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A Coal demand estimation

A.1 Demand estimation algorithm

I start by estimating a semi-parametric model of each coal generating unit’s hourly operations,
conditional on the ratio of marginal costs of coal vs. natural gas generation. Next, I construct
a distribution of counterfactual coal prices at which each unit would have been marginal in
electricity dispatch. Then, I transform and aggregate these distributions into quantity-price
mappings, yielding plant-month-specific coal demand curves. Finally, I estimate how changes
in natural gas prices affect both the level and the slope of each plant’s inverse coal demand.

Step 1: I construct a coal-to-gas cost ratio by dividing each coal unit’s marginal cost of
generation by the generation-weighted average marginal cost of gas-fired units in its power
control area (PCA). For both coal and gas units, I multiply unit-specific fuel prices (P for coal,
Z for gas) by unit-specific heat rates (HR), and add the unit’s marginal costs of environmental
compliance (MCenv).1 I assign each gas unit the daily spot price of its closest natural gas trading
hub, which captures day-to-day price fluctuations.2 I use the average delivered coal price at
the plant-month level, which is the finest temporal resolution that EIA reports publicly.3 I also
assign unit-specific heat rates and environmental costs at the monthly level.

Indexing coal plants j, their constituent coal units u, gas units g, months m, and days d,
the daily cost ratio is:

MCcoal
um ≡ HRum · (Pjm +MCenv

um ) (A1)

MCgas
ud ≡

∑
g∈PCAu

(
Qelec
gm ·HRgm · (Zgd +MCenv

gm )∑
g∈PCAu

Qelec
gm

)
(A2)

1. MCenv
um captures unit u’s opportunity cost of SO2, NOx, and CO2 emissions in month m, scaled by

average monthly allowance prices (Az
m) and unit-specific emissions rates per MMBTU (Ez

um), for each pollutant
z. It also includes the non-energy operating costs of scrubbers (i.e. flue gas desulfurization to reduce SO2

emissions), net of the marginal revenues from selling the gypsum byproduct of the desulfurization process:
MCenv

um =
∑

z∈{SO2,NOx,CO2} A
z
mEz

um · 1[in z trading program]um +MCscrubber
um . I abstract from non-fuel, non-

environmental variable operating costs, because these data are not reliable across all years and units.
2. Most gas plants have limited on-site storage capacity, meaning that short-run price changes can impact

operating decisions. I use daily natural gas prices from SNL for 104 trading hubs (see Appendix G.5).
3. Coal’s cheap storability let plants buffer sub-monthly price fluctuations. The relevant coal price for this

application is plant j’s opportunity cost of coal purchases. While other studies have characterized this opportu-
nity cost using spot market purchases only (e.g. Cicala (2022); Chu, Holladay, and LaRiviere (2017)), I average
Pjm across contract and spot transactions. Many plants buy exclusively on long-term contracts, and restricting
Pjm to spot shipments would require populating many unobserved spot prices. Given that my analysis hinges
on plant-specific delivered coal prices, I choose to pool all observed coal prices into an average Pjm for each
plant-month. I report sensitivity analysis using alternative coal price variables in Figures A6 and E10.
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⇒ CRud =
MCcoal

um

MCgas
ud

(A3)

Steps 1–3 of this estimation strategy treat the coal unit as the relevant unit of analysis, rather
than the coal plant. This is because a single power plant may comprise multiple coal units,
each with distinct heat rates, environmental costs, and operating protocols.

Step 2: For each coal unit u, I estimate Equation (6) (reproduced here) for all hours h, from
2002 to 2015:

CFuh =
∑
b

αub1[Guh ∈ b] +
∑
b

γub1[Guh ∈ b] · CRud + ζuCRud + ξuGuh + ωuh

Figure A1 shows that CFuh is close to discrete: 77% of observations are under 5% or over 80%.

Figure A1: Histogram of hourly capacity factors for coal demand estimation
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Notes: This is a histogram of coal unit capacity factors in hourly CEMS data (i.e. CFuh), for all units and hours used in my
demand estimation. CFuh ∈ [0, 1] by construction. 90% of non-zero capacity factors are greater the 0.5, which supports my use of
ĈFuh = 0.5 in Equations (A4)–(A5). In Figures A7 and E10, I report sensitivity analysis estimating Equation (6) as a probit and
logit—using the outcome variable 1[CFuh > 0.5].

Guh sums hourly net generation across all CEMS electric generating units in unit u’s
market region.4 This is not equivalent to electricity “load”, which includes non-CEMS generation
such as nuclear, hydro, renewables. However, these other technologies are inframarginal; the
marginal operating unit is almost always a CEMS unit.5 Generation bins b allow me to flexibly
estimate unit u’s generation, both un-interacted (α̂ub, following Davis and Hausman (2016))
and interacted with the cost ratio (γ̂ub). Because electricity demand is nearly perfectly inelastic,
Equation (6) is unlikely to suffer from simultaneity bias between CFuh and Guh.

We might worry about endogeneity of Pjm as a component of CFuh, if rail market power
leads to idiosyncratic plant-specific coal price changes. I instrument for CRud with an analogous

4. I aggregate across “market regions” (i.e. ISOs or NERC regions) rather than PCAs because of inter-PCA
trading: in a given hour, the marginal CEMS unit is less likely to reside u’s PCA than in u’s broader market
region. (There is much less trading across market regions.) Appendix G.2.1 describes these market regions. I
follow Linn and Muehlenbachs (2018) in defining average marginal costs at the PCA-level, because within-PCA
comparisons more accurately exploit cross-sectional gas price differences driven by local pipeline constraints.

5. Nuclear, wind, and solar are (virtually) always inframarginal in hours when a CEMS unit is also operating
(i.e. Guh > 0). Hydro plants have complex dynamic operating constraints, and in certain regions hydro can be
marginal in electricity dispatch. However, these regions have very little coal: from 2002–2015, six states (WA,
OR, CA, NY, MT, ID) contributed 70% of U.S. hydro generation and only 2.5% of coal generation.
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cost ratio CRs
ud using state-level coal prices (i.e., replacing Pjm in Equation (A1) with the state-

month average delivered coal price). This removes plant-specific price effects, since over 80% of
plant-months average coal prices across at least 10 plants.6 Guh also includes year fixed effects,
which absorbs any (potentially endogenous) trends in coal prices within unit u’s time series.

Guh includes several time-varying factors that affect unit u’s probability of operating condi-
tional on Guh and CRud: daily Guh controls, to account for dynamic operating constraints (coal
boilers cannot instantaneously start or stop (Cullen and Mansur (2017))); daily maximum tem-
perature, since outdoor temperature affects units’ thermal efficiency; hour-of-day fixed effects,
to control for diurnal operating patterns; quarter-of-year fixed effects, to control for seasonality
in output demand, fuel prices, and maintenance; and year fixed effects, to capture long-run
changes in unit u’s operations. Finally, Guh interacts year fixed effects with the daily sum of
Guh, to control for changes in generating capacity and unit u’s position in the dispatch order.7

I do not conduct inference directly on the coefficient estimates or predictions from Equation
(6). Instead, I use predictions from the fitted models to construct the dependent variables of
OLS regressions that estimate coal demand parameters.

Step 3: Let P̃uh denote the coal price at which unit u would have had a 50% probability of
operating at full capacity in hour h, or ĈF uh = 0.5.8 Rearranging Equation (6) post-estimation:

HRum ·
(
P̃uh +MCenv

um

)
=

(
0.5− α̂ub,h − ξ̂uGuh

)
·MCgas

ud

γ̂ub,h + δ̂u
(A4)

⇒ P̃uh =


(
0.5− α̂ub,h − ξ̂uGuh

)
·MCgas

ud

γ̂ub,h + ζ̂u

/HRum −MCenv
um (A5)

Here α̂ub,h and γ̂ub,h denote the binned coefficients for each hourly realization of Guh.

Step 4: Summing over all hours of month m, and across each of plant j’s constituent coal
units, I define plant j’s monthly coal demand function Q̂jm as:

Q̂jm(P ) =
∑
u∈j

∑
h∈m

1
[
P < P̃uh

]
· Q̄coal

um (A6)

where Q̄coal
um is unit u’s hourly coal consumption when operating at maximum capacity in month

m. This simply assumes that for a given coal price P , plant j will demand the amount of
coal required to operate each of its units at capacity, in inframarginal hours only. Q̂jm( · )
is invertible by construction; I define its inverse as P̂jm( · ), which I smooth using a kernel
mean-smoothing algorithm. This gives me an estimate of plant j’s inverse coal demand curve
in month m. Figure A2 plots two P̂jm( · ) curves, for a representative plant j in two months m.

6. My results are also robust to a reduced-form version of Equation (A1), replacing CRud with either CRs
ud

or an version of CRs
ud that averages delivered coal prices across ISOs/NERC regions (see Figures A5 and E10).

7. For example, the generation bin Guh ∈ [10, 20) GWh could imply dramatically different electricity prices
in 2005 vs. 2015—and hence, dramatically different probabilities of whether unit u decides to operate.

8. Discretizing the counterfactual capacity factor at 0.5 is computationally much simpler than the alternative
of solving for a schedule of counterfactual prices (e.g., a separate P̃uh for ĈF ∈ {0, 0.1, . . . , 0.9, 1}). Using
ĈFuh = 0.5 is sufficient to characterize how higher coal prices make unit u less likely to operate in any hour h.
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Figure A2: Example of estimated coal demand curves and the effect of gas prices
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Notes: This figure plots two estimated inverse demand curves for a representative coal plant j. The solid curve is its estimated
demand for May 2006, when the gas price was high; the dashed curve is its estimated demand for May 2012, when the gas price
was low. Black points are estimated quantities of observed coal consumption. To be precise: they are not P̂jm(Qjm), but rather
P̂jm(Q̂jm(Pjm)); this accounts for estimation error in P̂jm( · ) and forces each point to fall on its respective curve. Grey points
plug in the opposite quantity (technically Q̂jm̈(Pjm̈) not Qjm̈) into each demand curve. Equations (7)–(8) populate all m-m̈
combinations (including m = m̈) and regress the level/slope of inverse demand at these points on the gas price in month m
(embedded in each estimated demand curve) and fixed effects to control for the estimated quantity in month m̈.

Step 5: I calculate local approximations of the first and second derivatives of P̂jm( · ), which I
denote as ∆P̂jm( ·) and ∆2P̂jm( ·), respectively. This lets me estimate empirical analogs of three
components of Equation (3): ∂Pj

∂Z
, ∂2Pj

∂Qj∂Z
Qj, EDj

. Since these terms are partial derivatives, I
estimate their empirical analogs based on realized coal quantities for each plant-month.

I define m̈ as the month of each realized coal quantity, and m as the month of each
estimated inverse demand curve. This lets me plug each estimated coal quantity into each
estimated demand curve, created an m-m̈ “panel” for each plant j.9 This forms the dependent
variable of two plant-specific OLS regressions (reproducing Equations (7)–(8)):10{

P̂jm(Q̂jm̈)
}
jmm̈

= λ0jZm + ϕjm̈ + ϵjmm̈ → λ̂0j ∼ ∂Pj
∂Z{

∆P̂jm(Q̂jm̈) · Q̂jm̈

}
jmm̈

= λ1jZm + ϕjm̈ + νjmm̈ → λ̂1j ∼ ∂2Pj
∂Qj∂Z

Qj

The monthly Henry Hub price Zm is closely correlated with Zgd in Equation (A2), which enters
into my P̃uh predictions.11 ϕjm̈ are month m̈ fixed effects, which control for endogenous factors
affecting plant j’s coal quantity and isolate variation in the m-dimension. λ̂0j and λ̂1j estimate
how variation in the natural gas price affects the level and slope of plant j’s estimated inverse
coal demand, at each observed quantity. Figure A2 illustrates how time-series variation in the
height and slope of P̂jm( · )—driven by changing gas prices—identifies λ0j and λ1j.

Other factors also contributed to time series variation in plant j’s coal demand, such as
more stringent regulations on criteria pollutants or increased renewables generation. However,
the non-monotonic time profile of gas price changes is not correlated with more gradual trends
in pollution regulations and renewables penetration. Moreover, the dependent variables in
Equations (7)–(8) come from a model that holds the electricity market and environmental

9. For a plant that consumed coal in all 168 sample months, this would yield 1682 m-m̈ “observations”.
10. To be precise: I plug in Q̂jm̈(Pjm̈), the estimated quantity implied by month m̈’s observed coal price. I

plug actual price instead of actual quantity since Q̂jm(Pjm) predicts Qjm better than P̂jm(Qjm) predicts Pjm.
11. I construct CRud using more geographically explicit natural gas prices, in order to maximize the predictive

power of Equation (6). However, here I use the Henry Hub price time series which are (more) plausibly exogenous
(absent time fixed effects), while also aligning with my DD specification in Equation (5).
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Figure A3: Mapping coal plants by M̂j
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Notes: This map plots 428 coal plants, color-coded by their value of M̂j (as defined in Equation (10)). I top-code (bottom-code)
the color scale at 0.8 (0.0) for ease of presentation.

regulations fixed (i.e., Equation (6)). This means that my predicted P̂jm( · ) should not vary
systematically with these other time-series factors—the way that true Pjm( · ) would.12

Finally, I estimate the time series Equation (9) (reproduced here) for each plant j:{
∆2P̂jm(Q̂jm) /∆P̂jm(Q̂jm) · Q̂jm

}
jm

= λ2j + ιjm → λ̂2j ∼ EDj

Here, the partial derivative of interest, EDj
, does not relate to gas prices, obviating the need

for a second dimension m̈. λ̂2j captures the average elasticity of the slope of plant j’s estimated
inverse coal demand over all months, at the realized (estimated) quantities. Identification of
λ̂2j follows from exogeneity of the cost ratio in Equation (6).

The standard errors from Equations (7)–(9) let me simulate draws of ⟨λ̂0j, λ̂1j, λ̂2j⟩, to
account for generated regressors on the right-hand side of Equation (5) and incorporate un-
certainty from this demand estimation algorithm. Appendix E.5 outlines this bootstrapping
procedure. Since estimation error only enters Equations (7)–(9) on the left-hand side, the stan-
dard errors on λ̂0j, λ̂1j, and λ̂2j are likely unbiased if this measurement error is classical.

This procedure recovers counterfactual coal prices (P̃uh) that hold the electricity market con-
stant, including prices faced by other coal plants. In reality, plant-specific markups make up
only a small portion of delivered coal prices, and large changes to plant j’s coal price (e.g. due
to a global coal price shock, or a regional diesel shortage) likely affect many plants simultane-
ously. This means that my demand estimates are likely only informative for small idiosyncratic
changes in plant-specific coal prices. If rail carriers jointly reoptimize markups across multiple
plants (i.e. plant j’s markups move in the same direction as the markups of rival coal plants),
then my estimated demand functions Q̂jm(·) may be too large (small) at low (high) coal prices.

Figure A3 maps coal plants by M̂j: while high M̂j plants are more concentrated in the
southeastern U.S., they are not unique to any particular region of the country. Figure A4
summarizes uncertainty in my plant-specific M̂j estimates. I plot M̂j, or the mean of the M̂ (S)

j

12. Even if Equations (7)–(8) do not perfectly identify the effect of changes in gas price, I ultimately feed λ̂0j

and λ̂1j into Equation (5), where DD identification purges these other confounding trends.
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Figure A4: Summarizing the precision of my M̂j estimates
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Notes: Each panel plots M̂j for a separate coal plant in my main estimation sample (with k = 3 nearest neighbors). Here I present
the same M̂j estimates as in the bottom-right panel of Figure 5, except whiskers now plot the 5th and 95th percentiles of each M̂j ’s
sampling distribution. The left panel sorts plants by precision: for 42% of plants, the interval spanning the 5th-to-95th percentiles
is less than 0.25; for 64% of plants, this interval does not include zero. The right panel reports identical information, but sorts
plants by M̂j . Both panels omit plants with a coal-by-barge option, for which M̂j = 0.

sampling distribution (see Equation (E8)); whiskers plot the 5th and 95th percentiles of each
M̂

(S)
j sampling distribution. The left panel sorts plants from least to most precise M̂j; the right

panel presents identical information, but sorts by M̂j. Both panels omit plants with Wj = 1,
for which I set M̂j = 0. This figure highlights three key patterns. First, captive and non-
captive plants appear equally likely to have precise or imprecise M̂j, and to have low or high
M̂j. Second, M̂j estimates tend to be reasonably precise: for 42% of these plants, the interval
spanning the 5th and 95th percentiles of its sampling distribution is narrower than 0.25. Third,
M̂j’s sign tends to be unambiguous: for 64% of these plants, the interval spanning the 5th and
95th percentiles of its sampling distribution does not include zero.13

A.2 Sensitivity analysis

Here, I compare my preferred M̂j estimates with those derived from alternative versions of
Equation (6). Figure A5 shows robustness to my decision to instrument CRud (using plant-
specific coal prices) with CRs

ud (using state-average coal prices). The top-left panel estimates
the OLS version of Equation (6), without purging any plant-specific coal price endogeneity (e.g.,
plant-specific markups); the resulting M̂j estimates are not systematically higher or lower. The
top-right panel estimates the reduced-form of Equation (6), replacing CRud with CRs

ud; this
yields M̂j estimates that are similar to my preferred IV, signalling that most of the state-level
variation in coal prices predicts plant-specific coal prices. The bottom-left panel averages coal

13. Each of these patterns would appear even more pronounced if I included Wj = 1 plants in the denominator:
these plants are not systematically captive or non-captive, and their M̂j = 0 is not uncertain (by construction).
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Figure A5: Alternative coal price aggregations, without instrumenting for coal price
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Notes: Each scatter plot compares an alternative M̂j (vertical axes) to my preferred M̂j (horizontal axes), which uses predictions
from Equation (6) that instrument for CRud using CRs

ud. The top-left panel constructs M̂j without instrumenting for CRud,
where plant-specific coal prices may cause mis-specification in Equation (6). The top-right panel uses a reduced-form Equation (6),
replacing CRud with CRs

ud (using state average coal prices). The bottom two panels present alternate versions of this reduced-form,
averaging coal prices by PCA (bottom-left; similar level of aggregation as state) and market region (bottom-right; aggregated up
to ISOs and NERC regions). Each panel plots the 45-degree line, winsorizes M̂j ∈ [−1, 1] for ease of presentation, and reports the
pairwise correlation coefficient for plants with Wj = 0.

prices within PCAs (roughly as aggregate as states), and the bottom-right panel aggregates
up to much larger market regions (i.e., ISOs and NERC regions). All three aggregations yield
similar estimates, which supports the exogeneity of state average prices as an instrument.14

Figure A6 tests for robustness to alternate definitions of marginal costs in Equations
(A1)–(A2). The top-left panel adds technology-specific defaults for non-fuel variable costs
(see Appendix G.2.3); this yields similar M̂j estimates, confirming that such costs (e.g., labor,
maintenance) are second order relative to fuel costs (Cicala (2022)). The top-right panel removes
marginal environmental compliance costs (MCenv

um and MCenv
gm ); this only slightly alters my M̂j

estimates, assuaging concerns about measurement error in permit prices (see Appendix G.6).
The bottom-left panel defines Pjm as plant j’s minimum (rather than average) coal price paid
in month m, which may better characterize the plant’s opportunity cost of coal;15 the resulting
M̂j estimates are quite similar. The bottom-right panel lags coal prices by one month; similar
M̂j estimates suggest that coal storage is not creating systematic misspecification in CRud.16

Finally, Figure A7 uses alternate specifications of Equation (6). The top-left panel adds
month-of-year fixed effects; the top-right panel removes year-specific controls for daily genera-
tion, which allow for changes in the fossil electricity supply curve. Both sets of M̂j estimates
change only slightly. The bottom panels discretize CFuh (i.e. 1[CFuh > 0.5]) and estimate the
reduced form of Equation (6) as a probit and logit; this yields the M̂j estimates that most

14. Equation (6) uses year fixed effects to control for (potentially endogenous) trends in coal prices.
15. If a plant purchases 75% of its coal on a (relatively expensive) long-term contract, and 25% of its coal on

the (cheaper) spot market, the spot price may be more relevant for marginal operating decisions.
16. Plants with coal stockpiles my have short-run opportunity costs of zero (Jha (2022)). I lack data on coal

inventories, which would be necessary to test this hypothesis more directly.
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diverge from my preferred (linear-IV) model. Figure E10 shows that my DD results using
TREATj = M̂j are broadly robust to the sensitivities in Figures A5–A7.

Figure A6: Alternative assumptions on marginal costs
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Notes: Each scatter plot compares an alternative M̂j (vertical axes) to my preferred M̂j (horizontal axes), which constructs
marginal costs using Equations (A1)–(A2). The top-left panel adds an estimate of non-fuel variable costs common to each generating
technology. The top-right panel removes marginal environmental costs (MCenv

um and MCenv
gm ). The bottom-left panel defines Pjm

as the minimum (rather than the average) coal price paid in month m. The bottom-right panel lags coal price by one month (i.e.,
Pj(m−1)) to account for potential storage. Each panel plots the 45-degree line, winsorizes M̂j ∈ [−1, 1] for ease of presentation,
and reports the pairwise correlation coefficient for plants with Wj = 0.

Figure A7: Alternative specifications for Equation (6)
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Notes: Each scatter plot compares an alternative M̂j (vertical axes) to my preferred M̂j (horizontal axes). The top panels use
a reduced-form version of Equation (6) that replaces CRud with CRs

ud, either adding month-of-year fixed effects (top-left) or
removing year fixed effects interacted with the sum of daily CEMS generation in each market region (top-right). The bottom panels
discretize CFuh and estimate Equation (6) as either a probit (bottom-left) or a logit (bottom-right). Each panel plots the 45-degree
line, winsorizes M̂j ∈ [−1, 1] for ease of presentation, and reports the pairwise correlation coefficient for plants with Wj = 0.
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B Rail oligopoly model

B.1 Derivation of comparative static in Equation (3)

Here I provide a full derivation of the comparative static dµj
dZ

from Equation (3) of the main
text. I start with rail carrier i’s profit function from selling to plant j without a coal-by-barge
option (reproduced from Equation (1)):

πij(qij) = qij

[
Pj(Qj;Zj) − Cj − S(Tj)

]
− Fj (B1)

Firm i earns revenue qijPj from selling coal to plant j, while incurring commodity costs qijCj,
shipping costs qijS(Tj), and a fixed cost Fj. Plant j’s inverse demand is a function of Qj =
Njqij, the total quantity of coal purchased across all Nj symmetric oligopolists. It also depends
on the parameter vector Zj, which includes Z, the price of natural gas price.

Firm i’s first-order condition is:
∂πij
∂qij

= Pj(Qj;Zj) + qij
∂Pj
∂Qj

∂Qj

∂qij
− Cj − S(Tj) (B2)

For simplicity, I assume that S(Tj) does not depend on qij, which abstracts from rail capacity
constraints and increasing returns to scale in shipping.17 Totally differentiating Equation (B2)
by qij and Z, and rearranging:18

dqij
dZ

=

∂Pj
∂Z

+
∂2Pj
∂Qj∂Z

∂Qj

∂qij
qij

−

(
2
∂Pj
∂Qj

∂Qj

∂qij
+
∂2Pj
∂Q2

j

(
∂Qj

∂qij

)2

qij +
∂Pj
∂Qj

∂2Qj

∂q2ij
qij

) (B3)

Invoking symmetry, I substitute qij =
Qj

Nj
. I also define the “conduct parameter” θj ≡ ∂Qj

∂qij
.19

Rewriting (B3):

dqij
dZ

=

∂Pj
∂Z

+
∂2Pj
∂Qj∂Z

Qjθj
Nj

−
(
2
∂Pj
∂Qj

θj +
∂2Pj
∂Q2

j

Qjθ
2
j

Nj

+
∂Pj
∂Qj

∂θj
∂qij︸︷︷︸
=0

Qj

Nj

) (B4)

I assume ∂θj
∂qij

= 0, because small changes in qij are unlikely to change the relationship between
carrier i’s quantity qij and total demand Qj.20

Next, I derive the comparative static for Qj =
∑

i qij. Totally differentiating Qj by Z, and
invoking symmetry across all Nj rail carriers:

dQj

dZ
=
∑
i

∂Qj

∂qij

dqij
dZ

= Njθj
dqij
dZ

(B5)

17. My empirical analysis relaxes this assumption by allowing rail transport costs to vary with shipment size.
Since plants are small relative to the coal mining sector, I also assume that Cj is independent of qij .

18. This applies the Implicit Function Theorem: ∂πij

∂qij
is a function of qij and Z, for level set ∂πij

∂qij
= 0.

19. I use this “conduct parameter” formulation only for notational convenience (following Atkin and Donaldson
(2015)). Below, I replace θj = 1, which is consistent with Cournot competition. Calibrating θj as a structural
parameter can be problematic, as it only has a well-defined interpretation at a few values (Corts (1999)).

20. A small change in qij should not change whether firm i behaves as Cournot competitive (θj = 1).
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⇒ dQj

dZ
=

∂Pj
∂Z

Nj +
∂2Pj
∂Qj∂Z

Qjθj

−
(
2
∂Pj
∂Qj

+
∂2Pj
∂Q2

j

Qjθj
Nj

) (B6)

The first term in the numerator, ∂Pj

∂Z
Nj, captures the level-effect of the demand shift, which

should be weakly positive: an inward demand shift (i.e. dZ < 0) should reduce plant j’s coal
consumption Qj. The second term in the numerator, ∂2Pj

∂Qj∂Z
Qjθj, captures the extent to which

the demand shift dZ changes the slope of inverse demand: if demand becomes more elastic as
gas prices fall (i.e. ∂2Pj

∂Qj∂Z
< 0), rail carriers should increase their best-response quantities. The

denominator is positive by the second-order condition (see Appendix B.4 below).
The final step converts Equation (B6) into the total derivative of Pj with respect to Z:

dPj
dZ

=
∂Pj
∂Qj

dQj

dZ
+
∂Pj
∂Z

(B7)

dPj
dZ

=
∂Pj
∂Qj


∂Pj
∂Z

Nj +
∂2Pj
∂Qj∂Z

Qjθj

−
(
2
∂Pj
∂Qj

+
∂2Pj
∂Q2

j

Qjθj
Nj

)
 +

∂Pj
∂Z

(B8)

dPj
dZ

=


∂Pj
∂Z

Nj +
∂2Pj
∂Qj∂Z

Qjθj

−

(
2 +

∂2Pj
∂Q2

j

(
∂Pj
∂Qj

)−1
Qjθj
Nj

)
 +

∂Pj
∂Z

(B9)

Let EDj
≡
(
∂2Pj

∂Q2
j

)(
∂Pj

∂Qj

)−1

Qj, or the elasticity of the slope of inverse demand:

dPj
dZ

=

∂Pj
∂Z

Nj +
∂2Pj
∂Qj∂Z

Qjθj

−
(
2 + EDj

θj
Nj

) +
∂Pj
∂Z

2 + EDj

θj
Nj

2 + EDj

θj
Nj

 (B10)

⇒ dPj
dZ

=

∂Pj
∂Z

(
2 + EDj

θj
Nj

−Nj

)
− ∂2Pj
∂Qj∂Z

Qjθj

2 + EDj

θj
Nj

(B11)

I define markups as µj ≡ Pj − Cj − S(Tj), assuming Cj and S(Tj) are independent of qij and
Z.21 Hence, it follows that:

⇒ dµj
dZ

=

∂Pj
∂Z

(
2 + EDj

θj
Nj

−Nj

)
− ∂2Pj
∂Qj∂Z

Qjθj

2 + EDj

θj
Nj

(B12)

21. During my sample period, U.S. natural gas prices were uncorrelated with diesel prices, the time series
component of Tj . Figure 2 shows that delivered coal prices do not respond to medium-run gas price shocks.
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Equation (3) replaces θj = 1, which is consistent with Cournot competition:

Cournot competition:
dµj
dZ

=

∂Pj
∂Z

(
2 +

EDj

Nj

−Nj

)
− ∂2Pj
∂Qj∂Z

Qj

2 +
EDj

Nj

An alternate market structure of perfect collusion would replace θj = Nj:

Perfect collusion:
dµj
dZ

=

∂Pj
∂Z

(
2 + EDj

−Nj

)
− ∂2Pj
∂Qj∂Z

QjNj

2 + EDj

Under either assumption on the conduct between rail carriers, the outside option of barge
transportation should eliminate rail carriers’ ability to set positive markups:

Barge option:
dµj
dZ

≈ 0

The literature treats barge shipping as (close to) competitive (e.g., MacDonald (1987); Busse
and Keohane (2007); Wetzstein et al. (2021)). EIA data report lower average transportation
costs for coal-by-barge ($5–8/ton) than for coal-by-rail ($17–23/ton).22 I observe prices for
both coal-by-barge and coal-by-rail deliveries to the same plant for 94 plant-years in my coal
delivery dataset; for 65 plant-years (69%), coal-by-barge has lower average shipping costs than
coal-by-rail.23 Together, this evidence suggests that even if barge shipping were not (close
to) competitive, its cost advantage over rail would make rail carriers’ residual demand quite
elastic—leaving them little ability to exercise market power by setting rail markups.

B.2 Arbitrage, coal attributes, and cross-plant dependencies

Here, I address three simplifying assumptions in my Cournot model. First, I assume that
plant j cannot resell purchased coal to other plants, which effectively lets rail carrier i optimize
each plant independently. This conforms with reality, where it is cost-prohibitive for plants to
circumvent the rail carriers by reselling coal using trucks.24 A more explicit formulation of the
rail carrier’s problem would include arbitrage constraints that bind when price wedges are just
large enough to make coal resale cost-effective. This would follow a standard representation of
3rd-degree price discrimination (e.g., Schmalensee (1981)).

Second, my model abstracts from coal’s heterogeneous attributes and geography. In reality,
plant j has preferences over coal varieties, given its boiler specifications, pollution control
devices, and environmental compliance costs. If plant j is serviced by two rail carriers and
prefers coal from Wyoming, but one carrier’s track does not extend to Wyoming, then the plant
faces an effective rail monopoly. A richer model could specify a separate profit function for
each rail carrier i, plant j, and coal-producing county o. This would account for heterogeneous
demand across coal varieties Poj(Qoj;Zoj), commodity costs Co that reflect coal attributes (e.g.,

22. See Table 1 here: https://www.eia.gov/coal/transportationrates/.
23. Here, I approximate shipping costs by subtracting county-year average mine-mouth prices from delivered

prices. This captures roughly 80% of the variation in physical coal attributes (i.e., BTU, sulfur, and ash content).
24. Using barges to resell coal would be more feasible and cost-effective. However plants with this waterborne

option likely face markups close to zero, obviating the need to arbitrage.
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sulfur content), shipping costs S(Toj) that reflect origin-to-destination-specific rail mileage, and
route-specific entry costs Foj.

Third, I ignore dependencies in coal demand across plants and coal types. In reality, plant
j’s demand for type-o coal depends on the prices it faces for coal from other counties, and likely
also on the prices faced by other plants (Varian (1985); Katz (1987)). I can incorporate this
vector of non-oj prices into the parameter vector Zoj, or explicitly include this vector of prices
as an argument entering inverse demand: Poj(Qoj;P−(oj),Zoj).

I can modify Equation (B1) to explicitly account for each of these assumptions, in order
to illustrate what the above comparative statics assume away:

Πi(qi) = qi ·
[
P(Q;Z) − C − S(Ti)

]
− Fi · 1

[
qi > 0

]
(B13)

s.t.
∣∣∣Poj(Qoj;P−(oj),Z) − P(Q;Z)

∣∣∣ ≤ Aj ∀ o, ∀ j

Here, rail carrier i jointly optimizes across all county-plant pairs, and qi is an [OJ × 1] vector
of coal quantities (indexed by oj). P(Q;Z) is the OJ-dimensional inverse demand function,
which depends on the [OJ × 1] vector of coal quantities Q and a matrix of demand parameters
Z with OJ rows. C is an [OJ × 1] vector of mine-mouth coal costs, repeating each Co J times.
S(Ti) is an [OJ×1] vector of carrier i’s coal shipping costs from origin o to destination j. Fi is
an [OJ × 1] vector of carrier i’s fixed costs of maintaining each oj route, which is multiplied by
an [OJ×1] vector of indicators for carrier i’s entry decision along each route. Aj is an [OJ×1]
vector of the price wedges at which arbitrage becomes feasible (i.e. reflecting plant j’s costs of
shipping coal to/from all other plants).25

If the OJ arbitrage constraints never bind, and if the first-derivative matrix of P(Q;Z) is
diagonal,26 then firm i faces a separate unconstrained maximization problem for each plant:27

max
qij

πij(qij) =
∑
o

qioj

[
Poj(Qoj;Zoj) − Co − S(Toj)

]
− Fij · 1

[
qij > 0

]
∀ j (B14)

Setting profits to zero for oj routes that carrier i does not service, Equation (B14) becomes:

max
{qioj} | qioj>0

πij =
∑

o | qioj>0

{
qioj

[
Poj(Qoj;Zoj) − Co − S(Toj)

]
− Foj

}
∀ j (B15)

Suppose that plant j only consumes coal from the set of counties Oj, and treats all coal from
these counties as perfectly substitutable: Poj(Qoj;Zoj) = Pj(Qj;Zj) ∀ o ∈ Oj. Further suppose
that it has zero demand for coal from other counties: Qoj(Poj;Zoj) = 0 ∀ o /∈ Oj. Then, the
rail carrier can choose the cheapest quantity q∗ij from across counties o ∈ Oj:

max
q∗ij

πij = q∗ij

[
Pj(Q

∗
j ;Zj) − C∗

ij − S(T∗
ij)
]
− Fj ∀ j (B16)

25. Aj is [OJ × 1] to conform with the dimension of P(Q;Z), meaning that there are O null j-to-j no-
arbitrage constraints within plant j’s set of arbitrage constraints. Vertical lines denote the absolute value
operator, applied element-wise to the difference between the scalar Poj(Qoj ;P−(oj),Z) and the vector P(Q;Z).
Busse and Keohane (2007) note that in order to arbitrage around the railroads, plants would need to transfer
coal from their on-site storage piles onto trucks, a more costly mode of transportation. While coal resale is quite
rare in practice, the threat of arbitrage may limit railroads’ willingness to price discriminate.

26. That is, ∂Poj

∂Qnk
= 0 for k ̸= j or n ̸= o; and ∂Poj

∂Znk
= 0 for k ̸= j or n ̸= o, for any element Z of Z.

27. Here, Fij and qij are [O × 1] vectors.
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Here, Q∗
j =

∑
i q

∗
ij; and C∗

ij and T∗
ij are carrier i’s minimized costs of supplying q∗ij.28 Equation

(B16) collapses to Equation (B1) if Cj = C∗
ij and Tj = T∗

ij for all carriers that service plant j.

B.3 Accounting for the threat of regulation

My model ignores the potential for binding rail price regulation, which is unrealistic. Since 1996,
the Surface Transportation Board has reviewed only 34 cases disputing the “reasonableness” of
coal-by-rail shipping rates; only 10 of these 34 cases ended with a decision that the rail carrier’s
rate was “unreasonable”. This likely represents only a small fraction of rail rates constrained
by the threat (or even the perceived threat) of a regulatory challenge. I can modify Equation
(B1) to account for the threat of regulation:

πRij(qij) = qij

[
Pj(Qj;Zj) − Cj − S(Tj)

]
− Fj − Rj(µj) (B17)

Rj(µj) is the expected penalty (in dollars) from regulatory oversight (e.g., a rate case brought
by the Surface Transportation Board). Rj(·) is an increasing function of the markup µj, since
higher markups are more likely to lead to action from the regulator. This reflects the Surface
Transportation Board’s practice of loosely interpreting its statutory standard (180% above total
variable costs), while exercising discretion in allowing railroads to earn an adequate return on
investment (Wilson (1996); MacDonald (2013); Mayo and Sappington (2016); InterVISTAS
(2016)).29 πRij represents expected profits, net of Rj(µj).

Firm i’s first-order condition is now:
∂πRij
∂qij

= Pj(Qj;Zj) + qij
∂Pj
∂Qj

∂Qj

∂qij
− Cj − S(Tj) − ∂Rj

∂Pj

∂Pj
∂Qj

∂Qj

∂qij
(B18)

Totally differentiating by qij and Z, rearranging, substituting qij =
Qj

Nj
and θj ≡ ∂Qj

∂qij
, and

assuming ∂θj
∂qij

= 0:

dqij
dZ

=

∂Pj
∂Z

(
1− ∂Pj

∂Qj

θj
∂2Rj

∂P 2
j

)
+

∂2Pj
∂Qj∂Z

θj

(
Qj

Nj

− ∂Rj

∂Pj

)
−
[
2
∂Pj
∂Qj

θj +
∂2Pj
∂Q2

j

θ2j

(
Qj

Nj

− ∂Rj

∂Pj

)
− θ2j

(
∂Pj
∂Qj

)2
∂2Rj

∂P 2
j

] (B19)

Substituting using Equation (B5), and multiplying through by Njθj:

dQij

dZ
=

Nj
∂Pj
∂Z

(
1− ∂Pj

∂Qj

θj
∂2Rj

∂P 2
j

)
+

∂2Pj
∂Qj∂Z

θj

(
Qj −Nj

∂Rj

∂Pj

)
−
[
2
∂Pj
∂Qj

+
∂2Pj
∂Q2

j

θj

(
Qj

Nj

− ∂Rj

∂Pj

)
− θj

(
∂Pj
∂Qj

)2
∂2Rj

∂P 2
j

] (B20)

Substituting using Equation (B7), rearranging, substituting EDj
≡
(
∂2Pj

∂Q2
j

)(
∂Pj

∂Qj

)−1

Qj, and
invoking the assumption of exogenous Cj and S(Tj):

28. Let Goj ≡ Co + S(Toj). Then, q∗ij ≡ argminqioj | qioj>0 , o∈Oj
Goj , G∗

ij ≡ minqioj | qioj>0 , o∈Oj
Goj , and

C∗
ij + S(T∗

ij) = G∗
ij .

29. If the regulator strictly enforced this standard, a more realistic formulation of Equation (B17) would replace
Rj(µj) with a constraint that qijPj(Qj ;Zj) ≤ 1.8qij

[
Cj + S(Tj)

]
.
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dµj
dZ

=

∂Pj
∂Z

[
2 + EDj

θj

(
1

Nj

− ∂Rj

∂Pj

1

Qj

)
−Nj + (Nj − 1)θj

∂Pj
∂Qj

∂2Rj

∂P 2
j

]
− ∂2Pj
∂Qj∂Z

θj

(
Qj −Nj

∂Rj

∂Pj

)
2 + EDj

θj

(
1

Nj

− ∂Rj

∂Pj

1

Qj

)
− θj

∂Pj
∂Qj

∂2Rj

∂P 2
j

I assume that ∂Rj

∂Pj
> 0 and ∂2Rj

∂P 2
j
≥ 0, since the probability of regulatory action should increase

in µj, and likely convexly. If I restrict ∂2Rj

∂P 2
j
= 0, this expression becomes:

dµj
dZ

=

∂Pj
∂Z

[
2 + EDj

θj
Nj

(
1− ∂Rj

∂Pj

Nj

Qj

)
−Nj

]
− ∂2Pj
∂Qj∂Z

Qjθj

(
1− ∂Rj

∂Pj

Nj

Qj

)
2 + EDj

θj
Nj

(
1− ∂Rj

∂Pj

Nj

Qj

) (B21)

I can rearrange Equation (B21) in order to sign terms in the numerator and denominator:

dµj
dZ

=

Equation (B12) numerator: > 0︷ ︸︸ ︷
> 0︷︸︸︷
∂Pj
∂Z

(
2 +

> 0︷︸︸︷
EDj

θj
Nj

−Nj

)
−

< 0︷ ︸︸ ︷
∂2Pj
∂Qj∂Z

Qjθj +

Added threat of regulation: < 0︷ ︸︸ ︷
> 0︷︸︸︷
∂Rj

∂Pj

( < 0︷ ︸︸ ︷
∂2Pj
∂Qj∂Z

Njθj −

> 0︷︸︸︷
∂Pj
∂Z

> 0︷︸︸︷
EDj

θj
Qj

)
2 + EDj︸︷︷︸

> 0

θj
Nj︸ ︷︷ ︸

Equation (B12) denominator: > 0

+ − ∂Rj

∂Pj︸︷︷︸
> 0

EDj︸︷︷︸
> 0

θj
Qj

︸ ︷︷ ︸
Added threat of regulation: < 0

I sign ∂Pj

∂Z
> 0, ∂2Pj

∂Qj∂Z
< 0, and EDj

> 0, which is consistent with both the intuition of Figure

3 and my ⟨λ̂0j, λ̂1j, λ̂2j⟩ estimates from Figure 5.30 The threat of regulation decreases the
numerator and the denominator, creating an ambiguous net effect on markup changes.

It might seem counter-intuitive that the threat of regulation could simultaneously dampen
markup levels and induce larger changes in markups. This effect is driven by the curvature of
demand. Regulation unambiguously reduces markup changes if I set EDj

= 0:

dµj
dZ

∣∣∣∣
EDj

=0

=

Modified Equation (B12) numerator: > 0︷ ︸︸ ︷
> 0︷︸︸︷
∂Pj
∂Z

(2−Nj) −

< 0︷ ︸︸ ︷
∂2Pj
∂Qj∂Z

Qjθj +

Added threat of regulation: < 0︷ ︸︸ ︷
> 0︷︸︸︷
∂Rj

∂Pj

< 0︷ ︸︸ ︷
∂2Pj
∂Qj∂Z

Njθj

2

Comparing these two expressions illustrates how concave demand (EDj
> 0) interacts with the

threat of regulation in two ways. First, it moderates the demand shock, since regulation induces
lower markups prior to the change in Z (i.e., the numerator effect). Second, it magnifies the
penalty risk associated with maintaining markups (i.e., the denominator effect).

For suggestive evidence of how the threat of rail regulation impacts markup changes, I
can compare my M̂j predictions—the empirical analog of dµj

dZ
constructed without accounting

for regulation—with my DD estimates using TREATj = M̂j. Regression coefficients of τ̂ ≈ 20

30. I also assume Nj ∈ {1, 2}, θj > 0, and Qj > 0.
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would indicate that my predictions (ignoring regulation) match the average observed markup
change (inclusive of regulation): M̂j is in ($/MMBTU coal)/($/MMBTU gas), τ is in ($/ton
coal)/($/MMBTU gas), and coal’s average BTU content is 19.7 MMBTU/ton. My much smaller
DD estimates of τ̂ ≈ 3, suggest that regulation tends to dampen coal-by-rail markup changes.

B.4 Empirically validating the second-order condition

The second-order condition of the rail carrier’s problem (Equation (B1)) is:

∂2πij
∂q2ij

= 2
∂Pj
∂Qj

∂Qj

∂qij
+ qij

∂2Pj
∂Q2

j

( ∂Qj

∂qij︸︷︷︸
=θj

)2
+ qij

∂Pj
∂Qj

∂2Qj

∂q2ij︸ ︷︷ ︸
=

∂θj
∂qij

=0

< 0 (B22)

= 2
∂Pj
∂Qj

θj + qij
∂2Pj
∂Q2

j

θ2j < 0 (B23)

I can empirically approximate this expression using results from my coal demand estimation—
namely, the first and second derivatives of inverse coal demand at the observed quantity of
consumption, for each plant-month. If I restrict my sample to plants without a water option
(where θj = 1), I observe 3,184 plant-months with a rail shipment—72% of which satisfy the
empirical analog of this second-order condition. For the 1,841 plant-months where the plant is
captive (and qij = Qj), 73% satisfy the empirical analog of Equation (B23).

Figure B1 plots the distribution of this restricted subset of plant-months, separately for
plants with above- vs. below-mean M̂j. While the second-order condition holds for most plant-
months, it holds more often for plant-months with M̂j ≥ 0.29 (77%, compared to 69% of
plant-months with M̂j < 0.29). This suggests that if violations of the second-order condition
cause misspecification of M̂j, such misspecification would bias my DD estimates towards zero
(since plants with larger M̂j would be relatively less misspecified). This aligns with my demand
parameter estimates: λ̂2j > 0 for 69% of plants, indicating that the relevant portion of the
coal demand curve tends to be concave. Since Equation (B23) can only fail if coal demand is
convex, these empirical patterns are reassuring in the context of my theoretical framework.

Figure B1: Empirical approximation of the second-order condition
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Notes: These are histograms of the empirical approximation of the Equation (B23), at the plant-month level. I populate the first
and second derivatives using my preferred demand curve estimates (see Appendix A.1), and restrict sample to plants with Wj = 0
(so that θj = 1) and Dj = 1 (so that qij = Qj). I weight observations using k = 3 nearest-neighbor weights, and winsorize at
[−0.001, 0.001]. The second-order condition holds for 77% (69%) plant-months with M̂j above (below) the mean of 0.29.
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C Pass-through of a carbon tax

C.1 Derivation of pass-through rate ρj
Here, I derive expressions for the carbon tax pass-through (ρ) implied by a change in natural gas
prices (∆Z) and a reoptimization of coal markups (∆µ). Consider a coal plant j in a market
with many natural gas plants. The ratio of coal-to-gas marginal costs governs the relative
ordering of plants on the electricity supply curve, which is the primary factor influencing plant
j’s operating decisions (see Figure 3). Plant j’s cost ratio is (suppressing subscripts):

CR =
MCcoal

MCgas
=

HRcoal · P
HRgas · Z

(C1)

HRfuel is the heat rate, or the rate at which each plant converts fuel into electricity (in
MMBTU/MWh).31 P is the coal price, and Z is the gas price, both in $/MMBTU.

Let ∆Z denote a change in the gas price Z, which implies a new cost ratio:

CR′ =
HRcoal · P

HRgas · (Z +∆Z)
(C2)

A hypothetical carbon tax t would yield an identical CR′, holding gas prices constant:

CR′ =
HRcoal · P

HRgas · (Z +∆Z)
=

HRcoal · (P + tEcoal)

HRgas · (Z + tEgas)
(C3)

The tax t is in $ per metric ton CO2, and Efuel is the CO2 emissions rate for each fuel, in metric
tons CO2/MMBTU. Since Ecoal > Egas, t exists for any feasible change in gas prices ∆Z.32

Solving Equation (C3) for t:
P

Z +∆Z
=
P + tEcoal
Z + tEgas

P (Z + tEgas) = (Z +∆Z)(P + tEcoal)

P · tEgas = (Z +∆Z)tEcoal +∆Z · P
t[P · Egas − (Z +∆Z)Ecoal] = ∆Z · P

⇒ t(∆Z) =
∆Z · P

P · Egas − (Z +∆Z)Ecoal
(C4)

t(∆Z) represents the equivalent carbon tax implied by the gas price change ∆Z.
However, rail carriers may reoptimize coal markups in response to ∆Z. If markups change

by ∆µ, I can rewrite Equation (C2):

CR′ =
HRcoal · (P +∆µ)

HRgas · (Z +∆Z)
(C5)

31. HRgas is weight-averaged across all gas plants that compete with plant j in electricity dispatch.
32. I adapt this mapping from fuel prices to carbon tax from Cullen and Mansur (2017). Natural gas has

homogeneous emissions of 0.053 metric tons CO2/MMBTU (https://www.eia.gov/tools/faqs/faq.php?id=73&
t=1). Coal’s average emissions are 0.095 metric tons CO2/MMBTU, which are fairly homogeneous. EPA
assumes 0.00025 metric tons CO2/ton-mile of rail freight (U.S. EPA (2008)); this implies the CO2 emitted from
diesel combustion in coal-by-rail is two orders of magnitude smaller than the CO2 emitted from burning coal.
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Pass-through of the implicit tax t(∆Z) is a function of ∆µ. If ∆µ = 0, then the pass-through
rate is ρ = 1: the coal plant faces the full implicit tax t(∆Z), without any changes in markups
that weaken or strengthen this price signal. If sign(∆µ) = sign(∆Z), then ∆µ weakens the effect
of ∆Z on CR′, translating to incomplete pass-through (i.e. ρ < 1). If sign(∆µ) = −sign(∆Z),
then ∆µ strengthens the effect of ∆Z on CR′, translating to overshifting (i.e. ρ > 1).

Modifying Equation (C3) to allow for changes in markups (∆µ) and incomplete pass-
through (i.e. ρ ̸= 1):

HRcoal · (P +∆µ)

HRgas · (Z +∆Z)
=

HRcoal · (P + ρ t(∆Z)Ecoal)

HRgas · (Z + t(∆Z)Egas)
(C6)

Here, t(∆Z) is the carbon tax implied by ∆Z under full pass-through (i.e. ∆µ = 0, ρ = 1). If
markups adjust (i.e. ∆µ ̸= 0), this causes coal plants to face a different proportion (i.e. ρ ̸= 1) of
this implicit tax. Note that ρ appears only in the numerator, as I assume full tax pass-through
for natural gas (I relax this assumption in Appendix C.3 below). Solving Equation (C6) for ρ:

P +∆µ

Z +∆Z
=

P + ρ t(∆Z)Ecoal
Z + t(∆Z)Egas

[P + ρ t(∆Z)Ecoal][Z +∆Z] = [P +∆µ][Z + t(∆Z)Egas]

ρ =
[P +∆µ][Z + t(∆Z)Egas]− P [Z +∆Z]

t(∆Z)[Z +∆Z]Ecoal

ρ =
∆µ · Z + t(∆Z)[P +∆µ]Egas −∆Z · P

t(∆Z)[Z +∆Z]Ecoal

ρ =
(P +∆µ)Egas
(Z +∆Z)Ecoal

+
∆µ · Z −∆Z · P
(Z +∆Z)Ecoal

[
1

t(∆Z)

]
Substituting t(∆Z) from Equation (C4), and rearranging:

ρ =
(P +∆µ)Egas
(Z +∆Z)Ecoal

+
∆µ · Z −∆Z · P
(Z +∆Z)Ecoal

[
P · Egas − (Z +∆Z)Ecoal

∆Z · P

]
ρ =

(P +∆µ)Egas
(Z +∆Z)Ecoal

+
∆µ · Z · Egas

∆Z(Z +∆Z)Ecoal
− ∆µ · Z

∆Z · P
+ 1 − P · Egas

(Z +∆Z)Ecoal

ρ = 1 +
∆µ · Egas

(Z +∆Z)Ecoal
+

∆µ · Z · Egas
∆Z(Z +∆Z)Ecoal

− ∆µ · Z
∆Z · P

Restoring the coal plant subscript j:

⇒ ρj(∆µj,∆Z) = 1 +
∆µj
∆Z

(
Egas
Ecoal

− Z

Pj

)
(C7)

This expression shows that ∆µj leads to incomplete pass-through via two channels. The first
term adjusts for the wedge in emissions factors, while the second term rescales for the baseline
difference in the fuel costs. This second term is j-specific, depending on plant j’s coal price.

For expositional clarity, I simplify this derivation in the main text by removing heat
rates (which cancel out in Equation (C6)). I parameterize Equation (C7) by substituting
∆µ = τ̂ M̂j

(
MMBTU

ton

)
j
∆Z; set Pj equal to plant j’s average delivered coal price in 2007–08 (the

start of the fracking boom); and set Z equal to the 2007–08 average Henry Hub spot price.
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Figure C1: Electricity supply with gas price decrease or carbon tax

Notes: This figure shows how a gas price decrease mimics a carbon tax on the electricity sector in the short-run, using the same
stylized electricity market as Figure 3. The top-left panel reproduces the top-left panel of Figure 3. My empirical results find that
coal markups decrease due to a decrease in gas prices; I illustrate this decrease in markups (∆µ < 0) in the top-right panel. Absent
a gas price decrease, there exists a carbon tax (t) that yields the same supply curve as the top-left panel, vertically shifted upwards
(i.e. bottom-left panel). Incomplete pass-through of that carbon tax (i.e. ρ < 1 in the bottom-right panel) can result in the same
generation allocation under a (counterfactual) carbon tax as decreasing coal markups after a (factual) gas price drop.

I can rewrite Equation (C3) to incorporate marginal environmental compliance costs:

HRcoal · (P +∆µ+MCenv
coal)

HRgas · (Z +∆Z +MCenv
gas )

=
HRcoal · (P +MCenv

coal + ρ t(∆Z)Ecoal)

HRgas · (Z +MCenv
gas + t(∆Z)Egas)

(C8)

MCenv
fuel represents the marginal costs of environmental compliance per MMBTU of fuel, as

defined in Step 1 of Appendix A.1. The pass-through expression in Equation (C8) becomes:

⇒ ρj(∆µj,∆Z) = 1 +
∆µj
∆Z

(
Egas
Ecoal

−
Z +MCenv

gas, j

Pj +MCenv
coal, j

)
(C9)

Figure C4 estimates ρ̂j inclusive of environmental costs, following Equation (C9). I parameterize
MCenv

coal, j as the 2007–08 plant-specific average of MCenv
um (from Equation (A1)); and MCenv

gas, j

as the 2007–08 average of
∑

g∈PCAj
MCenv

gm (from Equation (A2)).33

The mapping from cost ratio (CR) to implicit carbon tax (t) relies on two key assumptions.
First, electricity demand must be perfectly inelastic. In reality, U.S. electricity demand is close
to perfectly inelastic, as there is extremely limited demand response capacity. Second, the
marginal fuel in electricity markets must be either coal or gas. In reality, other technologies
(e.g. diesel or hydro) are rarely marginal in U.S. regions with non-trivial coal generation. Under
these two assumptions, electricity generation depends only on the ordering of plants along the
supply curve. The “equivalent” carbon tax t(∆Z) would produce the same ordering, yielding
the same generation outcomes at higher electricity prices (since the tax would raising marginal
costs). Figure C1 illustrates how a gas price decrease can yield the same allocation of generation
as a carbon tax, comparing the top-left vs. bottom-left panels. Comparing the top-right vs.
bottom-right panels, a decrease in coal markups (∆µ < 0) can increase the allocation of coal
generation in a way that mimics incomplete pass-through of a carbon tax to coal plants (ρ < 1).

33. I ignore non-fuel variable costs (e.g., labor) since (i) electricity production is Leontief in fuel (Fabrizio,
Rose, and Wolfram (2007)), and non-fuel inputs are of second-order importance to marginal operations of fossil
plants (Cicala (2022)); and (ii) reliable data on non-fuel variable costs are unavailable (see Appendix G.2.3).

18



The CR-to-t mapping also assumes that higher electricity prices would not alter plants’
bidding strategies, due to either dynamic operating constraints (which Cullen (2015) finds to be
second-order), exercise of market power (Mansur (2013)), or differential pass-through of shocks
to fuel vs. carbon prices (Fabra and Reguant (2014)). Finally, this mapping only holds in the
short-run, where both the stock of generators and their CO2 emissions rates are fixed.

C.2 Sensitivity of pass-through results

Figure 7 plots ρ̂j using my DD estimate for TREATj = M̂j with k = 3 nearest neighbors (i.e.,
τ̂ = 2.94 from Column (2) of Table 3) to parameterize Equation (C7). I weight each plant’s
marker in the scatter plot using the k = 3 nearest-neighbor weights (consistent with the sample
of plants in the regression) times the total quantity of 2007–15 coal deliveries (scaling plants by
size/importance). Figure C2 constructs the analogous scatter plot of ρ̂j estimates with k = 1
nearest neighbors, using τ̂ = 3.66 from Column (1) of Table 3. Figure C3 does the same for
k = 5 nearest neighbors, using τ̂ = 3.01 from Column (3) of Table 3. All three τ̂ estimates imply
qualitatively similar distributions of ρ̂j, with greater dispersion for larger τ̂ . Figure C4 plots
my preferred ρ̂j estimates against ρ̂j estimates using Equation (C9), which includes marginal
environmental compliance costs; this slightly compresses the distribution of ρ̂j towards 1.

Figure C2: Estimated pass-through, for k = 1 nearest neighbors
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Notes: This figure is identical to Figure 7, except that I use τ̂ from Column (1) of Table 3, with k = 1 nearest-neighbor weights.

Figure C3: Estimated pass-through, for k = 5 nearest neighbors
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Notes: This figure is identical to Figure 7, except that I use τ̂ from Column (3) of Table 3, with k = 5 nearest-neighbor weights.
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Figure C4: Accounting for environmental costs in ρ̂j
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Notes: This figure plots my preferred ρ̂j estimates from Figure 7 (horizontal axis) against ρ̂j estimates that account for marginal
environmental compliance costs (using Equation (C9), vertical axis). I plot the 45-degree line, and report percentages of 2007–15
coal-by-rail shipments in each ρ̂j grid cell along each axis (suppressing the 32.8% label for shipments to plants with a barge option).

Figure C5: Estimating ρ̂j using τ̂ estimates in $/MMBTU

10.0% 17.9% 21.9% 14.6% 2.8%

1.3%

24.3%

24.2%

15.0%

2.4%

.7

.8

.9

1

1.1

1.2

ρ
 u

s
in

g
 D

D
 e

s
ti
m

a
te

s
 i
n

 $
/M

M
B

T
U

 c
o

a
l

.7 .8 .9 1 1.1 1.2
Preferred pass−through estimates (ρ from Figure 8)

Notes: This figure plots my preferred ρ̂j estimates from Figure 7 (horizontal axis) against ρ̂j estimates based on a DD model with
coal prices in $/MMBTU (vertical axis). I plot the 45-degree line, and report percentages of 2007–15 coal-by-rail shipments in each
ρ̂j grid cell along each axis (suppressing the 32.8% label for shipments to plants with a barge option).

Figure C6: Estimating ρ̂j using state-specific gas prices
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Notes: This figure plots my preferred ρ̂j estimates from Figure 7 (horizontal axis) against ρ̂j estimates using state-specific gas
prices (vertical axis). The latter use τ̂ estimates that replace Zm in Equation (5) with state-month average gas prices paid by power
plants; they likewise parameterize Equation (C7) using 2007–08 average delivered prices to gas plants in the same state as plant j.
I plot the 45-degree line, and report percentages of 2007–15 coal-by-rail shipments in each ρ̂j grid cell along each axis (suppressing
the 32.8% label for shipments to plants with a barge option).

For Figure C5, I estimate Equation (5) after converting the dependent variable (Pojms)
from $/ton to $/MMBTU of coal. The resulting τ̂ estimate is already in the right units,
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meaning that I can substitute ∆µ = τ̂ M̂j∆Z into Equation (C7). This yields slightly different
ρ̂j estimates, due to heterogeneity in coal’s MMBTU/ton conversion rate. I prefer ρ̂j estimates
that convert to $/MMBTU after estimating Equation (5), since per-ton prices more accurately
reflect variation in coal shipping costs (and since rail carriers price by ton).

Finally, Figure C6 replaces Henry Hub spot prices in both Equations (5) and (C7) with
average prices paid by gas power plants in each state. This better captures cross-sectional vari-
ation in gas prices paid by coal plant j’s competitors, but makes the econometric identification
of τ̂ less clean (e.g., due to potential regional gas price endogeneity). The resulting τ̂ estimate
increases in magnitude (see Panel G of Figure E8), and adding pipeline costs to Z increases the
last term in Equation (C7). Both factors pull the resulting ρ̂j estimates further away from 1.

C.3 Accounting for natural gas markups

In formulating my estimates of pass-through of an implicit carbon tax for coal plants, I assume
full pass-through of the tax for gas plants. This does not necessarily require competitive pricing
in natural gas transportation; rather, it assumes that any non-marginal-cost pricing in the gas
pipeline network does not respond to shocks to natural gas demand.

I can modify Equation (C6) to allow for incomplete pass-through of the implicit carbon
tax for gas plants (denoted as ψ):

HRcoal · (P +∆µ)

HRgas · (Z +∆Z)
=

HRcoal · (P + ρ t(∆Z)Ecoal)

HRgas · (Z + ψ t(∆Z)Egas)
(C10)

Solving for ρj:

⇒ ρj(∆µj,∆Z, ψ) = 1 +
∆µj
∆Z

[
Egas
Ecoal

(
Z + ψ∆Z

Z +∆Z

)
− Z

Pj

]
+

Egas(ψ − 1)Pj
Ecoal(Z +∆Z)

(C11)

This is equivalent to Equation (C7) for ψ = 1 (i.e. full pass-through for gas plants). Differenti-
ating Equation (C11) by ψ:

∂ρj
∂ψ

=
Egas
Ecoal

(
Pj +∆µj
Z +∆Z

)
(C12)

This shows that (i) ρ̂j is increasing in the pass-through rate for gas plants; and (ii) a larger
negative ∆Z magnifies this effect (shrinking the denominator faster than the numerator).

Either ψ < 1 or ψ > 1 is plausible. Incomplete pass-through would be consistent with
average-cost pricing, where pipeline operators recover a portion of their fixed costs volumetri-
cally. Pass-through greater than 1 would be consistent with pipeline operators raising markups
as lower gas prices made gas plants more inframarginal in electricity supply (i.e., the reverse of
the bottom-right panel of Figure 3). However, Figures C7–C8 demonstrate that relaxing the
assumption of ψ = 1 has only a small effect on my ρ̂j estimates. If I set ψ = 0.9 (as in Figure
C7), ρ̂j decreases for all coal plants, but only slightly; if I set ψ = 1.1 (as in Figure C8), ρ̂j
increases for all coal plants, but also only slightly.

My DD estimates also suggest that ψ ̸= 1 would be unlikely to qualitatively impact my
results: when I estimate Equation (5) replacing the Henry Hub price with average prices paid
by gas power plants that are inclusive of endogenous changes to gas markups, my τ̂ estimate
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Figure C7: Estimating ρ̂j assuming ψ = 0.9 for gas plants
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Notes: This figure plots my preferred ρ̂j estimates from Figure 7 (horizontal axis) against ρ̂j estimates assuming ψ = 0.9 for gas
plants (vertical axis). The latter parameterize Equation (C11) assuming ψ = 0.9 and ∆Z = −4, but are otherwise identical. I plot
the 45-degree line, and report percentages of 2007–15 coal-by-rail shipments in each ρ̂j grid cell along each axis. Here, I plot a
separate marker for each plant with W = 1, since ρ̂j < 1 for these plants when ψ < 1.

Figure C8: Estimating ρ̂j assuming ψ = 1.1 for gas plants
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Notes: This figure plots my preferred ρ̂j estimates from Figure 7 (horizontal axis) against ρ̂j estimates assuming ψ = 1.1 for gas
plants (vertical axis). The latter parameterize Equation (C11) assuming ψ = 1.1 and ∆Z = −4, but are otherwise identical. I plot
the 45-degree line, and report percentages of 2007–15 coal-by-rail shipments in each ρ̂j grid cell along each axis. Here, I plot a
separate marker for each plant with W = 1, since ρ̂j > 1 for these plants when ψ > 1.

slightly increases in magnitude (see Figure E8, Panel G). Figure C6 shows that using these
markup-inclusive gas prices pulls ρ̂j even further below 1 for the majority of coal plants.

Finally, I can directly estimate whether the prices of gas deliveries to power plants respond
to changes in these plants’ competitiveness. The following DD specification is analogous to
Equation (5), for monthly deliveries to gas plants (indexed by g):

Pgm = τCGW coal
g(m−L) +

L−1∑
ℓ=0

τCℓ GW
coal
g(m−ℓ) + τHP hub

g(m−L) +
L−1∑
ℓ=0

τHℓ P
hub
g(m−ℓ) + ηg + δm + εgm (C13)

Pgm is the delivered gas price to plant g in month m. GW coal
gm is the operating coal-fired capacity

in plant g’s PCA: decreases in GW coal
gm should weakly improve plant g’s competitiveness, making

it more inframarginal in electricity supply. P hub
gm is the natural gas price at the trading hub

nearest to plant g: this serves the same function as commodity and shipping controls in Equation
(5), by removing variation in natural gas costs that is common across (nearby) plants. ηg are
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plant fixed effects, and δm are month-of-sample fixed effects. τC captures the cumulative DD
effect of coal capacity changes on delivered gas markups, for plants in different PCAs.34

Table C1 reports cumulative DD effects over L ∈ {24, 36, 48} months. Differential changes
in hub-specific gas trading prices have a strong effect on the prices paid by power plants, and
I cannot reject full pass-through (i.e. τ̂H = 1). I find no evidence that differential coal retire-
ments across PCAs (which improve gas plants’ competitiveness) lead to differential changes in
markups, and I can reject |τ̂C | > 0.02 (i.e. 0.5% of the average gas price of $5.32–5.53/MMBTU).
These results provide empirical support for my assumption of ψ = 1.

Table C1: Markup DD results for natural gas plants
Outcome: delivered gas price ($/MMBTU)

(1) (2) (3)

GW coal capacity in g’s PCA (τ̂C) −0.001 0.000 −0.001
(0.009) (0.008) (0.011)

Price at g’s nearest gas hub (τ̂H) 0.994∗∗∗ 1.100∗∗∗ 1.309∗∗∗

(0.134) (0.148) (0.184)

Monthly lags (L) 24 36 48
Mean of dep var ($/MMBTU) 5.533 5.485 5.322
Plants 485 461 438
Observations 35,134 30,262 25,797

Notes: Each regression estimates Equation (C13) using a monthly panel of all plants that reported natural gas deliveries between
2002–2015. Regressions control for plant and month-of-sample fixed effects; results are similar if I replace plant fixed effects with
state fixed effects and control for each plant’s distance to nearest gas hub. I weight observations by the quantity of gas transacted.
Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

C.4 Incidence and alternate market structures

Weyl and Fabinger (2013, p. 547) derive the following expression for the incidence (I) of a
tax (t)—or the ratio of changes in consumer surplus (CS) vs. producer surplus (PS)—in a
symmetric oligopoly:

I =
dCS/dt

dPS/dt
=

ρ

1− (1− θ/N) ρ
(C14)

Here, ρ is the pass-through rate of the tax, θ is the conduct parameter, and N is the number of
symmetric firms in the market.35 As pass-through becomes more incomplete (i.e., as ρ decreases
from 1), incidence decreases and consumers pay proportionately less of the tax burden. For a
given pass-through rate ρ, a less competitive market structure (i.e., greater θ/N) also implies
lower incidence, because producers stand to lose more under a tax if they are already extracting
more oligopoly rents.36

I assume all plants faces either an effective rail monopoly (i.e. captive, Nj = 1) or an
effective symmetric rail duopoly (i.e. non-captive, Nj = 2). I also assume that market conduct

34. The correlation between GW coal
gm and P hub

gm is 0.04. This suggests that differential changes in gas competi-
tiveness are not influencing prices at gas trading hubs. Most gas plants do not purchase directly from tradings
hubs, however I use hub-specific prices to control for cross-sectional variation in pipeline costs and congestion.

35. Using my notation, θ/N corresponds to θ in the notation of Weyl and Fabinger.
36. That is, ∂I/∂ρ > 0; and ∂I/∂(θ/N) < 0, unless I < 0, which can only occur if ρ > 1.
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is Cournot (i.e. θj = 1) for plants without a coal-by-barge option, and competitive (i.e. θj = 0)
for plants with a coal-by-barge option (i.e. θj = 0, ρj = 1). These assumptions reduce Equation
(C14) to three possible mappings between pass-through and incidence:

Ij =


ρj if Nj = 1 , Wj = 0
ρj

1−ρj/2 if Nj = 2 , Wj = 0

∞ if Wj = 1

(C15)

If pass-through is incomplete (i.e. ρj < 1), then for a given pass-through rate, a less
competitive market (i.e. lower Nj) reduces the share of the tax borne by coal plants (i.e.
consumers) relative to rail carriers (i.e. producers). For example, ρj = 0.8 would imply Ij = 0.8
for a plant with Nj = 1 and Ij = 1.3 for a plant with Nj = 2. Infinite incidence occurs under
perfect competition, since perfectly elastic supply implies ρj = 1 and dPS/dt = 0.

I can reformulate incidence to summarize the proportion of the tax burden in the coal-by-
rail market that is borne by coal plants (i.e. consumers):

Ij
1 + Ij

=

(
dCS
dt

)
j(

dCS
dt

)
j
+
(
dPS
dt

)
j

=
ρj

1 + (θj/Nj) ρj
=


ρj

1+ρj
if Nj = 1 , Wj = 0

ρj
1+ρj/2

if Nj = 2 , Wj = 0

1 if Wj = 1

(C16)

For a pass-through rate of ρj = 0.8, a plant could bear 44% (if Nj = 1, Wj = 0), 57% (if Nj = 2,
Wj = 0), or 80% (if Wj = 1) of the lost surplus in coal markets. Importantly, the full tax burden
would depend on the extent to which coal plants could pass on marginal emissions costs via
higher wholesale electricity prices. If emissions tax pass-through in wholesale electricity markets
is 1 (consistent with Fabra and Reguant (2014)), then a carbon tax could increase profits for
coal plants that are relatively clean/efficient and have low pass-through rates in coal markets.

While the fracking boom simulated the effect of a carbon tax on the relative costs of coal
vs. gas plants, it had the opposite effect on electricity prices, as low gas prices caused electricity
prices to fall (Linn and Muehlenbachs (2018)). Lower electricity prices meant that coal plants
were very unlikely to be “winners” in the fracking boom, though incomplete pass-through in coal
shipping likely caused certain coal plants to be “smaller losers”. Figure C9 shows that across the
distribution of predicted incidence, capacity factors fell by an average of 21 percentage points;
91% of coal plants sold less electricity during 2011–15 than prior to the fracking boom.

My theory model assumes that rail carriers buy coal from a perfectly competitive mining
sector. While this greatly simplifies the derivations in Appendix B.1, this assumption is not
crucial for evaluating markups for coal deliveries.37 However, the upstream market structure
does impact how mines and railroads share the tax burden. Given that coal is both spatially
and physically heterogeneous, the assumptions of perfect competition likely do not hold.

I assume that Cj in Equations (1) and (B1) is exogenous, implying perfectly elastic coal
supply (a standard assumption for homogeneous commodity markets). This assumes that coal
mines earn zero economic rents, and would incur no lost profits due to a downstream carbon tax.
However, mines would face non-zero tax burden under any of three alternate market structures.

37. Equations (4)–(5) control for the average equilibrium coal price by county-year, taking the market structure
of the mining sector as given.
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Figure C9: Predicted incidence and changes in coal plants’ capacity factors
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Notes: This figure plots predicted share of implied tax burden (from Figure 8) against plants’ observed change in average capacity
factor from 2002–06 (pre-fracking boom) to 2011–15. A change of ∆CF j = −0.4 would be consistent with a plant’s capacity factor
falling from 0.8 to 0.4; ∆CF j < 0 for 91% of plants. I calculate ∆CF j setting CFj = 0 if plant j has retired or stopped producing.
Markers weight observations (i.e. plants) using the product of k = 3 nearest-neighbor weights and total 2007–15 coal deliveries.

First, suppose that coal mines and rail carriers coordinate, behaving as vertically inte-
grated monopolists. This may occur without formal profit-sharing, as geographically isolated
mines depend heavily on rail carriers to transact their coal, while rail carriers with sunk track
investments stand to gain considerable profits by cooperating with mines. In this case, I could
rewrite the rail carrier’s profit function replacing coal quantity (qioj) with the mine’s production
function, and replacing constant marginal cost (Cj) with total mining input costs. This would
cause coal mines and rail carriers to jointly share the burden of a carbon tax.

Second, suppose that coal mines can exert market power at the mine-mouth when selling to
rail carriers. This may occur if a few large firms dominate mining operations (as in the Powder
River Basin; Atkinson and Kerkvliet (1986)), if multiple rail carriers compete to purchase coal
from a single mining firm, or if mines can sell to non-rail intermediaries (e.g. coal-by-barge
firms). In this case, double marginalization would shift delivered coal prices even further from
the competitive benchmark (ignoring externalities).38 This would create a second opportunity
for incomplete pass-through of a cost shock (or a carbon tax), but adjustments in markups
would not be coordinated along the coal supply chain. If mines responded by reducing mine-
mouth markups, this would reduce the tax burden borne by rail carriers. Mines earning market
power rents would also stand to lose under a carbon tax.

Third, suppose that rail carriers can exert monopsony power at the mine-mouth. This may
occur if coal mines are captive to a single rail carrier with strong bargaining power: whereas
these mines depend on revenue a single product, diversified rail carriers may divert resources
(e.g. locomotives, labor) to other profitable shipping opportunities. In this case, rail carriers
could adjust prices both at the mine-mouth and at the power plant; they would likely bear an
even greater tax burden for having extracted rents on both sides of the market. If a downstream
carbon tax caused rail carriers to raise mine-mouth prices (i.e. incomplete pass-through at the
mine-mouth), the effects on coal mining profits would be theoretically ambiguous—depending
on whether mine-mouth prices increased by enough to offset the reduction in coal quantity.

38. Alexandrov, Pittman, and Ukhaneva (2018) find no empirical evidence of double marginalization between
railroads, in cases where multiple rail carriers own segments along the same shipping route.
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D CO2 emissions counterfactuals
Here, I describe how I estimate CO2 emissions counterfactuals in Section 7.3. I start by esti-
mating the relationship between fuel costs and generation for each coal unit. Then, I use the
fitted models to predict generation under two counterfactual scenarios: (i) if the fracking boom
never happened; and (ii) if the fracking boom happened, but coal markups remained fixed (i.e.,
dµj
dZ

= 0 and ρj = 1). Comparing across these two scenarios, I can calculate CO2 abatement
due to short-run coal-to-gas substitution, both with and without changes to coal markups.

D.1 Counterfactuals algorithm

Step 1: I construct counterfactual Henry Hub gas prices in the absence of the fracking boom,
using historic NYMEX monthly futures prices as of December 2008. This follows Holladay and
LaRiviere (2017), who estimate a structural break in Henry Hub spot prices on December 5,
2008. The left panel of Figure D1 compares actual prices to these futures prices, which are
close to pre-Recession levels (and would be roughly constant absent seasonal variation).39 To
construct a counterfactual price ZCF

gd for each gas plant g on day d, I adjust for the daily wedge
between the price at each plant’s nearest trading hub and the (factual) Henry Hub price.40

Figure D1: Counterfactual fuel price scenarios
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Scenario 1: fracking boom never happened
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Scenario 2: fracking boom, coal markups unchanged

Notes: The left panel plots my first scenario: gas prices absent the fracking boom, and coal markups that did not adjust to the (now
absent) coal demand shock. The right panel plots my second scenario: observed gas prices, but coal markups that did not adjust
to the coal demand shock. I plot Henry Hub futures prices as of December 2008; in this figure, higher coal prices are illustrative.

Step 2: Figure D1 illustrates average coal prices absent the fracking boom—had rail carriers
not decreased coal markups. I predict counterfactual coal prices PCF

ojms using the fitted model
estimating Equation (5) with TREATj = M̂j, and replacing factual Henry Hub prices (Zm)
with counterfactual Henry Hub prices (i.e. the solid black line in the left panel of Figure D1).

My DD regressions include only the subset of coal plants with nearest-neighbor matches
and unmasked coal prices. Here, I predict CO2 abatement across all coal plants. I regress PCF

ojms

on the interaction of factual coal prices (Pojms) and predicted markup changes (M̂j), estimating
a separate coefficient for each sample month.41 Taking predicted values from this regression,
I populate PCF

jm for the 41% of utility-owned coal-by-rail plants that aren’t in Column (2) of
Table 3. Taking predicted values from the same regression removing Pojms from the right-hand

39. Importantly, my counterfactual analysis begins after the Recession-related price spike in gas prices.
40. This preserves network congestion and pipeline costs in ZCF

gd . I also add the average gap between hub
prices and delivered prices, to account for last-mile pipeline charges (see discussion in Appendix G.5).

41. I include fixed effects for plant regions, as well as Cojms, S(Tojms), Xjm, and ηo from Equation (4).
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side, I populate PCF
jm for the 23% of non-utility-owned coal-by-rail plants with masked prices.

I populate PCF
jm = Pojms for non-rail coal shipments, assuming no markup changes.42

Step 3: I construct factual and counterfactual coal-to-gas cost ratios following Step 1 in
Appendix A.1. However, I now average both coal and gas marginal costs across all generating
units of each fuel type within each PCA, replacing Equation (A1) with:

MCcoal
um ≡

∑
j∈PCAu

(
Qelec
jm ·HRjm · (Pjm +MCenv

jm )∑
j∈PCAu

Qelec
jm

)
(D1)

This facilitates counterfactuals where many plants’ coal prices change. I construct counterfac-
tual cost ratios replacing factual with counterfactual prices for each fuel:

MCcoal,CF
um ≡

∑
j∈PCAu

(
Qelec
jm ·HRjm · (PCF

jm +MCenv
jm )∑

j∈PCAu
Qelec
jm

)
(D2)

MCgas,CF
ud ≡

∑
g∈PCAu

(
Qelec
gm ·HRgm · (ZCF

gd +MCenv
gm )∑

g∈PCAu
Qelec
gm

)
(D3)

Then, I construct three cost ratios:

CRud =
MCcoal

um

MCgas
ud

, CRNO∆Z
ud =

MCcoal,CF
um

MCgas,CF
ud

, CRNO∆µ
ud =

MCcoal,CF
um

MCgas
ud

(D4)

CRud uses factual gas prices and factual coal prices. CRNO∆Z
ud aligns with my first scenario,

using both counterfactual gas and coal prices (i.e., if the fracking boom never happened, or
“NO∆Z”). CRNO∆µ

ud aligns with my second scenario, using factual gas prices and counterfactual
coal prices (i.e., if the fracking boom happened but markups never changed, or “NO∆µ”).

Step 4: For each coal unit u, I estimate the following time-series regression, for each day d,
from 2002 to 2015:

MWHud =
∑
b

αub1[Gud ∈ b] +
∑
b

γub1[Gud ∈ b] · CRud + SP(CRud; ζu) + ξuGud + ωud (D5)

This specification is similar to Equation (6), but differs in several key ways:

• It uses daily (not hourly) observations, since I no longer seek to integrate over hours.43

• It uses daily net generation (MWHud) as the dependent variable, instead of capacity
factor. This is largely a normalization, and facilitates translating into predicted emissions.

• Its cost ratio (CRud) averages across all coal units in unit u’s PCA, as I now want to accom-
modate price changes across many coal plants (rather than idiosyncratic price changes).

42. These predicted counterfactual prices are likely too mismeasured to estimate markup changes, but are
better suited for estimating the conditional probability of a coal unit operating (using Equation (D5) below).

43. For estimating coal demand, hourly observations allow me to more accurately discretize each unit’s capacity
factor. For counterfactuals, estimating Equation (D5) at the daily level reduces computation time without
meaningfully changing the relationship between fuel prices and unit u’s predicted generation.
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• Following Cullen and Mansur (2017), it includes a cubic spline of the cost ratio, SP(CRud; ζu).
This more flexibly models the effect of relative fuel price changes on unit u’s generation.44

• It includes only month-of-year fixed effects. This avoids removing year-on-year variation
in fuel prices, which is important for these two counterfactual scenarios.

Step 5: I store predicted values (M̂WHud) from Equation (D5), estimated using CRud. Then,
I predicted counterfactual generation (M̂WH

NO∆Z

ud , M̂WH
NO∆µ

ud ), by plugging two counterfac-
tual cost ratios (CRNO∆Z

ud , CRNO∆µ
ud ) into this fitted model.

Step 6: I convert M̂WHud, M̂WH
NO∆Z

ud , and M̂WH
NO∆µ

ud into ĈO2ud, ĈO2
NO∆Z

ud , and
ĈO2

NO∆µ

ud , multiplying by unit u’s monthly CO2 emissions rate.

Step 7: I sum factual and counterfactual coal generation and coal emissions across all units
in each month, for all months between December 2008 and December 2015:

M̂WH
coal

m ≡
∑
d∈m

∑
u

M̂WHud , ĈO2
coal

m ≡
∑
d∈m

∑
u

ĈO2ud (D6)

M̂WH
coal,NO∆Z

m ≡
∑
d∈m

∑
u

M̂WH
NO∆Z

ud , ĈO2
coal,NO∆Z

m ≡
∑
d∈m

∑
u

ĈO2
NO∆Z

ud (D7)

M̂WH
coal,NO∆µ

m ≡
∑
d∈m

∑
u

M̂WH
NO∆µ

ud , ĈO2
coal,NO∆µ

m ≡
∑
d∈m

∑
u

ĈO2
NO∆µ

ud (D8)

Step 8: I predict counterfactual natural gas emissions in each month by replacing changes
in coal generation with gas generation on a 1-for-1 basis, and multiplying by the average CO2

emissions rate for combined-cycle gas plants from December 2008 to December 2015 (Egas
m ):

ĈO2
gas,NO∆Z

m ≡ Egas
m ×

[
MWHgas

m −
(
M̂WH

coal

m − M̂WH
coal,NO∆Z

m

)]
(D9)

ĈO2
gas,NO∆µ

m ≡ Egas
m ×

[
MWHgas

m −
(
M̂WH

coal

m − M̂WH
coal,NO∆µ

m

)]
(D10)

Step 9: I sum total CO2 emissions for both fuels, from December 2008 to December 2015:

ĈO2 ≡
∑
m

[
ĈO2

coal

m +CO2gasm

]
(D11)

ĈO2
NO∆Z

≡
∑
m

[
ĈO2

coal,NO∆Z

m + ĈO2
gas,NO∆Z

m

]
(D12)

ĈO2
NO∆µ

≡
∑
m

[
ĈO2

coal,NO∆µ

m + ĈO2
gas,NO∆µ

m

]
(D13)

44. I use cubic splines with 6 knots, however the number of knots does not affect the estimation results.
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Step 10: I calculate realized abatement under the fracking boom as the percent reduction in
realized CO2 emissions, compared to the no-fracking counterfactual:

ABATEREALIZED =
ĈO2

NO∆Z
− ĈO2

ĈO2
NO∆Z

= 0.0470 (D14)

I calculate potential abatement under the fracking boom as the percent reduction counterfactual
CO2 emissions for ∆µ = 0, compared to the no-fracking counterfactual:

ABATEPOTENTIAL =
ĈO2

NO∆Z
− ĈO2

NO∆µ

ĈO2
NO∆Z

= 0.0521 (D15)

Based on these predictions and calculations, decreasing coal markups eroded roughly 10% of
the potential CO2 abatement of the fracking boom:

1− ABATEREALIZED

ABATEPOTENTIAL
≈ 1− 0.0470

0.0521
= 0.0965 (D16)

I monetize this eroded abatement (i.e.,
[
ĈO2

NO∆Z
− ĈO2

NO∆µ]
−
[
ĈO2

NO∆Z
− ĈO2

]
)

using the most up-to-date estimates of the social cost of carbon. Rennert et al. (2022) report a
central estimate of $185 per metric ton of CO2, which the EPA has recently incorporated into
its framework for regulatory impact analysis of greenhouse gas regulations (U.S. EPA (2022)).
Previously, the EPA had assumed a value closer to $50 per metric ton of CO2, which aligned
with pre-2016 integrated assessment modeling (Interagency Working Group on Social Cost of
Greenhouse Gases (2016)).

D.2 Sensitivities and interpretation

I estimate several alternate version of Equation (D5), and I report these counterfactual sensi-
tivities in Table D1. First, for more flexibility, I add cubic splines in Gd×CRud, Gd, and daily
maximum temperature; this has little effect on my counterfactual predictions.45 Next, I replace
month-of-year fixed effects with quarter-of-year fixed effects, to match Equation (6); this yields
similar counterfactual predictions. I also add year fixed effects to control for medium-to-long
run changes in plant operations; this absorbs most of the identifying gas price variation, yield-
ing much smaller estimates of CO2 abatement (2.6% vs. 4.7%) but implying a greater share of
abatement eroded (11.3% vs. 9.7%). Finally, I estimate an hourly version of Equation (D5) to
align with my demand estimation; this yields quite similar results.

How do these magnitudes compare to the existing literature on the fracking boom? Using
similar time-series design at the interconnection level, Cullen and Mansur (2017) estimate that
a tax of $22/metric ton CO2 would have yielded 4.9% reductions in daily CO2 emissions.46

Taking my derived expression for the implicit tax (Equation (C4)) and plugging in ∆Z = −4

45. This matches Cullen and Mansur (2017)’s main specification, which includes cubic splines in the coal-to-gas
cost ratio, total system load, and temperature.

46. Cullen and Mansur (2017) use short tons, while I use metric tons: $20/ton CO2 = $22/metric ton CO2.
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Table D1: CO2 counterfactuals under alternate versions of Equation (D5)
Realized abatement Potential abatement Percent

erodedM tonnes Percent M tonnes Percent

Preferred Equation (D5) 661.5 4.7% 732.1 5.2% 9.7%

Spline of Gd × CRud 681.0 4.8% 750.9 5.3% 9.3%

Splines of Gd × CRud, Gd, temp. 678.0 4.8% 747.3 5.3% 9.3%

Quarter-of-year fixed effects 654.3 4.7% 724.4 5.2% 9.7%

Adding year fixed effects 350.2 2.6% 395.0 2.9% 11.3%

Hourly (not daily) observations 651.3 4.6% 722.0 5.1% 9.8%

Notes: The top row reports counterfactual results using my preferred version of Equation (D5). The second row replaces the
interacted sum (i.e. the second term in Equation (D5)) with a cubic spline in Gd × CRud. The third row includes this spline
and two additional cubic splines in Gd and daily maximum temperature. The fourth row replaces month-of-year fixed effects
with quarter-of-year fixed effects. The fifth row uses both month-of-year and year fixed effects. The last row estimates Equation
(D5) at the hourly level, adding hour-of-day fixed effects. “Realized abatement” reports the share of counterfactual no-fracking
CO2 emissions avoided. “Potential abatement” reports the share that would have been avoided if coal markups did not change. I
also report abatement in million metric tons (a.k.a. tonnes), which corresponds to the numerators of Equation (D14)–(D15). The
right-most column reports Equation (D16).

(i.e. the observed drop in Henry Hub prices), the avearge coal plant in my sample faced an
implicit tax of $24/metric ton CO2. My prediction of 4.7% realized CO2 abatement is quite
close to Cullen and Mansur (2017)’s results from interconnection-wide reduced-form time series
regressions, despite coming from plant-specific time-series regressions for coal units only. As
with Cullen and Mansur (2017), my use of time fixed effects (for econometric identification)
absorbs some of the time series variation in gas prices (and implicit carbon prices). While this
could render a $20–32 carbon tax effectively out-of-sample (giving the remaining variation),
Equation (D5) uses only month-of-year fixed effects—removing seasonal gas price variation but
preserving year-on-year trends.

My estimates of short-run abatement from fuel switching do not capture the full extent
of fracking-induced decreases in CO2 emissions from U.S. electricity generation. Linn, Mas-
trangelo, and Burtraw (2014) show that coal plants increase their thermal efficiency (i.e. lower
their heat rates) in response to competitive pressure; the fracking boom has likely contributed
meaningful medium-run CO2 abatement through this channel. Low gas prices have also led
to medium-to-long-run abatement on the capacity margin, by incentivizing investments in new
combined-cycle gas plants and accelerating coal plant retirements (Brehm (2019)). Finally,
in the long-run, even a small carbon tax could have a large effect on coal capacity (Cullen
and Reynolds (2017)). Equation (D5) ignores each of these sources of fracking-induced CO2

abatement, which is likely why my counterfactual exercise finds only 4.7% abatement.
A simple event-study analysis suggests that CO2 emissions from the U.S. electricity sector

have fallen by 20–25% during the fracking boom. While this does not establish the causal
effect of low gas prices, it does suggest that total abatement was potentially much greater than
4.7%. It also suggests that the unrealized environmental benefits of fracking may have been
much larger, since decreasing coal markups likely also impacted each of the above medium- and
long-run abatement channels in addition to their impact on the short-run coal-to-gas switching
margin. Importantly, CO2 is a global pollutant, and my analysis focuses on U.S. emissions only.
The fracking boom also impacted global energy markets, with theoretically ambiguous impli-
cations for global CO2 emissions (Knittel, Metaxoglou, and Trindade (2016); Wolak (2016)).
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