Coronavirus Standards Working Group
What should a Coronavirus Standards Working Group do?

- Assure development and availability of standards, controls, interlab testing, knowledge to support successful rollout & scaling of 2019-nCoV testing

- Identify and develop critical infrastructure to support...
 - confidence in test results
 - interoperability
 - scale-up
 - long-term capacity

- Identify best practices that should be institutionalized

 Learn what we need to do next time we have a global network in place ready to make standards.
24 April Agenda

• Manuscript Overview
• Structure
• Figures
• Table(s)
• Draft Minimum Information Standard
• 1st Complete Database of Controls
Our paper describes the technical and operational needs for a coordinated global project assuring the availability of standards (documentary and control materials) and standardization efforts for coronavirus testing.

- Process analysis to identify sources of bias and variability
- Role of standards to mitigate
- Minimum Information About...
 - Standards
 - Assays
- Inventory of available control materials/standards
• Abstract
• Introduction
• Testing as a Measurement Process and roles of standards, validation studies and Standardization practices (interlab and proficiency testing)
 • Molecular testing (virus)
 • Serological testing (host response)
• Analysis and Interpretation of test results for SARS-CoV2 (what are we doing well, and what are we missing?)
 • Molecular testing (virus)
 • Serological testing (host response)
• Minimum Information Standards to report attributes
 • Standards/Controls
 • Assays
• Immediate gaps and Recommendations to fill them
• Resources
 • dynamic, web-hosted standards inventory
 • Assay surveys
• Roadmap
 • Resource maintenance
 • Maintain gap analysis
 • Standards development
Figure 1 - Emergence of diagnostic signal though clinical course of SARS-CoV-2.

- This Figure is intended to support the narrative of what testing is appropriate for what clinical purpose, and consideration for interpretation.
Figure 2 - Nucleic Acid Testing

Molecular Test Measurement Process

Experimental factors:
- Nasal
- Blood
- Throat
- Saliva
- Speculum
- Naso/opharyngeal
- Bronchoalveolar lavage
- Dry swab
- Wet swab
- Liquid
- Viral RNA stabilization buffer
- Viral inactivation solution
- Buffered solution
- Viral transport medium
- Osmotic Physical Chemical Thermal
- Concentration
- Co-purified matrices
- Priming
- Gene Assay / method Units
- Pass / fail
- Performance
- Threshold setting
- Format
- Protocol
- Standardized reporting formats?
- Proficiency testing schemes:
- Interlaboratory studies
- (Inter-comparability of operators, platforms, reagents, assays)

Best practices:
- Sample collection, transport, and storage (see Supplementary Materials for example document)
- SOPs for validation, Limit of detection, repeatability, reproducibility [Degree of validation; full or truncated LLOQ (extraction through interpretation)]
- ISO docs e.g. ISO 20395 (Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences — qPCR and ePCR)

Controls:
1. Patient Samples
 - Positive and negative test controls
2. Synthetic virus-like:
 - Virus Culture, Packaged Viral RNA
3. SARS nucleic acid:
 - Viral RNA, Synthetic RNA
4. Non-SARS-CoV-2:
 - Human RNA
 - Non-SARS-2 Virus
 - Non-SARS-2 Nucleic Acid
 - Non-SARS-2 cDNA

Fig 2—Molecular Test Measurement Process
Figure 2 - Nucleic Acid Testing

Assay Design & Development: Reference Genome → Primer Design → Validation

Pre-analytical: Specimen → Sampling → Transport/Storage → Lysis → Purification

Experimental factors:
- Nasal
- Blood
- Throat
- Saliva
- Sputum
- Nasopharyngeal
- Bronchoalveolar lavage
- Dry swab
- Wet swab
- Liquid
- Water
- RNA stabilisation buffer
- Viral inactivation solution
- Buffered solution
- Viral transport medium
- Osmotic
- Physical
- Chemical
- Thermal
- Concentration
- Co-purified matrices
- Priming
- Gene
- Assay/method
- Units
- Threshold setting
- Format protocol

Reverse Transcription → **Detection** → **Diagnostic Interpretation** → **Quality Control** → **Reporting**

Best practices & documentary standards
- Standardised
- Reporting formats?
- RT-qPCR assay design and validation; optimal primer/probes
- Standardisation
- Transport, and storage (see Supplementary Materials for example document)
Fig 3 – Serological Test Measurement Process
Figure 3 – Serological Test Measurement Process
Table I – Molecular Process Annotation

- Deeper annotation of measurement process figures: including element description, effect on performance, gaps, relative influence

| Phase | Element | Action | Experimental Factors | Effect of poor performance | Standards & Validation Approaches (how does std help?) | Gaps | Influence of Element on diagnostic performance |
|--------|-----------------------|--|---|---|---|---|
| Pre-analytical | Specimen Type | Specify patient sample to collect | Significant uncertainty in diagnostic comparability and performance | Mock sample to evaluate whole process | No authoritative knowledge of viral distribution in different fluids | Imperfect understanding of sampling biases from different fluids/locations | +++ |
| | Sampling | Specify sample collection device | Spike-in positive and negative controls | Performance differences between sampling devices in efficiency and RNA degradation | Variability in collection substrate (collect and release) | PCR inhibitors in collection substrate | ++ |
| | Sampling | To obtain an accurate sampling from the patient/subject that represents their current health status | Sample collection method Substrate used for collection Interim storage (time/temp) | False negatives Underestimation of viral load Perceived variability in NA assay performance | | | |
Table I – Molecular Process Annotation

- **Phase**
 - Assay Design, Pre-analytical, Analysis, Post-analytical

- **Element**
 - Specimen type, Sampling, Transport/Storage, Processing, Assay, Interpretation

- **Action**
 - functional description

- **Experimental Factors**
 - influential factors (swab type...)

- **Effect of poor performance**
 - what breaks

- **Standards & Validation Approaches**
 - what standardization can bring confidence

- **Gaps**
 - what don’t we have

- **Influence on diagnostic performance**
 - +, ++, +++
<table>
<thead>
<tr>
<th>Minimum Information Standard: Standards and Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls for Specimen taking</td>
</tr>
<tr>
<td>Controls for Storage-transport</td>
</tr>
<tr>
<td>Controls for Lysis</td>
</tr>
<tr>
<td>Controls for Purification</td>
</tr>
<tr>
<td>Controls for Reverse transcription</td>
</tr>
<tr>
<td>Controls for PCR</td>
</tr>
<tr>
<td>Genes</td>
</tr>
<tr>
<td>Catalog #</td>
</tr>
<tr>
<td>Vendor or Origin</td>
</tr>
<tr>
<td>Safety level</td>
</tr>
</tbody>
</table>
Standards Inventory

- Compiled by Alexandra Whale, Megan Cleveland, Jim Huggett, Pete Vallone
- Uses the Minimum Information About a Control Material draft standard
- Will be web-hosted, searchable
- 41 materials in current inventory
All other business

Mailing list – converting to Google Groups (MailChimp too much work)
Communications, planning, engagement, process, operations?
Discussion