2 October 2020

Marc Salit,
JIMB Director
SLAC National Lab
Stanford University

Coronavirus Standards
Working Group
What should a Coronavirus Standards Working Group do?

- Assure development and availability of standards, controls, interlab testing, knowledge to support successful rollout & scaling of 2019-nCoV testing.

- Identify and develop critical infrastructure to support...
 - confidence in test results
 - interoperability
 - scale-up
 - long-term capacity

- Identify best practices that should be institutionalized

 Learn what we need to so next time we have a global network in place ready to make standards.
2 October Agenda

• Harmonization Study
 • Fit-for-purpose Study Objectives
 • Study Design
 • What materials will we harmonize?
 • What labs will measure the materials?
 • Analysis Plans
 • Logistics & Timeline
 • Gaps
We can make the standards to make molecular testing robust, reliable, and quantitatively comparable.

‘Harmonization Kit’ to establish comparability of a set of standards to put molecular testing results on a common scale.

“Benchmarking Kit” for turn-key evaluation of molecular testing platforms.

“Validation Kit” for blinded validation with a dashboard to form a “smart-grid” for testing.

Just a few labs, NMIs

Test developers

Routinely measured at testing labs
Harmonization Study will yield a set of comparable calibration materials

- Study will “value assign” or establish relative levels for two types of reference samples
 1. viral mimics & inactivated virus
 2. nucleic acids
- Need to collect materials and make “kits”
- Figure out who’s going to measure them

- Objective *might be* to establish consensus value assignment; this may be difficult to achieve
- Fall-back is to establish consensus relative levels

What scope of comparability is Fit for Purpose?
Absolute and Relative level value assignment

Absolute value assignment permits comparison to any material that has an absolute assignment.

Relative value assignment permits comparison only within our set of study materials and can “bridge” to these materials later.
Molecular Testing is a Measurement Process

Standards and controls work in different parts of the process

Our study will look at materials 2 & 3
Harmonization Kit Design – Two Types of Materials

- Viral particles and surrogates that must be extracted prior to NAAT (Type 2)
 - useful to evaluate and calibrate entire test process
 - more comprehensive knowledge and accuracy of test
 - fewer materials available (3?)
 - not routine for all metrology labs; development required
 - partnerships possible

- Nucleic acid standards (Type 3)
 - useful to evaluate and calibrate NAAT part of the test process
 - RNA includes RT step, DNA doesn’t
 - broader portfolio of materials
 - compatible with metrology labs, but more limited utility in clinical settings
Candidate materials we know about...

We would like to include your standards!

- Inactivated Virus
 - INSTAND
 - FDA
- Viral Surrogates
 - SeraCare
 - NIBSC
 - Asuragen
 - Imperial College
- Nucleic Acid
 - NIST
 - Twist Bioscience

JIMB Lab will manage logistics
- Receive materials
- Package into “Kits”
- Distribute kits with proper documentation
• National Measurement Labs
 • NIST (US), NML (UK), Asia-Pacific? EU?, Canada?

• Clinical Lab Partners using widely-deployed tests
 • academic or commercial testing labs
 • e.g. LANL, Mayo, MUSC, Ghent University, ...
 • e.g. Quest, LabCorp, other commercial testing labs
What it may look like to have reference and clinical tests measuring the same material(s)...

- Plan to analyze results so we can assess sources of bias and variation when value assigning materials
- Data and analysis to be open and public
- Can anonymize tests, labs, participants

Making our results publicly available

• Intent is to make results immediately available
 • All data available as soon as validated
• Develop writing team as we develop the study
• Write draft preprint as study is underway
Logistics and Timeline

- JIMB Lab will be clearinghouse
- Commitments for materials and lab participation by 16 October
- Materials distributed 2 November
- Results received 20 November

- Plan to make open Type 2 and Type 3 Kits
 - expect no more than 15 labs to measure either
 - make sufficient kits to accommodate problems and review

- Expect ~10 materials total
 - across 2 types
 - expect labs to measure in triplicate
 - a lab likely will only measure Type 2 or Type 3

<table>
<thead>
<tr>
<th>October</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>Commitments</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>Materials distributed</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>Results received</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Gaps

- Protocols
- Stability
- Homogeneity
- Refinement of design based on materials in study and participating labs
- Study of sources of variability
 - day-to-day
 - lot-to-lot
 - operator-to-operator
Discussion