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This paper shows that periodic equilibria may arise in a simple overlapping 
generations model with capital. If the government follows a policy of fixing the 
value of the deficit, rather than fixing the value of government debt, then the dif- 
ference equation that describes competitive equilibria may posses complex roots in 
the neighborhood of the golden rule stationary state. One may show that if there 
exist parametric families of economies for which these roots change stability then, 
locally, there exists an invariant closed curve. The paper provides two simple exam- 
ples that generate such equilibria, and it solves these examples numerically. Journal 
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1. INTRODUCTION 

This paper examines periodic equilibria that may arise in Diamond’s [6] 
overlapping generations (O.G.) model with capital. The existence of cycles 
is established using the Hopf bifurcation theorem (see Guckenheimer and 
Holmes [ 111) and two examples are presented that arise from simple stan- 
dard utility and production functions. 

A number of related papers have recently appeared in the literature. 
Azariadis [ 11, and Azariadis and Guesnerie [2] study cycles in a one good 
O.G. model and Grandmont [lo] extensively investigates the existence of 
periodic equilibria in this model by applying the theory of “Flip” bifur- 
cations. 

The Flip bifurcation is less robust than the Hopf bifurcation since it dis- 
appears as the period length is shortened and for this reason one might be 
interested in establishing that a Hopf bifurcation can also occur in com- 
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petitive economic models. There is another motive for establishing that a 
variety of economic assumptions may lead to periodic equilibria, since any 
particular example can be criticized as being “unlikely” or requiring 
“implausible assumptions.” For example, some critics might argue that 
Grandmont’s example is uninteresting because it requires the assumption 
that savings are a decreasing function of the rate of interest. The 
mechanism that drives the Hopf bifurcation which we describe does not 
rely on this assumption, and it provides a further example of periodic 
equilibria within a class of models that is widely used in macroeconomics. 

Other authors have used the Hopf bifurcation theorem in related work. 
Benhabib and Nishimura [4, 51 present similar results in an infinite 
horizon continuous time model with multiple capital goods. Benhabib [3] 
generates a discrete time Hopf bifurcation in an O.G. model with an active 
monetary feedback rule and Reichlin [ 151 presents an example with a 
Leontieff technology and a variable labor supply. In contrast to the exam- 
ples in [4, 51 and [ 151 this paper deals with cycles that arise only if the 
government pursues a particular policy. The motive for a government sec- 
tor is not discussed in the paper although the examples do suggest that the 
way in which government expenditure is financed may have an important 
effect on the nature of a competitive equilibrium. 

2. MODEL STRUCTURE 

The model is a two-period lived overlapping generations economy with 
capital. Agents supply labor inelastically, when young, to a constant- 
returns-to-scale neoclassical production sector and consume the interest 
plus principle on their investments in old age. This structure allows one to 
derive asset demand equations by the young (see Diamond [6] for details) 
of the form 

A r+~=A(w>&+,). (1) 

The term o, represents the real wage and R, + I is the gross real rate of 
return on assets held between periods t and t + 1. Competition in produc- 
tion implies that the demand for capital by firms is a function of the 
interest factor; k,, 1 = k( R, + i ). Similarly one may derive an expression for 
the real wage, w, = cj(R,), that is referred to as the factor price frontier. In 
the sequel, the following assumptions will be imposed on the functions A, 
4, and k. 

(AI) A, 4, and k are of class Ck for k > 6. 

(AII) A, > 0. 

(AIII) 4’ < 0, k’ < 0. 
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(AI) is necessary to apply bifurcation theory to sequences of competitive 
equilibria. (AH) follows from the normality of current consumption and 
conditions (AIII) follow from concavity of the production technology. 

It is assumed that all private assets are held by the young either as 
capital k, or in the form of government debt B,. Asset market equilibrium 
requires that 

where 

BUG, R,+,)=44W, R,+,)-k(R,+,). (3) 

The function B represents the net private indebtedness of the government 
to the public. It is important to recognize that B, may be positive or 
negative. If B, is negative then the net private ownership of capital is less 
than the economy’s stock of capital. This situation may be sustained by a 
government policy of purchasing shares in private corporations and issuing 
zero government debt. If one assumes that public production is a perfect 
substitute for private production then one may identify a negative value of 
B, with a world in which the government undertakes production activity 
and issues positive debt of a lower value than the value of the public capital 
stock. If one adopts this latter interpretation then B, represents government 
debt minus the value of public capital and the assumption of negative B, 
accords with recent estimates of Eisner and Pieper [7] for the U.S. 
economy, that is, the net worth of the U.S. government in recent years has 
been positive ! 

3. CHARACTERIZING EQUILIBRIA 

This paper departs from Diamond [6] in the description of policies 
followed by the government. Diamond assumes that B, = B for all t which 
implies that competitive equilibria may be described as sequences of 
interest factors that are generated by a first order difference equation.’ 
Instead, it is assumed that the government follows a policy of maintaining 
a constant zero budget deficit,* which, from the government budget con- 
straint, implies that 

B,=R,-,B,-,. (4) 

’ A Hopf bifurcation cannot occur in the case studied by Diamond since the policy of fixing 
B, = B induces only first order dynamics which cannot possess complex eigenvalues. 

* The policy of a iixed deficit is studied in [ 131. 
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Balanced budget policies induce competitive equilibria that are described as 
solutions to the difference equation 

B(R,, &+,I-RAR,-,, &)=O (5) 

with initial conditions k(R,) = k,, B(R,, R,) = ROB,. Stationary equilibria 
must obey the relationship, B(R*, R*) (1 - R*) = 0, from which it follows 
that a stationary equilibrium is either balanced, B(R*, R*) = 0, or golden 
rule, R* = 1 (see Gale [9] for an elaboration of these definitions). 

A more interesting class of equilibria is represented by periodic solutions 
to Eq. (5). The existence of such equilibria, in the neighborhood of a 
stationary state (R*, R*), may be established by applying the theory of a 
Hopf bifurcation. Heuristically, if one imposes the regularity condition 
B,(R*, R*) #O, one can solve (5) for R,,, and thus generate a second 
order nonlinear difference equation in a neighborhood of the stationary 
state, of the form (R,, 1, R,) = F( R,, R,- 1). The eigenvalues of the 
Jacobian matrix DF evaluated at the stationary state are the solutions of 
the equation 

Suppose now that the characteristics of the economy are indexed by a 
parameter p. A Hopf bifurcation occurs at, say, ,U = ,u,, if the corresponding 
eigenvalues n,(p), n,(p) are complex conjugates and cross the unit circle at 
PO . 

It is immediate to see that this phenomenon cannot occur at a balanced 
stationary state, B(R*, R*) = 0 since the associated eigenvalues are then 
II, = R*, A, = B,/B,, which are both real. For this reason attention will be 
focused on the golden rule stationary state (1, 1). More precisely, let the 
characteristics of the economy (A,, #P, k,) be indexed by a real parameter 
,U in some open interval of po. The following propositions establish con- 
ditions under which a Hopf bifurcation occurs in a neighborhood of the 
golden rule stationary state at the critical parameter value po. To guarantee 
the existence of a well-defined dynamical system in the neighborhood of the 
golden rule one requires the following regularity assumption: 

(AIV) B,(L 1, P) f0. 
To apply the Hopf bifurcation theorem one also requires3: 

(AV) B(l, 1, ,u) is twice continuously differentiable with respect to p, 

3 It is strictly only necessary to impose (AN) and (AV) for p in the neighborhood of a 
bifurcation point, p0 (see Theorem 1). 
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PROFWITION 1. Assume (AI), (AIV), (AV). Then there exists an open 
neighborhood U c R2 of (1, 1) and a one parameter family of mappings F,, 
of U into R* such that the local dynamics of competitive equilibria are 
completely described by the map F,: (x, y) -+ (G(x, y; p), x). The function 
G is of class Ck, k > 6, and is implicitly defined by the equation 

B(x, (3x9 Y; P); P) - Wx, Y; ,u) = 0. (6) 

The family of mappings F, is twice continuously differentiable in p. 

The proof of Proposition 1 follows directly from the implicit function 
theorem. 

Stationary equilibria are represented by fixed points of F,. The local 
behavior of nonstationary equilibria is governed by the roots of DFW in the 
neighborhood of a fixed point. The following theorem establishes local con- 
ditions for the existence of an invariant closed curve. 

THEOREM 1. (Hopf Bifurcation Theorem).4 Let F;(x) be a one- 
parameter family of Ck mappings, k b 6, from some open subset U of R2 into 
R2. Let x(pO) c U be a fixed point of F, at which the eigenoalues of DFP are 
complex conjugates &), X(11,). Let F be C2 in p. Assume: 

(A) I&)1 = 1 but li’(pO) # 1 for j= 1, 2, 3,4, 

(B) (d/&)(McLo)l) = d> 0. 

Transform the map F, to polar coordinates and identify an open 
neighborhood V of (rg, t3,) where x&)= r. cos 8,, y&)= r. sin 0, by 
setting (x, y) E U equal to (r cos 8, r sin 0) for (r, 0) E k’. Then there exists a 
Ck -4 change of coordinates h so that the expression of hF,h- ’ in polar 
coordinates has the form 

hF,, h ~ ‘(r, 0) = (r( 1 + d(p - cl,,) + ar*), 8 + c + br2) + higher order terms. 

If k > 6 and a < 0 (a > 0) then there exists a right (left) neighborhood of p. 
in which there is an invariant attracting (repelling) closed curve for the 
map F, in V. 

In Section 4 this theorem is applied to two simple examples. Proposition 
1 establishes that competitive equilibria in the neighborhood of a 
stationary state are described by a Ck map. To establish the existence of an 
invariant closed curve, it remains to show that the eigenvalues of DFP ( E = 1 
may be complex and that there exists a critical value of the bifurcation 
parameter p. for which these roots change stability. One must also check 

4 Theorem 1 is adapted from Iooss [ 121 and Guckenheimer and Holmes [ 111 and the 
proof follows directly from restricting the treatment in [ 121 to consider only locally defined 
maps. 
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that conditions (A) and (B) are satisfied. The following proposition 
narrows down the class of economies in which one may expect to observe a 
Hopf bifurcation. 

PROPOSITION 2. Assume (AI), (AII), (AIII), (AN). Let A”, Ab be the 
roots of DF, evaluated at (1, 1). Then II”, Lb are complex conjugates only if 

(i) b>O, 
(ii) B(1, l)<O. 

Proof. The characteristic polynomial of DF, evaluated at (1, 1) is given 
by, 

P(1) has complex roots only if 

d=-(;+l-f$+?<o. 

Rearranging terms one may show that, 

hence, 

where the final inequality follows since B, ~0 from (AII), (AIII) and 
B2 #O from (AIV). Regrouping terms one may also write, 
d=((B-B,)/B#+ 1+2(8+B,)/&, and since B,<O by (AII), (AIII), 
and B-CO from above, d<O+B,>O. 

Proposition 2 establishes that a Hopf bifurcation may occur only in 
economies at which the private sector is a net debtor at the golden rule 
stationary state. One also requires B2 > 0. Economic theory does not place 
strong restrictions on the functions B1 and B, and it is not difficult to find 
families of economies for which the roots of DF, cross the unit circle to 
which one may directly apply Theorem 1. Two such examples are discussed 
below. 
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4. SOME SIMPLE EXAMPLES 

The following two examples are generated from simple technologies and 
preferences. The first example contains an attracting invariant closed curve 
and the second contains one that is repelling.’ 

EXAMPLE 1. Production is C.E.S. with 100% depreciation, i.e., 
f(k,) = (l/a)( 1 + c&)“Y, and utility is Cobb-Douglas with weight, s, on 
future consumption which implies: A(&) = $(R,) s, where 0 < s < 1. The 
competitive equilibria of this example are solutions to the difference 
equation B(R,,R,+,)-R,B(R,-I,R,)=O, and the map F, has the 
representation 

X cc s(l -ctx;d)-l’d 
t+1= LY 

-x,s(l -ccy,-d))“d 

+x,(x:‘- c()-” +d)ld 
)-4(‘+4+a]l/d, (7) 

Y,+ 1 =xt, (8) 

where d = y/( 1 - y) is the elasticity of substitution minus one. 

For din the range (0, 00) capital and labor are substitutes in production, 
in the range ( - 1,0) they are complements and for d = 0 the production 
technology collapses to Cobb-Douglas. One may establish that a sufficient 
condition for complex roots at a bifurcation point is given by 

Is-a+a(l +d)J <2a(l +d) 

and that these roots have unit length when 

(9) 

41-a) 1 
l+d= . (10) 

Fixing any two of these parameters such that (9) holds one may choose the 

5 Theoretically one may compute the value of the parameter, a, referred to in Theorem 1 
and demonstrate analytically whether a particular example is attracting, a < 0, or repelling, 
a > 0. Formulae for the computation of, a, and for the period and phase of the invariant circle 
are presented in Iooss [ 121. In practise, however, the computations involved are very lengthy 
and the expressions depend in a complicated way on third derivatives of utility functions and 
of production technologies. Since economic theory does not place restrictions on third 
derivatives one might expect that either repelling or attracting cycles may exist. Both 
possibilities are of interest in the light of the results of Fuchs [8] and Grandmont [lo] which 
suggests that a learning mechanism may reverse the stability of the dynamics of perfect 
foresight equilibrium models. 
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third parameter to be the bifurcation index p. A bifurcation occurs if, as p 
varies, s( 1 - a)/( 1 + d) passes through unity. 

Figure 1 represents a computer simulation of this example in the 
neighborhood of the golden rule stationary state. Figure 1 was generated 
for parameter values of c1= (OS), (1 + d) = (0.24) and s = (0.5). Holding 
a = (OS), s = (OS), a bifurcation occurs as (1 + d) passes through (0.25). If 
(1 + d) is lowered towards zero then this example continues to generate a 
stable attracting closed curve until (1 + d) reaches (0.15). At this point the 
curve breaks, and repeated iterates of the map F, cause the trajectory of 
(xI, y,) to move outside the domain on which G(x, y) is defined. 

EXAMPLE 2. In this example technology is Leontieff with 100% 
depreciation, which is a limiting case of the technology considered in exam- 
ple 1. The factor price frontier is given by w, = a-R, and the demand for 
capital is interest inelastic and normalized to unity, k,, , = 1. 

Sincethefunction, B(R,,R,+,)rA(&R,),R,+,)-k(R,+,), musthavea 
positive derivative with respect to R,, , in order to generate complex roots 
it is assumed that, A, > 0, unlike example 1 in which the asset demand 
function depended only on the wage. Specifically the function A is assumed 
to take the form; A = so, R,, , , which may be derived from the indirect 

FIG. 1. A stable quasi-periodic limit cycle. 
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FIG. 2. An unstable strictly periodic limit cycle. 

utility function V= o, exp(sR,+ , ) by applying Roy’s identity.‘j The map F, 
is given by 

x,+1= 
1 +x: s(tl -y,) -x, 

s(a-xx,) ’ (11) 

Y,, 1 =xI, (12) 

and the roots of DF,, 1 g =, are complex if 

L l+ 
s(a-1)-l 1 ’ 1 4 

s(a- 1) 
+- 

a-l 
<-. 

a-l (13) 

Furthermore, these roots change stability as 

a 2 2. 

Figure 2 represents a computer simulation of this example for parameter 
values of a = 2.01, s = 0.5. The example differs from Fig. 1 in two respects. 

6 V is a proper indirect utility function for 0 c: R, + , < l/s. See [ 14, p. 891 for a definition of 
the properties of indirect utility functions. 
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First, the periodic equilibrium is unstable in Example 2 and stable in 
Example 1. Second, Fig. 2 depects a strictly periodic equilibrium of period 
6 whereas Fig. 1 is an example of a quasi-periodic equilibrium in which the 
system “almost” repeats itself every six periods but no state reoccurs exac- 
tly. Both types of behavior can occur theoretically for open sets of 
parameter values. As s moves towards zero, in example 2, the stable six 
cycle breaks into a quasi-periodic equilibrium around s=O.498. If s is 
further lowered, cycles of different periods appear until at a value of 
0.25 <s < 0.3, all trajectories appear to be captured by a stable four cycle. 

The economics behind the possibility of complex roots rests on the fact 
that the interest rates at dates t and t + 1 may pull the private demand for 
government bonds in different directions. An increase in R, tends to lower 
the demand for assets, since it depresses the current wage, and an increase 
in R,,, has the opposite effect since it lowers the private capital stock and 
may increase private savings. The following explanation deals only with the 
case in which B, > 0, although periodic equilibria may also occur (for dif- 
ferent reasons) if B2 < 0.' 

It is helpful to consider two possible cases. Suppose first that B( 1, 1) > 0, 
and consider a competitive sequence of interest factors (R, >y=, where 
R, = 1, R, > 1. It follows from the government budget constraint that 
B(R,, RJ = R, B(Ro, R,). If RI > R. = 1 then the government must float 
enough debt in period 2 to cover the principle plus interest on the debt out- 
standing in period 1, i.e., B(R,, R,)> B(Ro, R,). 

One may approximate the growth in B between periods t and t + 1 by 
the expression d, = B,(R, - R,- ,) + B,(R,+ 1 -R,). The first term in this 
expression represents the downward pull of the current interest factor on 
private saving through its effect on the wage and the second term 
represents the upward pull of the future interest rate. In period one, the 
first term of d, is unambiguously negative since R, > 1 and B, < 0. It 
follows that the interest factor in period 2 must be strictly greater than the 
interest factor in period 1, (R, > R,), to induce the private sector to hold 
the increased quantity of debt. This same argument may be applied in 
period 3 to show that R3 > R, and, by induction, one may show that the 
competitive interest rate sequence must increase monotonically in the 
neighborhood of the golden rule and hence cycles cannot occur if 
B(l, l)>O. 

Suppose, alternatively, that the private sector is a net debtor at the 
golden rule, i.e., B( 1, 1) < 0. Consider, once again, the competitive sequence 
{R,),“=, for R. = 1, R, > 1. In this case the government must reinvest the 
interest on its assets in period 2 in order to maintain a zero deficit. It 

’ In the case BZ -C 0 a Flip bifurcation may occur for reasons similar to those discussed by 
Grandmont [lo]. 
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follows from the government budget constraint that B(R,, R2) = 
R, B(R,, R,). But since B is negative and, R, > 1, net private holdings of 
government assets must be a larger negative number in period one than in 
period zero, i.e., A, = B,(RI - 1) + B,(R2 - R,) ~0. Once again the first 
term in this expression is unambiguously negative but it follows that the 
sign of R, - RI is ambiguous. In a periodic equilibrium the effect of a rise 
in the current interest factor, B1(R1 - l), may cause the net demand for 
assets to fall more than is required to maintain equilibrium. To restore 
balance, the effect of the future interest factor must be positive, R, > R,, 
and so initially the equilibrium interest rate sequence begins to rise. But as 
R, increases, the amount by which net government assets must increase 
each period accelerates, i.e., A, becomes a larger negative number and the 
effect of the current interest rate, B,(R, - R,_ 1), is no longer sufficient to 
increase private indebtedness by enough to maintain equilibrium. At this 
point the effect of the future interest factor, B,(R,+ I - R,), must also 
become negative, R, + 1 < R,, and the sequence of competitive interest fac- 
tors begins to fall. This process generates a cyclic equilibrium in the 
neighborhood of the golden rule, which may be locally either convergent or 
divergent. 

A bifurcation occurs in a family of economies as the stability of the 
equilibrating process changes. In Example 1,as the elasticity of substitution 
(1 + d) tends to zero, the effect of the future interest factor on the net 
private demand for government assets becomes smaller. The value of B, is 
given by (1 + d)( 1 - a)(-(’ +2dvd) which tends to zero as (1 + d) tends to 
zero. As (1 + d) becomes smaller the amount by which R,, I must adjust to 
maintain a given increase in the demand for assets becomes increasingly 
larger. A bifurcation occurs when the required response becomes so great 
that the sequence of interest factors that will maintain equilibrium moves 
from a locally convergent to a locally divergent sequence. A similar process 
occurs in example 2 but in this case the effect of the future interest rate on 
net asset demand is given by B, = s(a - 1). In this example it is the 
parameter a which generates a bifurcation but in both cases the bifurcation 
occurs as a process that is inherently cyclical changes stability. 

5. CONCLUDING COMMENTS 

One reason for studying nonlinear cycles is to develop an endogenous 
theory of the business cycle that can compete with the existing dominant 
paradigm; that is, the linear stochastic model. A variety of economic 
mechanisms may be responsible for generating periodic equilibria 
endogenously; it is hoped that the above examples may stimulate further 
research in this area. 
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