uniquely predicted less social interaction the 
next day in humans.  
 
Results 

 
Animal paradigms that test for stress-induced social avoidance typically randomly assign 
rodents to experience stress (or no stress) on Day 1 and assess social interaction on Day 2 
(13, 14). To parallel this temporal unfolding, we used a two-step multilevel vector 
autoregressive model (two-step mlVAR), which can isolate both within-subjects and between-
subjects longitudinal relationships between multiple variables (32). Specifically, this approach 
extends gaussian graphical models (GGM) to multilevel data generating three “networks” (i.e., 
relationships between variables), with network edges reflecting the unique associations 
between variables. The primary network of interest here is the temporal network, which reveals 
within-subjects, time-lagged relationships between variables. This network allowed us to 
assess whether stress on a given day (time t) predicts less social interaction the next day (time 
t + 1). The approach further generates a between-subjects network, which identifies variables 
that fluctuate together at the subject level (e.g., whether participants who tend to be more 
stressed also engage in the least social interaction), and a contemporaneous network, which 
identifies within-subjects relationships on a given day. Critically, network edges--which reflect 
relationships between each variable pair--identify partial correlations (contemporaneous and 
between-subjects network)/beta-coefficients (temporal networks). Thus, any significant 
association between variable pairs/nodes, such as stress and social interaction, exists after 
controlling for all other variables in the model. For the contemporaneous and between-subjects 
networks, edges were included if the respective betas from one of the two univariate multilevel 
models were significant (i.e., OR rule (33) ). As described in detail in the methods section, 
stress was assessed by daily EMA responses and social interaction, movement, sleep, and 
time spent at home was assessed with passive mobile sensing. 
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Fig 1. Temporal Network. Solid green edges represent positive partial beta-coefficients while 
red dashed lines represent negative partial beta-coefficients. Arrows represent the direction 
of the effect (i.e., a variable at time t predicting a variable at time t+1). The thickness of the 
edge represents the strength of the association. All shown edges are statistically significant. 
 
Temporal Network. Consistent with the animal literature, the results from the temporal network 
depicted a negative relationship between stress and social interaction; that is, higher stress at 
time t (i.e., a given day) predicted a decrease in social interaction at time t + 1 (the next day; 
b = -.045, t = -3.035, p = .003). In addition to its relation with sociality, increased stress at time 
t also predicted lower subsequent levels of movement the next day (b = -.041, t = -2.703, p = 
.007) and spending more time at home (b =.033, t =2.342, p = .019. Further, we also found 
that greater social interaction at time t positively predicted spending more time at home the 
next day (b = .055, t = 3.133, p = .002). Moreover, spending more time at home at time t was 
related to decreased future levels of movement (b = -.141, t = -7.540, p < .001), social 
interaction (b = - .054, t = - 3.170, p = .002), and increased stress (b = .055, t = 2.714, p = 
.007). All variables with the exception of sleep exhibited positive autoregressive relationships 
with their previous time point (t’s > 4.0, p <.001). This indicates, for example, that greater 
stress on a given day also predicts greater stress the next day. In terms of sleep, along with a 
non-significant autoregressive slope (i.e., amount of sleep on one day did not predict amount 
of sleep the next day), sleep was not related to any of the other four measures in a temporal 
fashion. Results from the temporal network are depicted in Fig. 1. In each of the models, to 
account for temporal effects, we also conducted an analysis with time (day in the term) and 
quadratic term for time as fixed effects. The statistical significance of the results persisted and 
the beta coefficients were largely unchanged See Supplementary Tables 1-2 for more details.  
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Contemporaneous Network. We found the following significant relationships for a given 
measurement period (a day): stress was negatively associated with social interaction (rp = - 
.054), movement (rp = - .042), and sleep (rp = - .037). Greater social interaction was related to 
increased movement (rp =.317) and decreased time spent at home (rp = -.093). Along with 
decreased social interaction, spending more time at home was associated with increased 
sleep (rp = .053) and decreased movement (rp = -.310). Results from the contemporaneous 
network are depicted in Fig. 2, with more details provided in Supplementary Table 3.  
 
Between-subjects Network. Only one significant connection was observed in the between-
subjects network. Participants who, on average, tended to spend more time at home moved 
less (rp = -.318). Interestingly, stress was unrelated to the mobile sensing variables in this 
network. Thus, it is not the case that participants who tend to be more stressed at the trait 
level necessarily socialize more or less. Results from the between-subjects network are 
depicted in Fig. 2, with more details provided in Supplementary Table 4. 

 
Fig 2. Contemporaneous and Between-Subject Networks. Solid green edges represent 
positive partial correlations while negative dashed lines represent negative partial 
correlations. The thickness of the edge represents the strength of the association. All shown 
edges are statistically significant. 
 
Discussion 

Stress and social disconnection frequently go hand-in-hand (34). Yet, whether stress directly 
decreases social interaction in humans has been largely overlooked, likely due, in part, to the 
difficulty of measuring real-world socializing. Here, we capitalized on recent advances in 
passive mobile sensing and experience sampling approaches to reveal the interplay between 
stress and social interaction naturalistically, in a real-word setting. Consistent with animal 
models of stress and social behavior (9, 13), we found that, in humans, greater perceived 
stress on a given day predicted less social interaction through conversation the next day. 
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Critically, this relationship was not bi-directional and was observed when controlling for overall 
movement, sleep, and time spent at home. Collectively, our results suggest that perceived 
stress specifically restricts social interaction in humans. 

Our results align nicely with those found in rodent studies. In typical stress-induced social 
avoidance paradigms, rodents randomly assigned to experience stress on a given day will 
show restricted social interaction the next day (9, 13, 14). Likewise, we found that greater 
perceived stress on a given day in humans predicted less socializing the next day.  The stress-
induced social avoidance paradigm in rodents has been used to understand the neural basis 
of anxiety disorders in humans. However, to our knowledge, this line of research has persisted 
without concrete evidence that stress restricts future social interaction in humans. Thus, our 
findings add important support for this approach. 

Our findings also offer some insight into the potentially specific role of stress on social 
avoidance, above and beyond other confounding variables. In extant animal paradigms, social 
interaction is measured by assessing the degree to which a rodent will traverse a room and 
interact with another rodent placed at the back of the room. Thus, the desire to move around 
is conflated with motivation for social interaction. Given that stress is known to induce freezing 
in animals (35), it is not entirely clear whether stress reduces social approach, restricts 
movement, or both. While there are certainly differences between animal paradigms and 
measuring human behavior through mobile sensing, it is worth noting that our approach can 
tease apart social interaction from movement. That is, separate classifiers are used to detect 
social interaction through conversation and ambulatory movement (29). Importantly, we found 
that stress on a given day has independent effects on socializing and movement the next day, 
uniquely decreasing both. These findings suggest that stress may impact socializing above 
and beyond its effect on movement, thus extending what we could discern from the existing 
animal literature.  

Of course, there are many ways to measure stress and distinctions are often made between 
responses to objective “stressors,” like those used in stress-induced social avoidance 
paradigms in rodents, and “perceived stress” as measured in our study (36). On the one hand, 
this would suggest there are likely important distinctions between the underlying mechanisms 
linking stress to social avoidance in our results and those found in rodents. On the other hand, 
it is compelling that the findings are similar, despite potential differences in the types of stress 
experienced. Future research may be able to disentangle the potential role of objective 
stressors vs. perceived stress in moderating social interaction in humans. 
 
The two-step mlVAR approach was key to disentangling how stress and social interaction 
prospectively relate to one another. Indeed, the contemporaneous network, which identifies 
within-subject relationships, independent of temporal effects, also showed that on a given day 
greater stress was related to less socializing. However, because this network does not include 
temporal information, the direction of this pattern is unclear if only the contemporaneous 
relationships are considered. Moreover, no significant associations between stress and any of 
the other passive mobile sensing variables were observed in the between-subjects network. 
In other words, participants who tend to be more stressed do not necessarily socialize less. 
Thus, the temporal network reveals precise insight into the prospective relationship between 
stress and socializing, identifying that feeling more stressed on a given day corresponds with 
less socializing the next day, relative to one’s baseline level of socializing. This finding 
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underscores the value of assessing personality and emotion dynamics within-subjects over 
time. 

It is noteworthy that the directional, prospective relationship between stress and social 
interaction was not reciprocal; that is, increased social interaction did not predict a subsequent 
decrease (or increase) in stress.  A large body of work suggests that social support may 
provide a buffer against stress (i.e., the “buffering hypothesis”; (37, 38)). At first glance, it looks 
like our results may be at odds with that account. If social support buffers stress, spending 
more time interacting with people on a given day should predict less stress the next day. 
However, it is important to consider how social support is traditionally operationalized when 
testing the buffering hypothesis. Most research testing the buffering hypothesis measures 
perceived social support (39). In contrast, we are measuring actual social interaction through 
conversation. Given past work suggesting that perceived and objective social connection may 
impact mental and physical health through distinct routes (1), it is possible that perceived 
social support is more important for buffering stress than objective social support garnered 
through interaction. Another possibility is that social support’s impact on stress varies from 
population to population.  Many populations used to test the buffering hypothesis represent a 
highly distressed group of adults (e.g., breast cancer survivors (40–42) or recently laid off 
workers (39, 43). It is possible that college students’ social behavior following stress may be 
different from the aforementioned groups, particularly in a highly competitive campus 
environment, where other students may be reminders of stressors. Testing these competing 
possibilities regarding the role of social support on stress-buffering in college samples will be 
critical for future work, given that mental health problems related to stress, including anxiety 
and depression, are highly prevalent among college students (44, 45).  
 
Conclusion 
 
In summary, we helped bridge the gap between animal and human research regarding the 
role of stress on social behavior. Animal models suggest a robust tendency to avoid social 
interaction following a stressor. With a naturalistic mobile sensing paradigm, we were able to 
put that model to test in humans, and found that higher levels of reported stress on a given 
day predicted less social interaction the next day. These findings help validate a rich animal 
literature on the neurobiology of stress and social withdrawal and lay the groundwork for 
creating naturalistic, mobile-sensing based human models to elucidate the cycle between 
stress, sociality, and mental health. 
 
Methods 
 
Participants 
Data were collected from 102 participants who agreed to provide mobile sensing data across 
the winter and/or spring academic terms. After removing participants with poor data quality 
(See Supplementary Materials for more information), 74 participants were left for analysis with 
63.26 days of data on average (SD = 19.55). Of the 74 participants with sufficient data quality, 
2 had incomplete demographic information. For the 72 participants with complete 
demographic information, 57% percent were female (41/72). The mean age of participants 
was 20.98 (SD = 2.48) years. This study was approved by the Dartmouth Committee for the 
Protection of Human Subjects. 
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Smartphone Measures  
The StudentLife app (29) was used to collect sensing data and to administer EMAs; a version 
of the app exists for both Android and iOS operating systems and participants downloaded 
the app at the onset of their enrollment in the study. The EMA and Passive Mobile Sensing 
features are described in detail below. 
 
Ecological Momentary Assessments (EMA) of Stress 
The Mobile Photographic Stress Meter (MPSM) was used to assess daily stress (46, 47). The 
MPSM is a series of 16 images depicting varying levels of stress. A participant simply taps on 
the image that best describes their stress level. Users report that the MPSM is enjoyable to 
interact with and easy to use (46) which is critical, as usability is a crucial aspect of any mobile 
app, particularly when used longitudinally (46). 
 
Passive Mobile Sensing 
Because we wanted to test whether stress decreases social interaction, the passive mobile 
sensing variable we were most interested in was the sociality variable. We also included other 
passively assessed variables in our models that past work has shown to relate to stress (sleep, 
movement, and time spent at home; (30, 31, 48), which further allowed us to determine the 
specificity of the stress-socializing relationship.  
 

Social Interaction. StudentLife infers face to face conversation from a two state Hidden 
Markov Model: a classifier to infer human voice and a classifier to detect conversation (49). 
The conversation classifier infers the number of independent conversations a participant is 
around and their duration. The frequency and duration of time spent around conversation for 
a given day is used as a measure of sociality. Importantly, to protect participant privacy, the 
conversation is never recorded; the audio is processed on the fly to extract and record 
features.   
 

Sleep. Sleep duration is computed by measures from four phone sensors: screen 
on/off, activity, audio amplitude, and ambient light. This process of estimating sleep duration 
has been shown to be accurate +/- 30 minutes (50). 
 

Location/Movement. Density-based spatial clustering of applications with noise 
(DBSCAN) is used to pinpoint location data. DBSCAN is an algorithm that uses GPS 
coordinates to uncover where on campus students are spending time. Each student’s home 
location is where they dwell between 2-6 am. Total distance traveled on a given day is also 
calculated. 
 
Data preprocessing 
Before any analyses were conducted, the data were cleaned to include only participants and 
days with sufficient data quality (for more details about all aspects of data 
cleaning/preprocessing see Supplement). In general, mixed effect models are robust to 
missing data in predictors and irregularly spaced measurement periods (51). However, shifting 
the data to calculate lagged estimates resulted in a near doubling of the percentage of rows 
containing missing data. Thus, missing data were imputed using Amelia (52). Amelia uses a 
bootstrap-EM algorithm to impute missing data, imputing m values for each missing data point 
and creating m imputed datasets. Moreover, Amelia was specifically designed to 
accommodate longitudinal data and includes features such as the ability to include lags/leads, 
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polynomial terms, and the ability to impute with trends specific to each cross section unit (here, 
a person). We set m to 40 following guidelines that m should be similar to the percentage of 
cases that are incomplete (53, 54). Following data imputation, point estimates, pooled 
standard errors, and degrees of freedom were calculated following guidelines set forth by (55). 
 
Data Analysis 
Before model fitting, steps were taken to ensure data quality and that the assumptions of 
multilevel modeling were met (see Supplementary Materials). Next, two-step multi-level vector 
autoregressive models were fit with the mlVAR package in the R environment (56, 57). This 
multilevel modeling procedure is a multi-step process that computes fixed and random effects 
for temporal and contemporaneous networks as well as fixed effects for between-subjects 
networks. In the first step, a series of n (n = the number of variables in the network model, 
here 5) univariate multilevel models are fit. In this step, each model (for each variable), 
consists of lagged within-subject centered predictor variables and between-subject predictors, 
a value equal to the mean of a measure over the course of the study. For each univariate 
multilevel model, along with the fixed effects, random subject intercepts were included. 
Random slopes were omitted after observing problems with model singularity (i.e., imposing 
a random effects structure too complex for the data).  Estimates obtained from these models 
were used to create temporal and between-subjects networks. In the second step, residuals 
from the first set of models were incorporated into a second set of multilevel models to estimate 
the contemporaneous network. In these models, residuals from one variable were predicted 
by the residuals from the rest of the variables at the same time point. Orthogonal random 
slopes for each variable were incorporated when appropriate (see Supplementary Material). 
Following the “OR-rule” (33), edges for the between-subjects and contemporaneous networks 
were included in the network models if at least one of the beta values from the multilevel 
models were significant (32, 58).  
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Supplementary Materials 
 
Data Preprocessing 
Before any analyses were conducted, the data were cleaned to remove participants who: 
experienced technological difficulties with their phone, failed to respond to over 50% of the 
EMA prompts, or failed to have at least 50% percent of their total days in the study containing 
at least 16 hours of quality conversation and location data, a quality mark similar to those used 
in other mobile sensing studies using the StudentLife application (1, 2).  
 
Next, the extent to which a participant had missing data, or ‘missingness’ was assessed. A 
day’s given conversation, sleep, or location data was counted as missing if the total data 
quality for that day was less than 16 hours. The rates of missingness were as follows for our 
five variables of interest: conversation - 19.12%, sleep duration - 4.46%, stress - 24.05%, 
location home - 19.14%, distance traveled - 19.53%. In total, 17.26 % of the data were missing 
and 35.04% of cases (rows) contained at least one missing value. As noted in the manuscript, 
mixed effect models are robust to missing data and irregularly spaced measurement periods 
(3). However, shifting the data to calculate lagged estimates resulted in a near doubling of the 
percentage of rows containing missing data, an issue also noted in (4). For example, stress 
and sociality may be complete cases at time t while stress contains a missing value at t - 1. 
For this reason, missing data were imputed. Before imputation, we checked to see if stress, 
at the trait level (mean over the study), was associated with missing conversation, location, 
sleep, or stress data to ensure that our factor related to mental health was not related to the 
amount of participants' missing data. Trait level stress was not associated with percentage of 
missing stress (r = .055, p = .645), location (r = .-.071, p = .546), conversation (r = -.021, p = 
.656), or sleep data (r = -.151, p = .198). As it was heavily skewed, the movement variable 
was log transformed in the imputation model and log transformed for the two-step mlVAR 
analysis. Finally, variables were standardized to help with model convergence. 
 
Multiple Imputation: Pooling 
Following data imputation using Amelia, estimates were combined following guidelines set 
forth by (5). The multiple imputation point estimate is the average of the 40 complete estimates 
for each dataset. Here, each point estimate is a beta from one of the resulting univariate 
multilevel models.  Pooled standard errors were calculated incorporating information from 
within-imputation (average of the point estimate variances) and between-imputation (variance 
in the point estimates) variation. A resulting test-statistic was calculated from the average of 
point estimates and the pooled standard error. A lambda parameter was derived from the 
variance components and combined with m to calculate the degrees of freedom for the t-
distribution. 
 
In the final step before model fitting, as in (4), stationarity in the data was checked via a 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test from the tseries package (6). An assumption 
of the data analysis approach used here, (2 step mlVAR), is that the data are stationary; that 
is, the mean and variance of a given time series of data should remain unaltered over time. 
Thus, a KPSS test was run for every subject and variable on every one of the 40 imputed 
datasets. Across subjects and datasets, the data were largely stationary (85%), and as 
expected, there was very little variability across imputed dataset (SD = .010). 
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In addition to the series of KPSS tests, we also re-ran the first step of the 2 part mlVAR model 
with time and time^2 as fixed effects (for each of the 5 univariate multilevel models) to account 
for linear and nonlinear effects of time. The coefficients remained largely unchanged. 
 

 
 
Table 1. Temporal model parameters with time and time^2 as fixed effects. For each cell, 
from top - middle - bottom, the numbers represent: parameter estimates, test-statistics, and 
p-values.  
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Results expanded 
The results in their entirety from the network models are depicted below. In each of the tables, 
for each cell, the numbers represent: parameter estimates, test-statistics, and p-values from 
top to middle to bottom. For the temporal network, the relationships on the diagonal depict 
each variable’s autoregressive relationship with itself. Dashes are present on the diagonal of 
the between-subjects and contemporaneous tables as these relationships are not assessed. 
For the between-subjects and contemporaneous networks, following the ‘OR’ rule (7), one of 
the associations between variables needs to be significant for it to be included in the model. 
Specifically, these two networks are a function of two parameters from two multiple regression 
models for each node. Thus, there are two sets of summary statistics and two p-values, and 
from here we use the ‘OR’ rule to retain an edge if one of the p-values is significant. The edges 
in these models (partial correlations) are calculated by standardizing and averaging 
parameters from each one of the aforementioned 2 models.   
 

 
 
Table 2. Temporal Network. These relationships reflect how a variable on a given day 
relates to the other variable the next day. 
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Table 3: Contemporaneous network. These relationships depict associations between 
variables on a given day. 
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Table 4. Between-subjects network. These relationships represent trait level associations 
between variables. 
 
 
Random effects structures 
For the first step of the two-part mlVAR model, models were initially estimated with a maximal 
random effect structure (correlated random intercepts and slopes). Upon observing issues 
related to convergence, we simplified the random effect structure. Problems with convergence 
remained when specifying uncorrelated random effects; thus, we opted to use random 
intercept only models. A similar pattern of convergence issues emerged when estimating the 
contemporaneous networks. In order to keep the multilevel structure for these models, we took 
a closer look at the random effect variance/covariance matrices for each of the 5 univariate 
models across the 40 imputed data sets. Random slopes for variables were retained if the 
variance for that particular random effect never dipped below .0001 for any of the models in 
any of the imputed data sets. That left the following random effect structure for each of the 
respective univariate models: 
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Table 5. Random effect structure for the contemporaneous models.  
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