Contamination of reagents used for molecular detection of SARS-CoV-2 risks compromising diagnostic assays
Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases

Interim guidance

19 March 2020 | COVID-19: Laboratory and diagnosis

Overview

The purpose of this document is to provide interim guidance to laboratories and stakeholders involved in laboratory testing of patients who meet the definition of suspected case of pneumonia associated with a novel coronavirus identified in Wuhan, China.

Previous versions:

Laboratory testing of 2019 novel coronavirus (2019-nCoV) in suspected human cases: interim guidance, 17 January 2020

Other resources for laboratories
<table>
<thead>
<tr>
<th>Institute</th>
<th>Gene targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>China CDC, China</td>
<td>ORF1ab and N</td>
</tr>
<tr>
<td>Institut Pasteur, Paris, France</td>
<td>Two targets in RdRP</td>
</tr>
<tr>
<td>US CDC, USA</td>
<td>Three targets in N gene</td>
</tr>
<tr>
<td>National Institute of Infectious Diseases, Japan</td>
<td>Pancorona and multiple targets, Spike protein</td>
</tr>
<tr>
<td>Charité, Germany</td>
<td>RdRP, E, N</td>
</tr>
<tr>
<td>HKU, Hong Kong SAR</td>
<td>ORF1b-nsp14, N</td>
</tr>
<tr>
<td>National Institute of Health, Thailand</td>
<td>N</td>
</tr>
</tbody>
</table>
Analytical sensitivity and efficiency comparisons of SARS-COV-2 qRT-PCR assays

Chantal B.F. Vogels1*, Anderson F. Brito1, Anne L. Wyllie1, Joseph R. Fauver1, Isabel M. Ott2, Chaney C. Kalinich1, Mary E. Petrone1, Marie L. Landry4, Ellen F. Foxman3, Nathan D. Grubaugh1*

1 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
3 Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
4 Departments of Laboratory Medicine and Medicine, Yale University School of Medicine, New Haven, Connecticut
* Correspondence: chantal.vogels@yale.edu (CBFV); nathan.grubaugh@yale.edu (NDG)
Detection of virus at low concentrations and false positives

To determine the lower limit of detection and the occurrence of false positive or inconclusive detections, we tested the primer-probe sets using SARS-CoV-2 RNA spiked into RNA extracted from pooled nasopharyngeal swabs from respiratory disease patients during 2017 (pre-COVID-19). Our mock clinical samples demonstrated that many of the primer-probe sets cross-reacted with non-SARS-CoV-2 nucleic acid, which may lead to inconclusive or false positive results (Fig. 3).
Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV-2 in Bavaria, Germany, February 2020

Regina Konrad¹,², Ute Eberle²,³, Alexandra Dangel⁴,⁵, Bianca Treis³, Anja Berger¹, Katja Bengs¹, Volker Fingerle³, Bernhard Liebl¹,⁵, Nikolaus Ackermann⁴,⁵, Andreas Sing²,³,⁵

1. Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
2. These authors contributed equally to this work
3. Unit of Virology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
4. State Institute of Health, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
5. Ludwig Maximilians-Universität, Munich, Germany

Correspondence: Alexandra Dangel (alexandra.dangel@lgl.bayern.de)

Citation style for this article:

Article submitted on 21 Feb 2020 / accepted on 04 Mar 2020 / published on 05 Mar 2020
Figure 2
Example image of real-time RT-PCR curves of the E gene assay with unspecific signals at late cycles, Bavaria, February 2020

Contamination as a reason for unspecific signals was ruled out, as stringent prevention measures were taken, e.g. strict separation of working areas: oligonucleotides and PCR mastermix reagents were handled in one room under a PCR hood with specified laboratory coats. Sample preparation and RNA extraction took place in a second room. Sample RNA was added in a third room under a PCR hood. The synthetic E gene control was added last to the mastermix. All reagents were aliquoted and aliquots used once only. Contaminations from synthetic E gene present in primer batches upon delivery can be ruled out as well, although only one batch of E gene primers and probes was used with the QuantiTect and Superscript III setup, as only a certain proportion of samples showed the unspecific signals. Furthermore, the unspecific signals were significantly reduced in the Superscript III setup, which showed that its sensitivity was comparable to the QuantiTect setup. In addition, the initially used E gene primers and probe were separately used as templates with the RealStar kit and no amplification was observed, whereas the corresponding artificial E gene template delivered a clear S-shaped curve with this kit.

the unspecific signals completely. Hence, reasons for the observed unspecific signals may be dimerisation of primers and probes and/or unspecific primer binding and polymerase activity in the targeted region of the E gene, probably also depending on thermal profile and cycler-specific differences, or most likely a combination of these factors.
Commercial stocks of SARS-CoV-2 RNA may report low concentration values, leading to artificially increased apparent sensitivity of diagnostic assays.

Erik Jue and Rustem F. Ismagilov

Division of Biology and Biological Engineering
California Institute of Technology 1200 E. California Blvd. Pasadena, CA 91125
* Correspondence to: rustem.admin@caltech.edu

Fig. 2: Quantification of different SARS-CoV-2 nucleic acid targets using an RT-dPCR protocol. Plots show measured concentration (circles) for half-log dilutions of the label concentrations (triangles) based on supplier-reported values of (A) plasmid DNA (lot 508728 from IDT), (B) synthetic RNA (lot 70033953 from BEI), and (C) genomic RNA (lot 70033700 from BEI). Individual dilution series were repeated twice more for the 633 copies/μL dilution with plasmid DNA and the 6.33 copies/μL dilution for both RNA stocks. The background (solid line) was calculated by averaging no-template controls (n=16), and the assay detection limit (dashed line) was calculated as the background signal in no-template controls plus 3 standard deviations of the background signal (99.7% confidence).[9]
Summary table of available protocols in this document

<table>
<thead>
<tr>
<th>Institute</th>
<th>Gene targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>China CDC, China</td>
<td>ORF1ab and N ★</td>
</tr>
<tr>
<td>Institut Pasteur, Paris, France</td>
<td>Two targets in RdRP</td>
</tr>
<tr>
<td>US CDC, USA</td>
<td>Three targets in N gene ★</td>
</tr>
<tr>
<td>National Institute of Infectious Diseases, Japan</td>
<td>Pancorona and multiple targets, Spike protein</td>
</tr>
<tr>
<td>Charité, Germany</td>
<td>RdRP, E, N ★</td>
</tr>
<tr>
<td>HKU, Hong Kong SAR</td>
<td>ORF1b-nsp14, N</td>
</tr>
<tr>
<td>National Institute of Health, Thailand</td>
<td>N</td>
</tr>
</tbody>
</table>
1 Pitfalls in SARS-CoV-2 PCR diagnostics
2
3 Kerstin Wernike*1, Markus Keller*1, Franzi Schober, Anja Schiefer, Henry Posner, Christian Schleuning, Martin Beer*2
4
5
6 *Friedrich-Loeffler-Institut, Südufer 10, 23559 Lübeck, Germany

quantification cycle value (Cq)

no Cq

KY_240059 KY_240060 KY_240061 KY_240062 KY_240063 KY_240064 KY_240065 RIC_1 RIC_2 RIC_3 RIC_4 RIC_5 RIC_6 RIC_7 NTC PC

○ AgPath 1, duplex RT-qPCR, primers/probe set A-2
△ AgPath 2, duplex RT-qPCR, primers/probe set A-2
○ SSH1 1, duplex RT-qPCR, primers/probe set A-2
△ SSH1 2, duplex RT-qPCR, primers/probe set A-2
▼ AgPath 2, singleplex RT-qPCR, primers/probe set A-2
▼ SSH1 2, singleplex RT-qPCR, primers/probe set A-2
○ AgPath 1, duplex RT-qPCR, primers/probe set A-1
▲ AgPath 2, duplex RT-qPCR, primers/probe set A-1
○ SSH1 1, duplex RT-qPCR, primers/probe set A-1
△ SSH1 2, duplex RT-qPCR, primers/probe set A-1
This report provides a warning to manufacturers of oligonucleotides and diagnostic laboratories alike to remain vigilant for contamination issues in popular RT-PCR reagents. Vigilance will help avoid delays in crucial laboratory responses now and in future outbreak events.
Dear Customer,

In the interest of one of our corporate values, transparency, please be aware that if you intend to use qPCR primers and/or probes for detection of SARS-CoV-2 (For Research Use Only. Not for Use In Diagnostic Procedures), the order may contain trace amounts of long oligo templates (commonly ordered for positive control assays).

We are expending considerable resources to resolve this oligonucleotide industry problem that leads to signals in No Template Control assays and will provide another update as soon as a solution is in place.

We encourage you to run a No Template Control always, no matter the source of your oligonucleotides.
Thank you Kathryn Harris, Great Ormond Street NHS Foundation Trust

Duplex: N & Rnase P

Amplification Plot

Positive SARS-CoV-2 control

Result: 60 negative patients

Triplex: N, Rnase P & PDVH

Amplification Plot

Contamination derived false SARS-CoV-2 results

Positive SARS-CoV-2 control

Result: 30 negative patients & 30 false positive patients
Contamination of reagents used for molecular detection of SARS-CoV-2 risks compromising diagnostic assays

PCR, the principal diagnostic method applied in the worldwide struggle against COVID-19, is capable of detecting a single molecule of a viral genome. Correctly designed PCR assays for SARS-CoV-2 should not cross-react with other (non-SARS) pathogen sequences and perform with very high analytical sensitivity. Such analytical performance is predicated on the ability of the method to detect the presence of the selected genetic target, without detection of a false-positive signal.^

There is no “blank” signal in PCR diagnostics. False-positive results may occur during testing, but should not be considered as a background signal or factored into specificity calculations. There are situations where non-specific PCR signal may arise from sequence similarity, such as when measuring minority-

A common practice for diagnostic PCR development is for the developer to commission the synthesis of a DNA target template as a positive control. The synthesis of these gene fragments is typically at the nanomole scale and will produce in excess of a thousand trillion \((10^{15})\) copies of single-stranded DNA. It is good practice to assure that this control template is made at different sites, usually from alternate vendors, from those making the other PCR reagents, to avoid this major potential source of contamination. However, as the number of laboratories creating assays and targets for the global SARS-CoV-2 pandemic is unprecedented, selecting different vendors may no longer prevent this source of contamination. There are already examples of such assay-derived contamination occurring, and that it has hampered the diagnostic response to COVID-19, with some vendors resigned to this...
Test for it

- Assume reagents may contain contamination (Figure 1A). Quality control reagents prior to their use (primers, probes, PCR mastermix, water) using at least 10 negative control replicates (alongside a positive control).
- Aliquot reagents for single time use, especially nuclease-free water.
- Implement control procedures that include extraction blanks that contain carrier RNA; the latter (present in negative patient extracts) is important for measuring low level contamination. Consider using multiple extraction blanks to detect low level contamination.
- Further information on the source of contamination can be provided by including reverse transcription negative reactions; this will confirm DNA and not viral RNA as the source.
Benchmarks

Transfer RNA Reduces the Formation of Primer Artifacts During Quantitative PCR

BioTechniques 27:50-52 (July 1999)

Recent advances have facilitated the field of fully quantitative PCR. Current methodology allows the identification of product differences through the analysis of DNA melting curves by plotting fluorescence as a function of temperature over the dissociation temperature of amplified products (5). The outcome of the analysis can result in several possible types of fluorescent signal, of which, only

This work was supported, in part, by the British Natural Environmental Research Council (NERC) and by a Dutch Government funded Visiting Scientist Fellowship. In particular, I wish to thankfully acknowledge Dr. P. Kille and Mr. J.F. Huggett for continuous encouragement as well as Dr. J.E. Kammenega and Ms. M. Arts for the provision of the nematodes used in this study. Address correspondence to Dr. Stephen R. Stürzenbaum, University of Wales, Cardiff, School of Biosciences, Biomedical Building, Cardiff, Wales, UK. Internet: sturzenbaumsr@cardiff.ac.uk
Test for it

- Assume reagents may contain contamination (Figure 1A). Quality control reagents prior to their use (primers, probes, PCR mastermix, water) using at least 10 negative control replicates (alongside a positive control).
- Aliquot reagents for single time use, especially nuclease-free water.
- Implement control procedures that include extraction blanks that contain carrier RNA; the latter (present in negative patient extracts) is important for measuring low level contamination. Consider using multiple extraction blanks to detect low level contamination.
- Further information on the source of contamination can be provided by including reverse transcription negative reactions; this will confirm DNA and not viral RNA as the source.
Suggestions

Apply caution when results are close to assay the limit of detection

- Beware of large numbers results with high Cq values.
- Consider the pattern of results. If low signal positives are not randomly distributed (e.g. if they occur adjacent to a high titre sample) this could point at cross-contamination. Consider repeating such low positive samples.
- Consider influences of pre-analysis and sample cross-contamination.
- If possible test for more than one SARS-CoV-2 target gene.
Suggestions

Take preventive measures

- Physically separate PCR setup and sample handling steps (and equipment) from those used for PCR analysis. Ideally use pre- and post-PCR rooms.
- Consider steps during preparation that may lead to contamination through aerosol production: pipetting (high throughput), centrifuges, etc. may lead to small amounts of aerosol that can result in cross-contamination.
Get rid of it

- Discard all reagents linked to contaminated reactions. While systematic evaluation may determine which reaction component is the culprit, it is often more resource efficient to start from scratch.
- Deep clean the laboratory using proven solutions that destroy nucleic acids (e.g. bleach and UV)
- If contamination persists, users may need to redesign assay to different part of the pathogen’s genome
Vladimir Benes, Jeremy A Garson, Karthyn Harris, Martin Kammel, Mikael Kubista, Timothy D McHugh, Jacob Moran-Gilad, Tania Nolan, Michael W Pfaffl, Marc Salit, Greg Shipley, Peter M Vallone, Jo Vandesompele, Heinz Zeichhardt & The Corona Virus Standards Working Group