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Abstract We present a shoreline change model for coastal hazard assessment and management
planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based,
one-line model that predicts short-term and long-term shoreline response to climate change in the 21st
century. The proposed model represents a novel, modular synthesis of process-based models of coastline
evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model
uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of
model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to
simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex
mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban
infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation,
the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of
1995–2010, showing excellent agreement between modeled and observed beach states. The skill of the
model during the hindcast period improves confidence in the model’s predictive capability when applied to
the forecast period (2010–2100) driven by GCM-projected wave and sea level conditions. Predictions of
shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches
may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0m.

1. Introduction

Coastal evolution, the interaction of many geologic and hydrodynamic processes at a multitude of spatio-
temporal scales, is notoriously difficult to understand let alone predict [e.g., Pape et al., 2010; Payo et al.,
2016; Ranasinghe, 2016]. Nevertheless, reliable, quantitative predictions of long-term coastal evolution on
decadal to centennial timescales are increasingly sought for adaptation planning in anticipation of climate
change and sea level rise (SLR) [Ranasinghe and Stive, 2009; Nicholls et al., 2016].

Nearshore hydrodynamic processes such as waves, storms, tides, currents, fluvial discharges, and sea level
anomalies play significant roles in forcing short-term (e.g., seasonal to multiannual) coastal morphologic
change [e.g., Splinter et al., 2014; Yates et al., 2009; Hansen and Barnard, 2010; Coco et al., 2014; Barnard et al.,
2015]. On the other hand, long-term (e.g., decadal to centennial) processes such as natural and anthropogenic
sediment supply, relative sea level changes, aeolian transport, landuse,gradients inalongshoresediment trans-
port, and climatic variations are often responsible for chronic coastal change [Ashton andMurray, 2006;Warrick
andMertes, 2009; Sallenger et al., 2012]. Therefore, predictingcoastal evolutionon intermediate timescales (e.g.,
decadal to centennial) often requires accurate representations of both hydrodynamic and geologic forcing.

Many different paradigms of coastal evolution models exist to simulate behavior of certain processes and
scales. Studies of coastal hazards and shoreline change due to extreme events often rely on detailed,
computationally onerous, physics-based numerical modeling efforts [e.g., Van Dongeren et al., 2009; Barnard
et al., 2014] to resolve the hydrodynamic forcing and morphologic response. On the other hand, simplified
process-based or empirical models (detailed below) are often applied to predict chronic shoreline change.
All models, however, inevitably rely upon approximations of complex, multiscale systems, and thus are
subject to many sources of error [Pape et al., 2010]. Nevertheless, they can provide useful tools to aid in
understanding and predicting shoreline evolution.

Physics-based 2-D and 3-D models of coupled hydrodynamics, waves, sediment transport, and morphology,
e.g., Delft3D [Roelvink and Van Banning, 1995], XBeach [Roelvink et al., 2010], Mike21 [Warren and Bach, 1992;
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Kaergaard and Fredsoe, 2013], and ROMS [Warner et al., 2010], solve conservation of mass and momentum of
fluid and sediment and seek to resolve nearly all of the important physical processes involved in coastal evo-
lution. Physics-based models have become increasingly capable of simulating small-scale, short-term beach
and dune erosion due to storm events on timescales of days to weeks [cf. de Winter et al., 2015], and recent
efforts have achieved realistic simulations on even longer timescales [Luijendijk et al., 2017]. However,
physics-based simulations of large-scale (e.g., 100m to 100 km length scale) or long-term (e.g., annual to dec-
adal timescale) shoreline change (such as beach recovery) are often prohibitively expensive in computational
cost and do not necessarily provide improved skill over simplified models [Murray, 2007; Ranasinghe et al.,
2013; French et al., 2016]. Therefore, a different modeling paradigm is often preferred to simulate large-scale,
long-term shoreline evolution. Contrasting the physics-based approach of fully resolving the governing equa-
tions of hydrodynamic andmorphologic interaction, process-basedmodels typically account for a single domi-
nant physical process. Process-based models, e.g., equilibrium beach profile models [Bruun, 1962], equilibrium
shoreline models [Miller and Dean, 2004; Yates et al., 2009, 2011; Davidson et al., 2010, 2013; Splinter et al., 2014],
and one-line models [Pelnard-Considere, 1956; Larson et al., 1997; Ashton et al., 2001; Ashton and Murray, 2006],
are straightforward and computationally efficient but have only been proven reliable, in most cases, on inter-
annual timescales. Further, the accuracy of process-based models is limited in locations when unresolved, sec-
ondary processes contribute to coastal evolution. Lastly, data-driven or empirical models, constructed from
observed behavior, represent another widely used paradigm to estimate long-term coastal evolution. For
example, historical shoreline analyses [Dolan et al., 1978; Crowell et al., 1991; Thieler and Danforth, 1994;
Fletcher et al., 2003] derive rates of shoreline change from sets of orthorectified and georeferenced aerial photo-
graphs. Because empirical approaches are derived directly from observed behavior, they (implicitly) account for
all relevant morphologic processes at the specific location. However, the specific processes responsible for
morphologic change are not explicitly resolved. Finally, the quality of data-driven models is closely related to
the quantity of data available to fit the model, and, unfortunately, shoreline data are often sparse.

As discussed above, each modeling paradigm has advantages and disadvantages. Recently, Long and Plant
[2012] developed a data assimilation method to combine empirical and process-based shoreline models,
leveraging the advantages of each approach. In this paper, we present a hybrid model with data assimilation
that synthesizes and improves upon several shoreline models in the literature. The model is composed of
three process-based models of sediment transport and shoreline change: (1) longshore transport and shore-
line change due to waves following the one-line approach [Pelnard-Considere, 1956; Larson et al., 1997;
Vitousek and Barnard, 2015], (2) cross-shore transport and equilibrium shoreline change due to waves
[Yates et al., 2009; Long and Plant, 2012], and (3) cross-shore transport and equilibrium beach profile change
due to SLR [Bruun, 1962; Davidson-Arnott, 2005; Anderson et al., 2015].

The contributions of each of the three process-based models listed above are mutually independent and,
therefore, can be summed to provide a more complete shoreline evolution model for locations of interest
in a variety of geologic settings. For example, Banno and Kuriyama [2014] recently combined an equilibrium
shoreline change model (2) and a SLR response model (3).

The proposed model is forced with sea level projections [National Research Council, 2012] and hindcasted
(1995–2011) and forecasted (2011–2100) wave conditions derived from global-to-local nested Wave Watch III
[Tolman, 2009] and SWAN [Booij et al., 1999] wave models [Erikson et al., 2015], which provide the nearshore
forcing conditions needed for the process-based models. Importantly, the model uses data assimilation from
historical shoreline positions to automatically calibrate themodel parameters and to implicitly account for unre-
solved sediment transport processes, e.g., fluvial discharge, regional sediment supply, and long-term erosion. A
schematic depicting the CoSMoS-COAST model, inputs, and outputs is shown in Figure 1.

Detailed discussions of the model’s governing equation and its numerical method are given in sections 2 and
3, respectively. Later, in section 4, the model is applied to predict shoreline evolution on 500 km of coastline
in Southern California by the end of the 21st century. Finally, section 5 presents the conclusions of this work.

2. Governing Equation

The governing equation of the CoSMoS-COAST shoreline evolution model is a partial differential equation
composed of three process-based models—(1) a longshore transport one-line model, (2) a cross-shore
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equilibrium shoreline model, (3) and a sea level driven shoreline recession model—and an assimilated long-
term rate parameter due to unresolved processes. This governing equation is given by

∂Y
∂t|{z}

shoreline change

¼ � 1
d
∂Q
∂X|fflfflffl{zfflfflffl}

longshore transport

þ CE1=2ΔE|fflfflfflffl{zfflfflfflffl}
cross-shore transport

� c
tanβ

∂S
∂t|fflfflffl{zfflfflffl}

shoreline migration
due to sea-level rise

þ vlt|{z}
long-term shoreline trend;
unresolved processes

; (1)

where Y represents the position of the shoreline, e.g., the mean high water (MHW) line, measured as the
distance along a shore-normal transect from the onshore end of the transect (see, e.g., Figure 2), and t is time.
The terms on the right-hand side (RHS), representing physical processes that force shoreline change, are
discussed in the following sections.

2.1. Longshore Transport

The first term on the RHS of equation (1) is the alongshore gradient in the longshore sediment transport rate
Q, where X represents the alongshore coordinate and d is the depth of closure. A generalized expression for
the longshore transport rate is

Q ¼ Q0sin 2αð Þ; (2)

where Q0 represents the magnitude of the longshore sediment transport rate derived empirically and
expressed as a function of wave and sediment properties. For example, the Shore Protection Manual [US
Army Corps of Engineers, 1984] gives Q0 ¼ K ρ

ρs�ρð Þλ
H2
bCg;b

16 , where ρ is the density of water, Hb is the breaking
wave height, Cg,b is the group velocity of the wave at breaking, K is an empirically derived constant, ρs is
the sediment density, and λ is the porosity of the sediment. The argument of equation (2),
α= αwave� αshoreline, represents the angle between the incident waves (with direction θ in Nautical con-
vention and therefore with angle αwave = 270� θ in Cartesian convention as shown in Figure 2) and the
shoreline (with angle αshoreline) [Larson et al., 1997]. The wave direction θ (at the offshore end of each trans-
ect) is calculated via nearshore wave models as described in section 4. The shoreline angle is given by

αshoreline ¼ atan
dy
dx

� �
; (3)

where x and y represent the real world (e.g., Universal Transverse Mercator, UTM) coordinates of the

Figure 1. Overview of the CoSMoS-COAST model.
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shoreline. If the alongshore and cross-shore coordinates, X and Y, are aligned with the real-world coordinates,
x and y, then the upper and lower case variables are interchangeable. A schematic demonstrating the setup
of the one-line model is given in Figure 2. The model does not consider high-angle wave instability and the
growth of shoreline features such as spits, sand waves, and capes [e.g., Ashton et al., 2001; Falqués, 2003; van
den Berg et al., 2012; Kaergaard and Fredsoe, 2013], which can lead to multivalued solutions to the shoreline
position, Y. More details on the longshore transport component of the model are given in section 3 and
Appendix A.

2.2. Cross-Shore Transport

The second term on the RHS of equation (1) is the equilibrium shoreline model of Yates et al. [2009], which
simulates episodic beach erosion and recovery during periods of high and low wave energy, respectively.
The coefficient C represents the rate of shoreline change, which we assume to remain constant during both
accretion and erosion (C= C+ = C�) in order to facilitate data assimilation [Long and Plant, 2012]. Yates et al.
[2011] demonstrated that replacing C+ and C� with C results in less than 10% degradation in model perfor-
mance for California beaches. In equation (1), E=H2 is the wave energy related to the wave height, H,
squared. Following Long and Plant [2012], we do not apply a factor of 16 between the wave energy and

the wave height squared, i.e., E ¼ 1
16H

2, like in Yates et al. [2009]. ΔE= E� Eeq is the disequilibrium between

the instantaneous wave energy and the wave energy associated with the equilibrium shoreline position, Eeq.
The equilibrium wave energy is given by Eeq = aYst + b, where a and b are calibration parameters and Yst is the
short-term shoreline position described below in section 3.

2.3. Shoreline Migration Due To Sea Level Rise

The third term on the RHS of equation (1) expresses the shoreline recession resulting from passive flooding
due to SLR under the assumption that the beach slope, tan β, will remain relatively consistent through time.
However, future work might consider the temporal evolution of beach slope as predicted by the parameter-
ization of Sunamura [1984] and projected changes to wave breaking, wave period, and sediment size. When
tan β is chosen as the average slope of the active beach profile extending to the depth of closure, this expres-
sion, known as the Bruun rule, approximates the shoreline recession resulting from equilibrium beach profile
adjustments due to SLR, S, (or in this case the rate of SLR dS

dt) and c is a calibration coefficient. The Bruun rule is
widely used [Bruun, 1988] and modified [Davidson-Arnott, 2005;Wolinsky and Murray, 2009; Rosati et al., 2013;
Young et al., 2014; Anderson et al., 2015], yet widely criticized [Cooper and Pilkey, 2004; Ranasinghe et al., 2012]
as an oversimplification of shoreline evolution.

If the beach slope, tan β, is selected as the foreshore beach slope, then (in the absence of profile change) the
Bruun rule simply expresses the shoreline recession due to passive flooding. This modification allows the

Figure 2. Schematic showing the setup of the shoreline model.
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application of the model to rocky/cobble beaches where passive flooding is expected to occur, but the tradi-
tional Bruunian profile adjustment mechanism is not. In the application presented in section 4, we select the
beach slope, tan β, as the foreshore slope rather than the smaller average beach slope (to the depth of clo-
sure) in order to limit the influence of the Bruunian response to SLR, yet still account for migration of the
shoreline due to passive flooding.

The beaches in Southern California experience some alongshore variability in foreshore beach slope, which
motivates our use of a low-pass filter to smooth the beach slope in the alongshore direction for each transect.
The average foreshore beach slope in Southern California, derived from LIDAR data between �2.0m and
+2.0m around mean sea level at each transect, is tan β =1/32, suggesting (on average) 32m of shoreline

recession associated with the modified Bruunian response, S
tanβ, to 1.0m of SLR. Alongshore variability can

decrease or increase the local beach slope by 52% or 60%, respectively, relative to the smoothed value of
the beach slope at the 95% confidence level. Therefore, the shoreline recession is sensitive to the local varia-
bility of the beach slope, which, for example, corresponds to an uncertainty (at the 95% confidence level) of
�12 to +35m about the mean shoreline recession of 32m associated with 1.0m of SLR. This method for
quantifying uncertainty also applies to the unresolved temporal variability of the beach slope.

2.4. Long-Term Shoreline Trend

The fourth and final term on the RHS of equation (1) is the long-term shoreline trend that represents unre-
solved processes such as sources and sinks of sediment from fluvial inputs [Inman and Jenkins, 1999; Willis
and Griggs, 2003; Warrick and Mertes, 2009], nourishments [Flick, 1993], cliff failure [Young et al., 2011;
Limber and Murray, 2011], aeolian transport [Bauer et al., 2009], sand mining [Thornton et al., 2006], and
transport from offshore [Schwab et al., 2013]. In equation (1), if the long-term trend, vlt, is a constant, then
the shoreline migration is linear in time. Historical shoreline analyses using aerial photos often use linear
regressions to fit observed shoreline data and determine long-term annual erosion rates [see, e.g., USGS
National Assessment of Shoreline Change; Hapke et al., 2006]. The data assimilation method assumes that
vlt is constant, starting from an initial value of vlt = 0. However, when a data assimilation step takes place,
the magnitude of vlt changes and thus the unresolved, long-term shoreline change is time dependent.
During the model forecast period, no observations are available to assimilate. Thus, during the forecast
period vlt is constant, and therefore, the unresolved, long-term shoreline change associated with this term
is linear in time. Thus, this long-term component is subject to error when chronic, unresolved processes result
in a nonlinear response. The magnitude of this error, although difficult to assess a priori, may be parameter-
ized via process noise in the Kalman filter as described in section 3 and Appendix B. In the application
presented in section 4, vlt represents (on average) approximately 10% of the variability of the shoreline
change over long periods (~50 years and longer). However, regions dominated by nourishments or other
long-term effects may have locally high values of vlt.

3. Numerical Model
3.1. Spatial Discretization

In the proposed model, the coastline is discretized into a series of shore-normal transects that are arbitrarily
spaced in the alongshore direction. For each transect, the shoreline position at a given time step is measured
by the distance, Y, from the onshore end of the transect. The model computes the evolution of Y for each
transect. Accordingly, the shoreline evolves as if “on rails” represented by each transect. A schematic of the
model domain is shown in Figure 2. Although there are long-term coastal evolution models that are grid
based (e.g., the Coastal Evolution Model (CEM) of Ashton and Murray [2006]) and vector based [Hurst et al.,
2015], the current model is chosen to be transect based to cover long, irregular coastlines and facilitate
the composition of the 1-D, process-based models (described above) with data assimilation. The drawback
to the transect-based discretization is that, unlike CEM and many physics-based numerical models, the
numerical method presented here does not have a conservative formulation for sediment volume.
However, this characteristic does not severely denigrate the model quality, because of our inherent inability
to resolve all processes resulting in shoreline evolution. Furthermore, the data assimilation method precludes
themodel from conserving sediment volume because the shoreline position and long-term shoreline change
rate are intermittently adjusted to best fit the observations.
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3.2. Temporal Discretization

The model uses explicit Euler time stepping [see, e.g., Moin, 2010] for the cross-shore transport terms due to
waves, sea level, and long-term effects. Fortunately, these terms do not exhibit numerical instability. The
longshore-transport term, on the other hand, is susceptible to numerical instability based on the Courant
number condition Δt < ΔX2d

4Q0
[Ashton and Murray, 2006; Vitousek and Barnard, 2015]. Accordingly, the model

uses the option of explicit Euler time stepping or the semi-implicit time stepping of Vitousek and Barnard
[2015] (see Appendix A for details). The transect spacing, ΔX, is the most important consideration in selecting
the preferred time stepping method. In general, explicit Euler time stepping suffices for transects spaced
approximately 100m or greater.

3.3. Model Equations

To facilitate model construction and data assimilation, equation (1) is split into short- (seasonal cross-shore
transport) and long-term (longshore transport, SLR effects, and other) components of shoreline change, Yst
and Ylt, respectively, where Y= Yst + Ylt following Long and Plant [2012]. This splitting procedure applies the
correct wave energy disequilibrium, Eeq = aYst + b, associated with the short-term shoreline position, Yst.
Wrongly setting Eeq = aY+ b results in spurious disequilibrium between the wave energy and the new
long-term shoreline position, driving nonphysical shoreline change (e.g., spurious short-term accretion on
a chronically eroding shoreline and vice versa).

The split model equations become

Ystð Þnþ1
k � Ystð Þnk
Δt

¼ Ck Enk
� �1=2

Enk � ak Ystð Þnk � bk
� �

(4)

Y ltð Þnþ1
k � Y ltð Þnk
Δt

¼�Kk

dk

Qnþθ
kþ1=2 � Qnþθ

k�1=2

ΔXk
� ck
tanβk

∂S
∂t

� �n

k

þ vltð Þk ; (5)

where superscripts n represent the time step index, Δt is the time step, k represents the transect index, and
ΔXk is the distance between adjacent transects (given in Appendix A). Note that the longshore-transport
parameter, Kk, is taken outside of the longshore transport rate, Q, in equation (5), in order to facilitate data
assimilation of the parameter, as discussed below. All of the model parameters and variables in equations (4)
and (5) are defined at each transect (with index k) except the longshore transport rate, Q, which is located
between adjacent transects (with indices k± 1/2). Details of the longshore transport component of the model
and the implicitness parameter θ (0 ≤ θ ≤ 1) are given in Appendix A.

3.4. Data Assimilation

Data assimilation automatically adjusts the model parameters during runtime to best fit any available
observed shoreline data at the concurrent time step. Equations (4) and (5) use the extended Kalman filter
data assimilation method of Long and Plant [2012]. The state vector representing the model solution and

parameters is given byψ ¼ Y lt vlt Yst C a b c K½ �T . Following equations (4) and (5), the evolution
of the state vector is given by

∂ψk

∂t
¼ ψnþ1

k � ψn
k

Δt
¼

� Kk

dk

Qnþθ
kþ1=2 � Qnþθ

k�1=2

ΔXk
� ck
tan βk

∂S
∂t

� �n

k
þ vltð Þk

0

Ck Enk
� �1=2

Enk � ak Ystð Þnk � bk
� �

0

0

0

0

0

2
666666666666666664

3
777777777777777775

¼ fnk : (6)

The evolution equation of the state vector, equation (6), has zero right-hand side terms, ∂ψk
∂t ¼ 0, for the

evolution of the six model parameters, ψk= (vlt)k, Ck, ak, bk, ck, Kk, that represent spatially variable, yet
temporally constant coefficients, which are updated at each data assimilation step. Note that in equation (6),

terms with superscript n (e.g., Qnþθ
k±1=2, E

n
k , and

∂S
∂t

� �n
k , which represent the wave and sea level forcing conditions)
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are variable in time.On theother hand, termswithout superscriptn are assumed tobe constantwith time in the
absence of data assimilation (e.g., (vlt)k, Ck, ak, bk, ck, Kk and the unassimilated parameters dk and tan βk),
although in reality all of these parameters can exhibit variability in time, inevitably resulting in model error.
The data assimilation method in equation (6) takes place independently for each transect k, meaning that the
model of a given transect is only aware of the shoreline data falling on that individual transect at that instance
in time. The numerical procedure of the data assimilationmethod is detailed as follows:

(1) Compute the evolution of the state vector, ψ�
k ¼ ψn

k þ Δtfnk , using the forward model, equation (6).
Without data to assimilate, ψnþ1

k ¼ ψ�
k .

(2) Compute the Jacobian, Jij ¼ ∂Fi
∂ψj

for each transect, where F ψn
k

� � ¼ ψn
k þ Δtfnk .

(3) Update the error covariance matrix, P= JPJT+Q, where Q is the process noise.
(4) Compute the Kalman Gain, K=PHT(HPHT+R)� 1, where R is themeasurement error and

H ¼ 1 0 1 0 0 0 0 0½ �T is the vector that relates the state vector to the observations.
(5) Compute the data-assimilation step, ψnþ1

k ¼ ψ�
k þ K Yobsð Þnþ1

k � Hψ�
k

� �
, where Yobsð Þnþ1

k is the observed
shoreline position at transect, k, and between time steps n and n+1.

(6) Compute the final error covariance matrix, P= (I�KH)P, to be used in the following time step.

If no concurrent data is available to assimilate at a given time step, then steps 4–6 are skipped. Note that steps
2 and 3must take place every time step (even without data to assimilate) in order to allow data assimilation at
future time steps.

Under the assumption of temporal constancy of model parameters, it is possible to make long-term predic-
tions of shoreline position (given the right forcing conditions), and the Kalman filter is simply used as a large-
scale calibration tool. Knowledge of good initial parameters and the lack of unresolved processes eliminates
the need for the Kalman filter. Although the proposed model assumes temporal constancy of its parameters,
long-term geologic processes may invalidate this assumption in certain coastal settings and require modifi-
cation to current model. For example, equation (6) could be reformulated with a user-specified, time-varying

formulation of the dynamic effects, ∂ψ∂t ¼ f tð Þ≠0. However, this approach will likely require longer data records

to assimilate the parameters involved in the dynamic effects, i.e., f(t), which, for example, may represent long-
term changes in sediment composition or beach slope.

Based on previous work [Yates et al., 2009; Long and Plant, 2012; Doria et al., 2016], we expect that the wave-
driven, cross-shore transport parameters C, a, b are nearly constant in time. Based on this assumption,
changes in shoreline position resulting from (well-resolved) changes in wave climate [Erikson et al., 2015]
would be captured with the model. We also anticipate that c and K are roughly constant in time; however,
long-term changes in beach profile and sediment composition may alter these coefficients in unpredictable
ways. The most uncertain and temporally variable parameter is vlt. Lacking better options, the proposed
model treats vlt as a constant like in Long and Plant [2012] and in most historical erosion rate analyses
(e.g., the USGS National Assessment of Shoreline Change [Hapke et al., 2006]). However, nonlinear changes
in natural or anthropogenic sediment supply and changes taking place outside of the hindcast period will
not be resolved in the current model.

Finally, we note that many of the model parameters have requisite signs. Parameters C and a are negative
and b, c, and K are positive. Instability results when the data assimilation method inadvertently changes a
parameter’s expected sign. To prevent this instability, the numerical method, equation (6), is modified to
ensure that the parameters retain their requisite signs throughout the data assimilation step. Details of the
sign-preserving data assimilation method are presented in Appendix B.

4. Application

The CoSMoS-COAST model was developed as the shoreline change component of the Coastal Storm
Modeling System (CoSMoS) framework [Barnard et al., 2014], focusing on the U.S. West Coast. The initial
framework focused on developing predictions of coastal flooding due to waves and sea level rise on
present-day shoreline configurations. However, chronic erosion, driven by accelerating rates of sea level rise,
might exacerbate future coastal flooding, and applying present-day beach profiles to flood prediction
models might underestimate future hazard vulnerability. Thus, CoSMoS-COAST was developed to understand
the effects of shoreline change and its impact on future flooding due to waves and sea level rise.
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4.1. Sea Level Rise Forcing

Sea level versus time is modeled as
a quadratic function. The three
unknown coefficients of the quadratic
curve are obtained via three equations.

(1) The mean sea level in 2000 is
assumed to be at zero elevation.

(2) The rate of SLR in 2000 is
assumed to be 3mm/yr, which is
consistent with values observed
via satellites and local tide gages.

(3) Future sea level elevation at 2100
is assumed to be 0.93 [National
Research Council, 2012], 1.0, 1.25,
1.5, 1.75, 2.0, and 5.0m based
on the scenarios considered
(see Figure 3).

The chosen sea level scenarios closely reflect the 2100 predictions given in the Intergovernmental Panel on
Climate Change 2013 (IPCC 2013) report (Figure 13.9 in Church et al. [2013]) as shown in Figure 3. We note
that sea level only affects the equilibrium profile changes via the third term on the RHS of equation (1).

4.2. Wave Forcing

Climate change drives potential changes to wave climate [Hemer et al., 2013; Erikson et al., 2015; Shope et al.,
2016], which must be accounted for when predicting long-term coastal evolution. CoSMoS-COAST is driven
with hindcast (1995 to 2011) and projected time series (2011 to 2100) of daily maximum wave heights and
corresponding wave periods and directions from Erikson et al. [2015] and Hegermiller et al. [2016], who used
a series of global-to-local nested wave models (i.e., WaveWatch III (WW3) and SWAN), shown in Figure 4.
Hindcast waves are computed with NOAA WW3 Climate Forecast System Reanalysis and Reforecast hindcast
deep-water waves applied at the open boundaries of a high-resolution SWAN grid and Scripps Institution of
Oceanography reanalysis winds across the entire domain so that both swell and local sea generation are
accounted for in the simulations. In order to improve efficiency, projected wave conditions at each model
transect are generated via lookup tables constructed from results of the high-resolution hindcast
[Hegermiller et al., 2016]. Deep-water wave forcing, derived from global and regional scale WW3 simulations
[Erikson et al., 2015], and projected wind fields from global climate models are used as inputs to the lookup
table. The wave climate projections employed in this application uses the GFDL-ESM2M climate model
[Delworth et al., 2006] and representative concentration pathway (RCP) 4.5 emissions scenario [Stocker, 2014].
Accurate predictions of nearshore wave conditions are needed because the formulations in equation (1) are
highly sensitive to wave conditions. In particular, variations in wave angle and wave energy can significantly
affect the calculation of longshore transport (via equation (2)) and equilibrium shoreline response, respectively.
In the current application, the shoreline model is forced with a single projected time series of wave conditions
[from Hegermiller et al., 2016]. However, this wave forcing scenario represents only one instance of the stochas-
tic system representing the future wave climate. Use of an ensemble wave forcing approach would likely
improve the range of potential shoreline positions and estimates of uncertainty but at the cost of increased
computational effort (by a factor representing the number of ensemble wave scenarios). Adoption of an
ensemble approach would likely favor computationally efficient lookup table methods (used here) or statistical
downscaling methods [Antolínez et al., 2015; Rueda et al., 2017] over dynamical downscaling (nested models).

4.3. Transects

The ~500 km domain of the Southern California coast is discretized into 4802 transects spaced approximately
100m apart (see Figure 5). The offshore ends of each transect coincide with the Model Output Points trans-
ects [Coastal Data Information Program, 2016] used in previous CoSMoS modeling efforts [Barnard et al.,
2014]. Each transect was manually given a designation of “full model,” “cross-shore only,” “rate only,” or
“no prediction” based on geologic characteristics. Based on the transect designation, the shoreline model
retains or neglects certain physical processes and the corresponding terms in the governing equation

Figure 3. Scenarios of SLR used in the CoSMoS-COAST application to
Southern California.
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(equation (1)). As the name implies, transects designated as “full model” evolve the shoreline using the full
governing equation (equation (1)). “Full model” transects are selected for long, sandy beaches, and all
model components are included. Small (<1 km), sandy pocket beaches (with limited longshore transport
and localized hydrodynamic effects [e.g., Daly et al., 2011; Gallop et al., 2011; Castelle and Coco, 2013; van
de Lageweg et al., 2013; Ratliff and Murray, 2014; Harley et al., 2015]) are designated as “cross-shore only”
by setting K= 0. Cobble beaches and heterogeneous sandy/rocky beaches invalidate the process-based
models used here and, therefore, are designated as “rate only” transects by neglecting longshore and
cross-shore transport due to waves, i.e., setting K=0 and C= 0. These transects evolve the shoreline using
a linear change rate (obtained via data assimilation) plus a recession rate due to excess passive flooding
above the current rate of SLR [Anderson et al., 2015]. Finally, “no prediction” transects represent harbors,
armored and rocky shorelines, and sea cliffs (without fronting beaches) where no model calculations are
performed. In the current application in Southern California (Figure 5), 40% of the transects are “full model,”
29% are “cross-shore only,” 15% are “rate only,” and 16% are “no prediction.”

4.4. Shoreline Data

Assimilation of historical shoreline data is a critical component of the model. Each shoreline observation pro-
vides an opportunity to nudge the model parameters closer to their “true” state. Without data to assimilate,
model skill depends on the accuracy of the estimated model parameters. For the shoreline forecast period
(2010–2100), no observations are available and thus no data assimilation can be performed. Therefore, the
model hindcast period must assimilate enough shoreline data to allow sufficient convergence of the model
parameters before the start of the forecasting period (see Appendix C for details on convergence of the
model parameters).

Historical shoreline data are often spatially and temporally sparse. The current application combines the two
most recent mean high water (MHW) shorelines (years 1997 and 2009) of the USGS National Assessment of

Figure 4. Wave grids from Erikson et al. [2015] and Hegermiller et al. [2016] used in the CoSMoS-COAST application to
Southern California. (a) The boundaries of the Eastern North Pacific WaveWatch3 grid and typical extratropical storm
tracks producing large wave heights in yellow. (b) The boundaries of the West Coast and Southern California SWAN grids
(red dashed lines) as well as bathymetry (blue base map) and contours of wave height illustrating wave shadowing by
offshore islands (yellow, orange, and blue contours). (c–e) The wave grids, bathymetry, and offshore ends of each transect
(red dots) in the Santa Barbra, Los Angeles, and San Diego regions, respectively.
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Shoreline Change [Hapke et al., 2006], 20 MHW shorelines derived from coastal LIDAR surveys (2003–2009;
many of which only cover the southern half of the study area, i.e., south of Long Beach harbor) and 20
MHW shorelines derived from biannual (2005–2015) GPS surveys by the USGS in Santa Barbra [Barnard
et al., 2009]. An example of the shoreline data used in this application is shown in Figure 6 for La Jolla
Shores. Each intersection of a shoreline vector and a model transect provides one data point in time for
data assimilation (see Figure 6b). This data set provides a number between a minimum of 2 and a
maximum of 27 shorelines to assimilate at a given transect. The average number of shorelines available on
each transect is 12. Although the current model uses a significantly larger number of shorelines than
studies of comparable scale (e.g., the USGS National Assessment of Shoreline Change used only five
shorelines in California), it is likely that even more data are required to develop a truly predictive model of
long-term shoreline change. This suggests that continued shoreline monitoring efforts, e.g., seasonal
coastal LIDAR surveys, are critical assets to understand and predict shoreline change.

4.5. Coastal Management Scenarios

In this application, we explore the combination of seven sea level projections (see Figure 3) and four manage-
ment scenarios. The four management scenarios result from two independent, binary scenarios, namely,
“hold the line” and “continued nourishment.” The “hold the line” scenario represents the management deci-
sion to prevent or allow the shoreline from receding past existing infrastructure (e.g., by permitting or prohi-
biting shoreline armoring, respectively). If the line is held, then the modeled shoreline is constrained from
eroding past a 180,000-point polyline manually digitized from aerial photos that represent the division of
beach and urban infrastructure or the division of the subaerial beach and coastal cliff. We note that the “hold
the line” scenario is implemented in the model by setting Yn+1 =max(Yn+1, Ynon-erodible) without constraining
themodel parameters. If the line is not held, then the shoreline is allowed to erode into existing infrastructure
and coastal cliffs (i.e., Y< Ynon-erodible is permitted).

In this initial model application, we assume that the cliff does not erode landward with the beach, and the
non-erodible shoreline stays fixed through time. Thus, the dynamics between cliff erosion and beach
change, where the eroding cliff provides sediment to the beach and the beach width controls cliff

Figure 5. CoSMoS transects for Southern California. (Basemaps from Google Earth).
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erosion [e.g., Limber and Murray, 2011; Limber et al., 2014], do not apply here. In future model applications,
the CoSMoS-COAST model and a cliff retreat model [Limber et al., 2015] will be coupled together.

The “continued nourishment” scenario represents the management decision to continue or cease the long-
term, business-as-usual beach nourishment rate determined from recent historical data (1995–2010). The
USGS National Assessment of Shoreline Change [Hapke et al., 2006] derived long-term erosion rates from
historical aerial photos in Southern California and found that a majority of the beaches are accreting.
However, anthropogenic beach nourishments dominate these rates of accretion and mask the natural signal
of shoreline change [Flick, 1993; Hapke et al., 2006]. Thus, we conduct two scenarios assuming that recent
historical accretion trends either continue until 2100 or cease after 2010 (when data to assimilate become
unavailable). In the model, the “continued nourishment” scenario is implemented by either allowing the
data-assimilated value of vlt to remain unchanged during the forecast period (2010–2100). On the other hand,
the “no continued nourishment” scenario forces vlt = 0 following the final data assimilation step for each
accreting transect where vlt> 0. The seven sea level scenarios and four management scenarios combine to
give a total of 28 different models run as part of this effort.

4.6. Results

As a preliminary analysis, we estimate the historical, long-term rate of shoreline change using a linear regres-
sion of time versus observed shoreline position, obtained from the intersection of the shoreline vectors at
each transect (see, e.g., Figure 6). This effort is intended to update and improve upon previous estimates of
the Southern California historical shoreline change rate [Hapke et al., 2006] through the inclusion of additional
shoreline data. The long-term shoreline change rate (in m/yr) versus transect number is shown in Figure 7.
Note that the colored bands in Figure 7 identify the littoral cells identified by Flick [1993] associated with each
transect. The results here reiterate the findings of Hapke et al. [2006]: A majority of the beaches in Southern
California are accreting (72% of the transects). The regression rates (in Figure 7) alone do not identify the
causal mechanisms of shoreline accretion. However, the shoreline change rates in Figure 7 do suggest a
strong anthropogenic influence (as was established in Flick [1993] and Hapke et al. [2006]) based on the
observation that the largest rates of shoreline change occur near harbors and beaches receiving
significant nourishments.

It is possible to extrapolate a prediction of future shoreline position from long-term, historical shoreline
change rates. However, because the rates are predominantly accretionary, a naïve extrapolation of

Figure 6. An example of the shoreline data, pictured above for La Jolla Shores, used in the CoSMoS-COAST model. (Basemaps from Google Earth).
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shoreline position can significantly overestimate future beach width and thus underestimate future coastal
hazard potential. Furthermore, predictions based on linear extrapolation methods neglect dynamical
processes such as seasonal beach profile changes and accelerated sea level rise. Thus, the proposed
dynamical model is applied to improve long-term predictions of shoreline change while accounting for the
relevant physical processes and management practices.

The proposed dynamical model, equations (B8) and (B9) in the Appendix B following from equations (4) and
(5), is applied to Southern California. Themodel starts on 1 January 1995 and is run until 1 January 2100 with a
time step of 1 day. Data assimilation takes place at each time step when a concurrent shoreline observation is
available for a given transect. At each data assimilation step, themodel parameters are adjusted to best fit the
dynamical model with the observed shoreline positions. When no more shoreline data is available to assim-
ilate (date of last observed shoreline—typically in Fall 2010), the forward model provides a forecasting tool
based on the converged values of the model parameters at each transect.

The model-predicted final shoreline position in 2100, Y, relative to the initial shoreline position in 1995, Y0,
and spatial variability (with transect number) of the final values of the assimilated model parameters are
shown in Figure 8. The uncertainty values, estimated directly from the Kalman filter, arise from the process
noise estimates P and Q as discussed in Appendix B. Note that Figure 8 applies the same colored bands in
Figure 7 to indicate the littoral cells identified by Flick [1993] associated with each transect. The initial values
(blue lines in Figure 8) of a few model parameters are assumed constant for all transects: C=0.5, a=0.1, and
vlt = 0, which represent nominal values based on previous work [e.g., Yates et al., 2009]. The initial values of
parameter b are set to the average significant wave height for each transect, and the initial values of para-
meter K are estimated from variations in sediment type and grain size according to Table 1. Also, note that
some model parameters are set to zero according to their transect designation (i.e., “cross-shore only,” “rate
only,” or “no prediction”) when specific physical processes are neglected.

Figure 8 demonstrates the considerable alongshore variability in the final values of the model parameters,
especially for the equilibrium shoreline model parameters C, a, and b. We compare the data-assimilated para-
meters C and a to the range of values reported in Yates et al. [2009] and Doria et al. [2016] for Camp
Pendleton, Cardiff/Solana Beach, Torrey Pines, and Imperial Beach (green bands in Figures 8b and 8c). The

Figure 7. Long-term shoreline change rates for Southern California. Colored bands identify the littoral cells delineated in Flick [1993].
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excellent agreement between parameters C and a derived in CoSMoS-COAST and Yates et al. [2009]/Doria
et al. [2016] demonstrates the strong performance, the proposed data assimilation method, and its
applicability to large spatial scales. Figure 8f shows the assimilated long-term shoreline change rate, vlt,
compared to the historical shoreline change rate (Figure 7). As expected, the assimilated and historical
rates for each transect demonstrate a vague agreement, with the assimilated rates having a smaller

Figure 8. (a–f) The final shoreline position and assimilated coefficients of the CoSMoS-COAST model applied to Southern
California. The blue line represents the initial values of the shoreline model coefficients (note that K ≠ 0 for all “full model
transects”; C = a = b= K= 0 for all “rate only” transects; and vlt = 0 for all “no prediction” transects), the red lines represent
the final assimilated values of the coefficients, and the pink bands represent uncertainty. Colored bands identify littoral cells
delineated in Flick [1993]. The green bands in Figures 8b and 8c represent the range of parameters C and a, respectively,
reported in Yates et al. [2009] and Doria et al. [2016].

Table 1. The Longshore Transport Rate Coefficient, K, Used in the Current Application in Southern California Based on the
Sediment Type and Grain Size

Sediment Type Grain Size Grain Diameter (mm) K (Longshore Transport Coefficient)

Fine sand Fine sand 0.063-0.2 200
Sand Medium sand 0.2-0.63 100
Mixed sand/cobble Coarse sand 0.63-2.0 50
Mixed sand/rock Very coarse sand <2.0 25 or less
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magnitude. We expect smaller values for the assimilated rate (in Figure 8f) compared to the historical rate
(Figure 7) because the dynamical processes of the CoSMoS-COAST model, i.e., the first three terms on the
RHS of equation (1), should resolve a portion of the shoreline change signal.

Figure 9 shows the time series of wave height, shoreline position, and the assimilated parameters for the
dynamical model at transect #505 near La Jolla Shores, CA. The initial and assimilated values of the shoreline
position and model parameters are shown with the blue and red lines in Figure 9, respectively. The pink
bands in Figure 9 represent the uncertainty in the assimilated values of the shoreline position and model
parameters, which arise from the process noise estimates P and Q (discussed in Appendix B). The shoreline
data, the intersection of transect #505, and the shoreline vectors (see, e.g., Figure 6b), are shown as blue dots
in Figure 9b.

Thewave height time series (Figure 9a) demonstrates a clear seasonal pattern of largewave heights in thewin-
ter and small wave heights in the summer. In response to the seasonal pattern in wave heights, the shoreline
erodes during periods of large waves (i.e., winter) and recovers during periods of small waves (i.e., summer),
as shown in Figure 9b. Note that the dynamical model aided by the data assimilation method (red line in
Figure 9b) is able to reproduce the observed signal of seasonal shoreline change, as indicated by the good

Figure 9. Time series of CoSMoS-COAST model predictions and parameters for transect #505 at La Jolla Shores. (a) Wave
height time series, (b) simulated shoreline position, Y, with (red line) and without (purple line) data assimilation com-
pared to the shoreline data (i.e., the intersection points of the transects and the shorelines, see Figure 6), and (c–g) initial
(blue lines) and assimilated (red lines) model parameters.
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performance of the model compared to the shoreline observations particularly with regard to the extent of the
maximally accreted and eroded beach states. On the other hand, the modeled shoreline change without using
data assimilation (purple line in Figure 9bwith the initial values of themodel parameters shown in Figures 9c–9g)
does not reproduce the observed shoreline change. In general, the performance of the unassimilated model is
particularly poor when lacking good estimates for initial values of the model parameters, which are, of course,
unknown a priori. Ultimately, the model’s excellent performance during the hindcast period improves
confidence that it may achieve a reliable quantitative prediction during the forecast period.

The wave forcing conditions (Figure 9a) transition from the hindcast period to the forecast period in 2011. The
forecastedwave heights, derived fromwind fields from the GDFL-ESM2M climatemodel [Delworth et al., 2006]
with the RCP 4.5 emissions scenario, are projected to decrease relative to the historical period for the low
latitudes and mid-latitudes of the North Pacific such as Southern California [Erikson et al., 2015].
Consequently, the standard deviation of the forecastedwaveheights used in the currentmodeling application
decreases by 18% on average relative to that of the hindcasted wave heights. This causes a muted seasonal
shoreline erosion response (due to smaller seasonal wave heights) in 2011 following the transition from the
hindcast period to the forecast period, as shown in Figure 9b. The modeled shoreline change, Y, shown in
Figure 9b is dominated by the wave-driven cross-shore transport, Y≈ Yst; and accordingly, the long-term com-
ponents are almost negligible (Ylt≈ 0) up to 2016. The dominance of the short-term shoreline change compo-
nentswas established in previousworks [e.g., Yates et al., 2009;Doria et al., 2016]whodemonstrated the strong
performance of stand-alone equilibrium shoreline change models (i.e., Yst only) for beaches in the region.

In Figures 9c–9g, we see that values of each model parameter are adjusted at each time step when shoreline
data are available. Figure 9 does not depict the sea level response coefficient, c=1, because data assimilation
is turnedoff for this termasdiscussed inAppendixB.Whenno shorelinedata is available, thevalueof themodel
parameter remains constant. Thus, after the last available shoreline observation is assimilated, themodel para-
meters remain constant for the entire forecast period. Ideally, when enoughdata are available during the hind-
cast period, the assimilated values of the model parameters will be sufficiently converged before the forecast
period begins. According to the analysis shown in Appendix C, this appears to be the case particularly for the
equilibrium shorelinemodel parameters C, a, and b since these parameters are related to the short-term shore-
line variability. The parameters representing the long-term shoreline behavior, on the other hand, K and vlt,
require longer records of shoreline data to obtain sufficient convergence [Splinter et al., 2013].

We investigate the model’s root-mean-square (RMS) error (Y� Yobs) for the Fall 2009 shoreline, a data set that
exists for all transects. The results of the RMS error with and without data assimilation are shown in Table 2.
Data assimilation is able to reduce the RMS error by 30% for an average transect, by 64% for transects south of
Long Beach, and by only 13% for transects North of Long Beach. The data assimilation method provides
significant improvement for transects south of Long Beach because of the considerable amount of data
available for the region.

After thedynamical simulations (1995–2100) are complete andvalidated,weplot the shorelineprojections and
uncertainties on amap in real-world coordinates. Figure 10 shows the initial shoreline position (green line) and
the final (1 January 2100) shoreline position (red line) under the National Research Council [2012] sea level sce-
nario. Figure 10 also shows yellow and red uncertainty bands representing the uncertainty in the shoreline
position at 1 January 2100 estimated from the Kalman filter and the uncertainty due to potential winter erosion
(defined as the maximally eroded beach state that is possible during winter months due to elevated wave
heights and calculated as twice the standard deviation of Yst), respectively. For many transects, the simulated
shoreline position recedes up to or past the “non-erodible shoreline,”which represents the interface between
the sandy shoreline andcoastal infrastructure. In the “hold the line” scenario shown in Figure10, the shoreline is
not allowed to erode past the non-erodible shoreline (black line) and into existing infrastructure. Under this

Table 2. RMS Error Between Modeled and Observed Shoreline Position for Fall 2009 Shoreline

RMS Shoreline Position Error

Average # of Shorelines With Data Assimilation Without Data Assimilation

All transects 12 14.5m 20.7m
South of Long Beach (transects 1–1946) 17 7.0m 19.4m
North of Long Beach (transects 1946–4802) 7 19.0m 21.8m
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scenario, many of the transects experience complete beach loss by 2100 (e.g., the southern and northern ends
of Figure 10). However, these results do not explicitly include cliff retreat and the resulting sediment supply to
the beach. See Figure 12 for more details on beach loss in Southern California.

4.7. Uncertainty

Significant uncertainty is associated with resolved and unresolved coastal processes. The uncertainty bands
presented in Figure 10 represent the process noise predicted by the Kalman filter (yellow bands) and the
95% confidence bands associated with the modeled shoreline fluctuations due to seasonal wave activity
(red bands). Unresolved processes are implicitly accounted for in the uncertainty bands due to the esti-
mated process noise in the Kalman filter. However, the lack of certainty in estimating the Kalman filter
error covariance, P, and process noise, Q, may lead to more uncertainty than reported in these predictions.
More details on the estimates of P and Q are given in Appendix B.

4.8. Computational Effort

Century-scale shoreline change simulations for the entire 500 km coast of Southern California using the devel-
opedmodel take approximately 15–20minof computer time.On the other hand, century-scale, global-to-local
nestedWW3 and SWANmodels require several days of computer time. Physics-based simulations of shoreline

Figure 10. CoSMoS-COAST results for Southern California, pictured for La Jolla Shores. (Basemaps from Google Earth).
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change on such spatiotemporal scales are completely intractable due to accuracy, stability, and computational
requirements. In the proposed model, data assimilation represents a computationally efficient means of
estimating the model parameters since model calibration takes place over the course of a single model run.
Traditional optimization techniques (e.g., Newton’s method), on the other hand, may require several model
runs to best estimatemodel parameters, thereby increasing computational cost. Shortmodel run times such as
the current shorelinemodel are necessary when evaluating a number of sea level andmanagement scenarios.
Modelswithlengthyruntimesbecomesignificantly lesstractablewhenensembleforcingconditionsareapplied.

4.9. Relative Contribution of Model Components

To evaluate the advantages of CoSMoS-COAST compared to individual process-based models, we measure
the relative contributions of each model component, i.e., the four terms on the RHS of equation (1), to the
overall shoreline change simulated under the National Research Council [2012] sea level scenario (S= 0.93m
by 2100). Figure 11 depicts the variance of the modeled shoreline change due to each individual term in
the governing equation (equation (1)) relative to the variance of the total shoreline change, Y. For example,

the variance of the wave-driven cross-shore transport is calculated as var Ystð Þ , and its relative contribution

to the model is calculated as var Ystð Þ= var Yð Þ , where var() calculates the variance of the time series and the
overbar indicates an average over all of the “full model” transects, which retain all of the terms in equation (1).

Figure 11 depicts three different simulation periods (1995–2010, 1995–2050, and 2010–2100) of the “no hold
the line, continued nourishment” scenario to evaluate the importance of each model component as a
function of time. For the hindcast period (1995–2010), the modeled shoreline change is dominated by
wave-driven cross-shore transport (90%)with little variance (10%) arising from longshore transport, long-term
effects (vlt), and the shoreline recession due to the negligible amount of SLR during this period. Many beaches
in Southern California are dominatedby cross-shore transport (particularly on interannual timescales) and thus
are well simulated on short timescales using stand-alone equilibrium shoreline change models [Yates et al.,
2009; Doria et al., 2016]. On the other hand, many northern beaches, e.g., Santa Barbara, experience oblique
wave approaches and therefore longshore transport is a significant factor, especially evident after large fluvial
discharge events [Elias et al., 2009; Barnard et al., 2009; Barnard and Warrick, 2010].

The modeled shoreline change for the forecast period (2010–2100) is primarily affected by the shoreline
recession due to the large amount of SLR (0.93m by 2100), which accounts for 69% of the model variance.
For decadal-scale simulations (1995–2050), the modeled shoreline change is more uniformly distributed
between cross-shore (35%) and longshore (19%) wave-driven transport and recession due to SLR (35%), with
the remaining 11% driven by unresolved long-term effects. However, there is uncertainty associated with
these percentages due to a number of different factors:

Figure 11. The relative contribution of each model component for different time periods.
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1. The long-term shoreline recession due to SLR dominates the long-term predictions, particularly when
large sea level projections are applied. Increasing the projected sea level rise will proportionally increase
the influence of the shoreline recession term, S/tan β. The dominance the SLR term relies on the assump-
tion that the Bruunian mechanism (or, perhaps more realistically, the passive flooding mechanism) holds.
Although the constant of proportionality (1/tan β) is subject to considerable debate, it is very likely that
SLR projections exceeding 1.0m will dramatically reshape the world’s coastline [FitzGerald et al., 2008].

2. Changes in natural and anthropogenic sediment supply, e.g., the frequency of fluvial discharge
events and beach nourishments, will affect the contribution of the long-term shoreline change rate
term (vlt).

3. Projections of decreased seasonal wave heights [Erikson et al., 2015] will likewise decrease the relative
importance of cross-shore wave-driven transport at long timescales.

4. Projections of counterclockwise rotations in wave angle associated with decreased North Pacific wave
energy and increased South Pacific swell [Erikson et al., 2015] may increase or decrease longshore trans-
port in southern or northern beaches in Southern California, respectively.

5. The wave-driven cross-shore transport term oscillates about an equilibrium state, whereas the other terms
often represent persistent trends. Thus, the variance due the long-term processes typically increases with
time whereas the variance of the cross-shore wave-driven term remains relatively consistent.
Consequently, the relative contributions of each term vary with time.

In summary, Figure 11 illustrates the clear advantage of the integrated approach used in CoSMoS-COAST over
individual process-based models to simulate decadal-scale shoreline change in regions driven by nontrivial
combinations of short- and long-term morphological processes. In contrast, individual processed-based
shoreline models may miss a significant amount of the shoreline change signal, particularly for
intermediate- and long-term predictions.

4.10. Summary of Projected Changes
The percentage of the transects in Southern California that experience total beach loss by 2050 and 2100
under the seven sea level scenarios (Figure 3) and four management scenarios is presented in Figure 12.
The four management scenarios are (1) holding the line and no continued nourishment, (2) holding the
line and continued nourishment, (3) no holding the line and no continued nourishment, and (4) no holding
the line and continued nourishment. The results for the different sea level scenarios in Figure 12 apply the
same color scheme as in Figure 3 to depict each scenario. Figures 12a and 12b show the percentage of
transects whose final shoreline positions are eroded to within 1.0m or past the non-erodible shoreline.
Figures 12c and 12d show the percentage of transects whose final shoreline positions erode more than
5.0m past the non-erodible shoreline. Note that only management scenarios 3 and 4 (no holding the line)
are valid for the analysis presented in Figures 12c and 12d. The results in Figures 12a and 12b indicate that
the model predicts that 9–21% and 31–59% of transects will experience beach loss by 2050 and 2100,
respectively (under sea level scenarios of 0.93–2.0m). Including seasonal erosion may increase these
numbers to 25–39% and 45–67% of transects. The results in Figures 12c and 12d indicate that 3–11%
and 22–53% of transects will erode more than 5.0m beyond infrastructure by 2050 and 2100, respectively
(under sea level scenarios of 0.93–2.0m), and including seasonal erosion may increase these numbers to
25–39% and 40–65% of transects, respectively.

Overall, the model predictions in Figure 12 indicate that a substantial percentage of beaches in Southern
California are susceptible to complete erosion. However, the proposed model is subject to many simplify-
ing approximations, subjecting the predictions to considerable uncertainty. Nevertheless, based on the
results in Figure 12, it is likely that at least 31% of Southern California will be completely eroded by
2100 in the absence of increased management efforts if SLR exceeds 1.0m. The results also indicate that
there is little overall difference between the nourished and unnourished management scenarios: the
continued nourishment scenarios reduce the extent of erosion compared to the unnourished scenarios
by at most 5% (see, e.g., Figure 12). However, for individual transects there can be significant differences
between the shoreline responses to the two scenarios. The small differences among the management
scenarios suggest that the current rate of beach nourishment is insufficient to deal with shoreline
recession due to accelerated sea level rise. If future nourishments cannot keep pace with erosion, then
the management practice of holding the line via shoreline armoring may become a critical issue in the
overall evolution of the shoreline.
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The model predictions in Figure 12 suggest that there is significant potential for the shoreline to erode past
the back beach and into existing infrastructure. The shoreline model does not account for erosion through
different substrates (e.g., rocky cliffs and concrete structures) but instead treats the entire transect as a sandy
substrate. Clearly, this approach will overestimate the amount of erosion into cliffs and infrastructure under
management scenarios 3 and 4 (not holding the line). However, the model predictions should remain valid
until this fully eroded state occurs. Ultimately, the possibility of reaching such a fully eroded state might
be considered unacceptable and therefore encourage new management practices and nourishment efforts.
In this case, the model’s long-term shoreline change rate term might be specified to explore a range of nour-
ishment intervention scenarios.

5. Conclusions

We have developed a flexible and multifaceted model to predict long-term shoreline change across a wide
variety of geomorphic settings under the name of CoSMoS-COAST, the Coastal One-line Assimilated
Simulation Tool. For the first time, themodel applies a synthesis of individual process-based shoreline change
models, each resolving unique and addable components of shoreline change, e.g., longshore and cross-shore
transport. Becausemanual parameter tuning is infeasible on large spatiotemporal scales, themodel uses data
assimilation to automatically calibrate the model parameters from sparse, noisy signals of observed historical
shoreline change. Ultimately, we use data assimilation as a tool to improve the confidence in long-term pre-
dictions. The proposedmodel is applied to simulate shoreline change on 500 km of Southern California coast-
line. The model predictions, although subjected to considerable uncertainty, indicate that significant impacts
to the shoreline will occur due to accelerated sea level rise, with 31% to 67% of beaches in Southern California
lost by 2100 under the 0.93 to 2.0m SLR projections. The simulation results indicate that current rates of
beach nourishment may be insufficient to keep pace with potential long-term erosion. It is likely that beaches
in Southern California will require substantial management efforts (e.g., nourishments and armoring) tomain-
tain beach widths and prevent impacts to coastal infrastructure.

Figure 12. Summary of CoSMoS-COAST modeling results for the Southern California: The percentage of beach transects
where the (a and b) model estimates total beach loss and (c and d) more than 5m of erosion into cliffs and infrastructure
in (a and c) 2050 and (b andd) 2100. The fourmanagement scenarios are (1) holding the line and no continued nourishment,
(2) holding the line andcontinuednourishment, (3) noholding the lineandnocontinuednourishment, and (4) noholding the
line and continued nourishment.
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Appendix A: Longshore Transport Model

This appendix details the longshore transport model. The numerical method for longshore transport used in
COSMOS-COAST follows Vitousek and Barnard [2015]. The shoreline position (in real-world coordinates x, y) at
any time step is given by

xnk ¼ x0k þ Yn
kcos ϕkð Þ; (A1)

ynk ¼ y0k þ Yn
ksin ϕkð Þ: (A2)

Thus, the shoreline position is constrained to transect k with shore-normal

angle, ϕk. In other words, the shoreline moves as if “on rails.” Coordinates x0k ; y
0
k

� �
represent

the location of the onshore end of the transect, and Yn
k represents the distance from the transect

end x0k ; y
0
k

� �
to the shoreline xnk ; y

n
k

� �
. The alongshore distance between transects can be calculated by

ΔXð Þk ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkþ1 � xkð Þ2 þ ykþ1 � yk

� �2q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xk�1ð Þ2 þ yk � yk�1ð Þ2

q� �
as either a time-varying quan-

tity (using values with time index n) or fixed quantity (using time index n = 0).

The numerical method begins with equation (5). The alongshore transport rate following equation (2) is
calculated numerically by

Qnþ1=2
kþ1=2 ¼ Q0ð Þnþ1=2

kþ1=2sin 2αnþ1=2
kþ1=2

� 	
: (A3)

The angle αnþ1=2
kþ1=2 is calculated as

αnþ1=2
kþ1=2 ¼ αwaveð Þnþ1=2

kþ1=2 � αshorelineð Þnþθ
kþ1=2; (A4)

where αwaveð Þnþ1=2
kþ1=2 is the incident wave angle obtained from a nearshore model (e.g., SWAN) and

αshorelineð Þnþθ
kþ1=2 ¼ atan2 ynþθ

kþ1 � ynþθ
k ; xnþθ

kþ1 � xnþθ
k

� �
: (A5)

The superscript n+ θ in equation (A5) implies

xnþθ
k ¼ θxnþ1

k þ 1� θð Þxnk ; (A6)

ynþθ
k ¼ θynþ1

k þ 1� θð Þynk : (A7)

The parameter θ (0 ≤ θ ≤ 1) determines the temporal discretization of the numerical method. For example, if
θ = 0 then the time stepping method is the (explicit) forward Euler method. θ = 1 is the (implicit) backward
Euler method, and θ ¼ 1

2 is the trapezoidal method (a semi-implicit method for the shallow water equations,
see, e.g., Casulli and Cattani [1994]). We can interpret the temporal discretization in equations (A5)–(A7) in the

following way: The shoreline angle αshorelineð Þnþθ
kþ1=2 is computed as weighted average of the current shoreline

position xnk ; y
n
k

� �
and the future shoreline position xnþ1

k ; ynþ1
k

� �
with the weighting factor θ.

Substituting equations (A1) and (A2) into equations (A6) and (A7), respectively, we obtain

xnþθ
k ¼ x0k þ θYnþ1

k þ 1� θð ÞYn
k

� �
cos ϕkð Þ ¼ x0k þ Ynþθ

k cos ϕkð Þ; (A8)

ynþθ
k ¼ y0k þ θYnþ1

k þ 1� θð ÞYn
k

� �
sin ϕkð Þ ¼ y0k þ Ynþθ

k sin ϕkð Þ: (A9)

This method is implicit (when θ> 0) because the solution that we seek,Ynþ1
k , is a function of itself via equation

(5) and subsequent relationships (A3)–(A5), (A8), and (A9) which contain Ynþ1
k . If θ = 0, then the method is

explicit since Ynþ1
k depends entirely on Yn

k (and not Ynþ1
k ) in equations (A8) and (A9).

In vector notation, equation (5) (with equations (A3)–(A5), and (A9)) are written as

F Ynþ1
� � ¼ 0; (A10)

for the vector of unknown shoreline positionsYnþ1 ¼ Ynþ1
1 ; Ynþ1

2 ; Ynþ1
3 ;…; Ynþ1

k ;…; Ynþ1
N�1; Y

nþ1
N


 �T
, where N is

the total number of shore-normal transects and superscript T represents the transpose. The system of
equation (A10) is nonlinear due to the presence of the sine and arctangent functions. If equation (A10)
was simplified by retaining the first terms in a Taylor series of sine and arctangent, then the system of
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equations could be assembled into a linear system of equations (e.g., AYn+1 =b). The nonlinear system of
equation (A10) can be solved using a variety of methods (e.g., Newton-Raphson method). Following
Vitousek and Barnard [2015], we use Jacobian-Free Newton-Krylov method (see, e.g., Knoll and Keyes
[2004]) in order to (as the name implies) eliminate the need to derive the Jacobian matrix of equation (A10).

Appendix B: Data Assimilation

In this appendix, we discuss the modification of the model equations in order to preserve the expected signs
of the model parameters during data assimilation step. As mentioned previously, parameters C and a are
negative, and b, c, and K are positive. However, there is no guarantee that the data assimilation method,
described in section 3, will preserve the expected signs of the parameters.

We modify the parameters Ck and ak in equation (4) according to

Ystð Þnþ1
k � Ystð Þnk
Δt

¼ Ck Enk
� �1=2

Enk � ak Ystð Þnk � bk
� �

¼ �Cþ
k Enk
� �1=2

Enk ��aþk Ystð Þnk � bþk
� �

¼ � Enk
� �1=2

Cþ
k E

n
k þ Cþaþk Ystð Þnk � Cþ

k b
� �

;

(B1)

where Cþk ¼�Ck and aþk ¼ �ak are the positive values of Ck and ak, respectively, and k is the transect index.
Thus, all parameters Cþk ; a

þ
k ; bk ; ck ; Kk in the governing equations are positive. We will also absorb the coeffi-

cients and redefine the parameters of equation (B1) as

Ystð Þnþ1
k � Ystð Þnk
Δt

¼ � Enk
� �1=2

Cþk E
n
k þ Ak Ystð Þnk � Bk

� �
; (B2)

where Ak ¼ Cþk a
þ
k and Bk ¼ Cþk bk. The goal of this modification is to reduce the interdependence of the para-

meters Ck, ak, and bk during the data assimilation step. Following this step, all model parameters, Cþk ;Ak ; Bk ;
ck ; Kk are positive for each transect k.

Now, we will replace the model parameters in equations (4) and (5) with

Cþk ¼ Cþ0
� �

kexp σC C1ð Þk
� �

(B3)

Ak ¼ A0ð Þkexp σA A1ð Þk
� �

(B4)

Bk ¼ B0ð Þkexp σB B1ð Þk
� �

(B5)

ck ¼ c0ð Þkexp σc c1ð Þk
� �

(B6)

Kk ¼ K0ð Þkexp σK K1ð Þk
� �

(B7)

where Cþ0
� �

k ¼ � C0ð Þk , A0ð Þk ¼ Cþ0
� �

k aþ0
� �

k ¼ C0ð Þk a0ð Þk , B0ð Þk ¼ Cþ0
� �

k b0ð Þk ¼� C0ð Þk b0ð Þk , and (C0)k, (a0)k,
(b0)k, (c0)k, (K0)k are the initial values of the parameters Ck, ak, bk, ck, Kk, respectively. The static parameters
σC, σA, σB, σc, σK (typically, all set to a nominal value of 0.5) influence the range of the possible values of
the assimilated parameters.

After substituting the modified parameter equations (B3)–(B7) into the model equations (5) and (B2), the
model equations become

Ystð Þnþ1
k � Ystð Þnk
Δt

¼� Enk
� �1=2

Cþ0
� �

kexp σC C1ð Þk
� �

Enk þ A0ð Þkexp σA A1ð Þk
� �

Ystð Þnk � B0ð Þkexp σB B1ð Þk
� �� �

; (B8)

Y ltð Þnþ1
k � Y ltð Þnk
Δt

¼� K0ð Þkexp σK K1ð Þk
� �
dk

Qnþθ
kþ1=2 � Qnþθ

k�1=2

ΔXð Þk
� c0ð Þkexp σc c1ð Þk

� �
tanβk

∂S
∂t

� �n

k

þ vltð Þk : (B9)

The state vector used in data assimilation is

ψk ¼ Y ltð Þk vltð Þk Ystð Þk C1ð Þk A1ð Þk B1ð Þk c1ð Þk K1ð Þk

 �T

:

So thus, the modified method assimilates the parameters (C1)k, (A1)k, (B1)k, (c1)k, (K1)k, and the parameters Ck,
ak, bk, ck, Kk will have their requisite sign.

Journal of Geophysical Research: Earth Surface 10.1002/2016JF004065

VITOUSEK ET AL. COSMOS-COAST 802



The exponential functions in (B3)–(B7) serve two purposes: (1) exp(x) is positive for real (i.e., positive or
negative) values of x ensuring the requisite signs of the parameters during data assimilation, and (2) it is easy
to obtain derivatives of this function (since dexp xð Þ

dx ¼ exp xð Þ) when calculating the Jacobian, Jij ¼ ∂Fi
∂ψj
, of the data

assimilation method.

The only nontrivial and nondiagonal entries of the Jacobian will be ∂F1
∂ψj

and ∂F3
∂ψj
, where

F1 ¼ Y ltð Þnk � Δt
K0ð Þkexp σK K1ð Þk

� �
dk

Qnþθ
kþ1=2 � Qnþθ

k�1=2

ΔXð Þk
� Δt

c0ð Þkexp σc c1ð Þk
� �

tanβk

∂S
∂t

� �n

k

þ Δt vltð Þk
F3 ¼ Ystð Þnk � Δt Enk

� �1=2
Cþ0
� �

kexp σC C1ð Þk
� �

Enk þ A0ð Þkexp σA A1ð Þk
� �

Ystð Þnk � B0ð Þkexp σB B1ð Þk
� �� �

:

So thus, Jij= I, where I is the identity matrix and

J1j ¼ ∂F1
∂ψj

¼ 1 Δt 0 0 0 0 �Δt
c0ð Þkσcexp σc c1ð Þk

� �
tanβk

∂S
∂t

� �n

k

�Δt
K0ð ÞkσKexp σK K1ð Þk

� �
dk

Qnþθ
kþ1=2 � Qnþθ

k�1=2

ΔXð Þk

" #

J3j ¼ ∂F3
∂ψj

¼
�
0 0 1� Δt Enk

� �1=2
A0ð Þk exp σA A1ð Þk

� �� Δt Enk
� �1=2

Cþ
0

� �
kσCexp σC C1ð Þk

� �
Enk

� �
…

�Δt Enk
� �1=2

A0ð ÞkσAexp σA A1ð Þk
� �

Ystð Þnk
� �

Δt Enk
� �1=2

B0ð ÞkσBexp σB B1ð Þk
� �� �

0 0�:
For the Southern California application, the initial error covariance matrix, process noise, and measurement
error are given by

P ¼ diag 1 2�10�4 1 0:25 0:25 0:25 1�10�10 0:25

 �� �2

;

Q ¼ diag 0:1 1�10�5 0:1 1�10�3 1�10�3 1�10�3 1�10�10 1�10�4

 �� �2

;

and
R ¼ 1m;

respectively, for each “full model” transect. We selected the values of P and Q for Yst, vlt, and Ylt to be consis-
tent with Long and Plant [2012], since these terms are unaffected by the modified Kalman filter method.
However, the values of P and Q associated with C1,A1, B1, c1, K1 become harder to interpret since they relate
to the process noise of the original coefficients C, a, b, c, K via equations (B3)–(B7). We made a number of sen-
sitivity tests to different values of P and Q, ultimately settling on the numbers reported above, which corre-
spond to reasonable values of uncertainty in the original coefficients. We note that the P and Q values
associated with the Bruunian response coefficient, c, are set to very small values (P7,7 =Q7,7 = 1 × 10� 10) in
order to effectively turn off data assimilation associated with this term. We chose to prevent data assimilation
of the Bruunian response term since sea level rise on the U.S. West Coast was negligible compared to the glo-
bal mean during the hindcast period (1995–2010) due to dynamical factors [Bromirski et al., 2011]. Thus,
changes to the assimilated value of cwould, most likely, be physically unrealistic. Similarly, we effectively turn
off both the model terms and the data assimilation method associated with the longshore and cross-shore
wave-driven transport processes on “cross-shore only” and “rate only” transects by setting
K= 0; P8,8 =Q8,8 = 1 × 10� 10 and K=C=0; P4,4 =Q4,4 =P8,8 =Q8,8 = 1 × 10� 10, respectively.

Appendix C: Convergence of Model Parameters

We examine the convergence of the model parameters (C, a, b, K, vlt) as a function of the number of shoreline
observations, n. As more observations are assimilated (increasing n), the difference between successive esti-
mates of the model parameters, ψn+1�ψn, decreases. Figure C1 illustrates the average convergence rate for

each model parameter according to ψnþ1�ψn

ψ0



 

 (or |ψn+1�ψn| if ψ0 = 0, which is the case for ψ = vlt). Figure C1

depicts the average rate of convergence (blue lines) and the overall trend (black dashed line) for transects
#1–1946 (South of Long Beach), where an average of 17 shoreline vectors are available to assimilate. The axes
in Figure C1 are on logarithmic scales, and thus, the (roughly linear) decreasing trends correspond to asymp-
totic convergence of the model parameters. As shown in Figure C1, the model parameters do converge; how-

ever, the convergence is not monotonic, likely due to the variable nature of Ynþ1
obs � Y�

modeled (the difference
between observed and modeled shoreline positions) in step (5) of the data assimilation method. As shown
in Figures C1a–C1c, the short-term shoreline change parameters (C, a, b) converge rapidly. This result is
expected as parameters C, a, b govern the behavior of wave-driven seasonal variability, a process that is
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well resolved with 10–15 years of available data. On the other hand, the long-term shoreline change
parameters K and vlt converge slower, likely due to the limited temporal extent of the available shoreline
data relative to the long timescales of variability associated with these parameters.
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