COVID Tracker

Genomic epidemiology for public health

Patrick Ayscue
patrick.ayscue@czbiohub.org
Genomic Epidemiology

- Track how pathogens move through populations
- Relatively new discipline
 - Techniques have been prominently used in Ebola outbreaks since 2014 and Zika
 - Volume of samples, labs, analyses, users, data footprint all orders of magnitude larger for SARS-CoV-2 than at any point previously
 - Very limited capacity within US public health in Jan 2020
- ‘Sequencing is the easy part’
 - Capacity exists, challenges are in linking metadata, moving samples around, and ensuring quality and interoperability of data
7 day rolling average of percent of B.1.1.7-positive sequences

95% confidence interval

Latest dates are noisy due to fewer samples.
Shared mutations indicate cases with shared transmission history.
Genetic Links Direct Response

Cases unlinked → Focus interventions outside work setting
COVID Tracker Workflow

An end-to-end program to empower local public health to use genomic data in their COVID-19 response.

Generate Data
Health Departments send samples to Biohub for library prep and sequencing

Analyze
We QC, assemble genomes, build phylogenetic trees, deploy in dashboard

Interpret & Act
We hold hands-on sessions with public health officials to help them act on data

Repeat Weekly

Last mile support ensures effective integration of new technology and we gain insight into user needs, use cases, and barriers to entry.
Four Primary Areas to Deliver Actionable Insights

- Sequencing
- Bioinformatics
- Interpretation

Data management
Sequencing

- Commercial labs
- DPH labs
- Hospitals

Find physical sample, extract RNA

Sequencing

DPH labs

CZB team
Bioinformatics

Genome assembly

QC

Phylogenetics

CZ Biohub data team
Data management

Testing
- Demographics
- Results (Ct vals)
- Source
- External identifiers

Sequencing
- Plate, well
- Run, personnel
- Internal identifiers

Assembly
- QC metrics
- Public identifiers

Phylogenetics
- Source
- External identifiers
- Public identifiers

CZI Engineering + CZ Biohub Data
Interpretation & capacity building

Results calls, data integration, visualizations, tutorials, workshops

Trees

CZB Data + CZI Data

Meaning
CZB and CZI have partnered with 22 DPHs in California and generated over 10,000 SARS-CoV-2 genome sequences to inform pandemic response activities.

These data enable health authorities to:
- identify settings where transmission is taking place
- take action to disrupt transmission chains
- understand how the virus and variants are moving through their communities

Spent hundreds of hours leading hands-on weekly training sessions with county DPHs to help interpret their data and make it actionable.

Our data & outreach have informed local public health response in dozens of county COVID-19 investigations in factories, farms, schools, prisons, hospitals and communities.
Vignette #1: The Facilities That Share Staff

A county flagged multiple outbreaks occurring at several nursing homes.
Vignette #1: The Facilities That Share Staff

A county flagged multiple outbreaks occurring at several nursing homes.

Their epidemiologists add facility metadata to the tree.

Conclusion: Transmission is occurring between these facilities

Action: Hard evidence for these private facilities to change practice
Vignette #2: Importations drive cases in rural county

Each case cluster is genetically distinct.

Action: Focus interventions on travelers.
Vignette #3: Successful screening in county jail

Observation: Ongoing outbreak. Driven by importations or internal transmission?

Inmate screening

Action: Enhance interventions within jail; continue successful intake procedures
Enable California Departments of Public Health to use genomic epidemiology independently.

Aim to do this through technology development and capacity building.
Training local and state health departments to generate, analyze, interpret, and act upon sequencing data

Ongoing assessment of gaps and needs across these groups

- ~100% have gaps in analysis and interpretation
- Variable gaps in ability to generate data and act on findings

Building from lessons learned and best practices from our previous partnership with Gates Grand Challenges standing up similar capabilities in research and clinical laboratories around the world

- Direct instruction → Inquiry-based learning model
The Importance Of Centralizing Data

Should counties sequence and analyze their own data for their own epis? ★

Genomic epidemiology is most effective when a large volume of genomic data from across the entire state is jointly analyzed, compared and made available to both state and local public health officials.

Local health jurisdictions should share and compare their genomic data across jurisdictions to understand where locally occurring lineages came from, to quickly contact relevant jurisdictions to investigate inter-county transmission chains and more.

Sequence data and analyses should be rapidly and automatically shared state-wide, regardless of who sequenced or analyzed it.
Top 5 lessons learned

1. Public health in America is deeply fragmented. Top-down programs have had modest success at best. **For emerging outbreaks, the front-line work is done by under-resourced municipalities and counties.**

2. Long term, *genomic epidemiology is generalizable* if systems are designed accordingly. Most DPHs are also interested in genomic epi for routine practice, beyond COVID.

3. For prospective impact, need **rapid turnaround time** → most DPHs targeting small-batch, on-site sequencing.

4. **No-code solutions are key.** DPHs typically don’t have any computational staff and need accessible analytical and data management tools.

5. Moving positive samples (and their associated data) from **testing to sequencing** is far from trivial.
Landscape moving forward

- Lots of interest
 - Proliferation of tools
 - Federal $$ infusion
 - Attempts to define national, regional, state, and local systems for SC2 and beyond
Protocols and Standards emerging

- ARTIC protocols are widely in use for SARS-CoV-2 sequencing
 - https://artic.network/
- Nextstrain (augur) pipelines are widely used for generating phylogenetic trees
 - https://nextstrain.org/
- GISAID is a primary repository for SARS-CoV-2 sequence data
 - https://www.gisaid.org/
- Terra platform is variably used to host and run analytic pipelines
 - https://terra.bio/
- Public Health Alliance for Genomic Epidemiology (PHA4GE) aims to set standards in the space, with most uptake currently of metadata ontologies and conventions
 - https://pha4ge.org/
- Pangolin lineages are stabilizing as primary nomenclature
 - https://cov-lineages.org/pangolin.html
Thank you!

patrick.ayscue@czbiohub.org