
A Crash Course in R
David Kahle

Department of Statistical Science
Baylor University

www.kahle.io

Contents

What This Document is About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Installing and Loading Packages in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Help! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

R as a Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Variables and Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Data Structures in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Extracting Parts of Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Vectorized Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Conditionals: If Statements and Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Basic Applied Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Working Directories and Reading in Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Styling and Where to Go Next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

What This Document is About

The purpose of this document is to give you a crash course in R. Since it’s a crash course, I don’t intend
in this document to teach you anything about programming per se: I assume you know what variables are,
what control flows are, what functions are and so on, just in another language. Where R does something
that’s unexpected and remarkable coming from some other common language (C, C++, Python, etc.), and
it’s easy to showcase quickly, I do so. Otherwise, I try to keep this as brief as possible.

If you do have any questions, or if you think I should add something to this document, please email me!
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RStudio

Whether you’re just getting started with R or you’re a package developer, I strongly recommend you use
RStudio. You can download it for free from www.rstudio.com/products/rstudio/download/.

In programming jargon, RStudio is an integrated development environment (IDE) for the R language. At a
basic level, what that means is that RStudio is a program that runs R but contains a lot of added functionality
that makes writing R and R-related code easier. For example, it has a ton of keyboard shortcuts that do
various things that you may want to do in R, ranging from basic things like inserting the pipe operator
(Cmd-Shift-M on a Mac) to reflowing a package’s roxygen2 documentation (Cmd-Shift-/). But that just
scratches the surface, RStudio enhances R in many, many ways.

In addition to the program RStudio, the company RStudio produces high-quality R related instructional
content for free. It provides free webinars roughly every month or so discussing R-related topics, ranging from
basic to advanced, and it posts them to its website free of charge: www.rstudio.com/resources/webinars/. If
you’re just getting into R, you may want to checkout the RStudio Essentials videos on that page after you
read through this document.

RStudio also produces a number of high quality cheat sheets available from www.rstudio.com/resources/cheatsheets/.
Those can be handy to have around depending on what you’re working on.

Installing and Loading Packages in R

Installing packages: install.packages() and install_github()

When you download R, it comes with its basic computing abilities and handful of packages. These include
base, MASS, stats, utils, and so on. There are currently two main ways to install packages that others
have written: install.packages() and install_github().

install.packages() is a function that comes with R. To install a package, you pass the name of the package
you want to download into install.packages(). For example, if you want to download the devtools
package, you type

install.packages("devtools")

If you want to install several at once, you do something like

install.packages(c("devtools", "dplyr", "tidyr"))

Since R is installing code from one of its repositories, you have to be connected to the internet to run
install.packages(). It may ask for what mirror you want to download it from – that’s the server that it’s
getting the package from. R’s central server is cran.r-project.org, where CRAN stands for Comprehensive R
Archive Network. The “mirrors” are simply copies of cran.r-project.org, which update roughly daily (it varies
by mirror). There are several good mirrors. For example, cran.rstudio.com and cran.revolutionanalytics.com
are both popular and support HTTPS, but the packages you get from them are identical to those from
CRAN.

install_github() is a function in the devtools package that installs packages off of Github. Github is a
social coding website that allows developers to keep good records of their code and collaborate on projects.
In many cases, developers also make their code public (“open source”) so that others can take it and add
onto it or fix little bugs. For example, you can find R itself on Github, although it is not developed there.
You can also find packages, such as ggplot2 or mpoly, there. To install them directly from Github, you’d
use code like
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devtools::install_github("dkahle/mpoly")

where dkahle is the username of the developer of the mpoly package. If you know the name of the package
you want but don’t know the developer, just Google them. For example, “mpoly github”.

Loading packages

To use the code in a package you have to load it. The typical way to do this is with the library() function,
like this:

library(mpoly)

Alternatively, you sometimes see people use the require() function. They basically do the same thing with
slightly different return values.

When you load a package, all of the functions in that package become available to you. While that may
sound like a good thing, sometimes it can be a nuisance. For example, if two packages have functions in
them that are the same name, you can get tripped up as to which one will be used. To fix this, you can refer
to a function in a specific package by using the double colon operator ::, like this:

mpoly::permutations(3)
# [,1] [,2] [,3]
# [1,] 1 2 3
# [2,] 1 3 2
# [3,] 2 1 3
# [4,] 2 3 1
# [5,] 3 1 2
# [6,] 3 2 1

The :: operator is also commonly used to use functions in packages that have not been loaded.

Note: you only have to install a package once, but you have to load it every time you open R.

Help!

There are many ways to look for help in R. For example if you want to know about the function lm() you
can access the documentation with either of the following:

?lm
help("lm")

If you want to search the help for something, there is the help.search() function. For example:

help.search("generalized linear models")

For even more help, the function findFn() in the sos package can be used to conduct an exhaustive search
using search.r-project.org. You use it essentially in the same way you use help.search(), for example
sos::findFn("eastic net"). To read up on how it works, see The R Journal’s article on it.
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R as a Calculator

R has a lot of basic math functionality built into it. For example, it has all of the ordinary arithmetic
operations +, -, *, /, and ˆ in addition to those you typically see in programming languages %% (modulus)
and %/% (integer division). Matrix multiplication is %*%, see below for how to create matrices.

In addition to the arithmetic operations, there are also many built-in mathematical functions, such as the
trigonometric functions sin(), cos(), tan(), and their inverses asin(), acos() and atan(); the exponential
functions exp() and log(); and special functions such as beta() and gamma(), their logs lbeta() and
lgamma(). Polygamma functions included as well, see ?gamma. The factorial is factorial(), and its log is
lfactorial(). The binomial coefficient is choose(); lchoose() also exists. sin(), abs(), and sqrt() do
the standard things.

Infinity is Inf, and negative infinity is -Inf. NaN governs not a number, which is to be distinguished from NA
(a missing value), or NULL, the null object.

Variables and Assignment

The assignment operator in R is <- For example:

x <- 5
x + 1
# [1] 6

You can assign essentially anything to a variable. While = works for assignment, the two are not interchangeable,
so it is generally recommended to use <-.

Notice that the resulting value of x in the above is not printed out by default. To print the assigned value to
the screen, put parentheses around the assignment:

(x <- 5)
# [1] 5

This is particularly useful in situations where the assigned value is not clear; typically because the right hand
side is some expression that has to be evaluated. For example, the rnorm() function generates pseudo-random
numbers from the normal distribution. If you set x <- rnorm(5), x will contain 5 randomly sampled numbers,
but you won’t know what they are unless you print x out. Wrapping the code up in parentheses fixes this
problem:

(x <- rnorm(5))
# [1] 1.01253808 -0.77984445 2.04036375 -1.72415299 -0.01389306

You can list all the variables in the global environment with ls():

ls()
# [1] "x"

You remove variables with the rm() function.

x
# [1] 1.01253808 -0.77984445 2.04036375 -1.72415299 -0.01389306
rm(x)
x
# Error in eval(expr, envir, enclos): object 'x' not found

4

https://en.wikipedia.org/wiki/Matrix_multiplication


To remove all the variables in your global environment, you can use the following nuclear rm(list = ls()).

Occasionally you may come across the global assignment operator <<-. In a context where lexical scoping
matters, the global assignment operator will make the assignment in the nearest environment where the
variable is defined or the global environment, whichever is closest. If it makes it to that point, it will assign it
there. It is usually used inside functions to perpetuate variables. For example:

f <- function() { a <- 1 }
f()
a
# Error in eval(expr, envir, enclos): object 'a' not found
f <- function() { a <<- 1 }
f()
a
# [1] 1

Data Structures in R

R has effectively four basic data types: logicals, integers, doubles, and characters. Logicals are either TRUE or
FALSE, integers are made by typing a L after the desired number (e.g. 5L or -3L), and characters are made
with either single or double quotes so that 'a' is the same as "a". Complex types are also available, but
since you don’t use them much I won’t cover them here.

Note: To check what kind of data structure you’re dealing with, use the str() function.

str(TRUE)
# logi TRUE
str(1L)
# int 1
str(1.0) # num = numeric = double
# num 1
str("a")
# chr "a"

Vectors

Vectors are sequences of the basic types. The basic way to make vectors is to use the c() function:

c(1, 2, 3)
# [1] 1 2 3
c("a", "b", "c")
# [1] "a" "b" "c"

Vectors that are sequences of integers can be easily constructed with the colon : operator:

1:10
# [1] 1 2 3 4 5 6 7 8 9 10

Sequences of other numbers are made with the seq() function, which can create the vectors using a step size
or a total length:
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seq(0, 1, .1) # = seq(0, 1, by = .1)
# [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
seq(0, 1, length.out = 5)
# [1] 0.00 0.25 0.50 0.75 1.00

You can also create vectors using the rep() function, which repeats its arguments. You use it in two ways:

rep(c("a", "b"), 5)
# [1] "a" "b" "a" "b" "a" "b" "a" "b" "a" "b"
rep(c("a", "b"), each = 5)
# [1] "a" "a" "a" "a" "a" "b" "b" "b" "b" "b"

All vectors have length that can be accessed with length(). Since R is a vectorized language, stand-alone
numbers or characters are implicitly length-one vectors:

length(2)
# [1] 1
length(1:10)
# [1] 10

Occasionally you’ll come across a length zero object. These look like logical(0), integer(0), numeric(0)
(numeric is often an alias for double), and character(0).

If you want to label the elements of a vector, you can just pass the names into the c() function like this:

c(first = 1, second = 2, third = 3)
# first second third
# 1 2 3

These are called named vectors; we’ll come back to them when we talk about extraction. Alternatively, you
can assign names to a vector after the fact using names() <-, like this:

x <- 1:3
names(x) <- c("a", "b", "c")
x
# a b c
# 1 2 3

Matrices and Arrays

Matrices and arrays are usually created using the matrix() or array() functions:

matrix(1:6, nrow = 2, ncol = 3)
# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6

Notice that matrices are populated by column by default.

Here’s an example of an array:
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array(1:(1*2*3), dim = c(1, 2, 3))
# , , 1
#
# [,1] [,2]
# [1,] 1 2
#
# , , 2
#
# [,1] [,2]
# [1,] 3 4
#
# , , 3
#
# [,1] [,2]
# [1,] 5 6

Matrices and arrays both have dimensions accessed with dim(). For matrices, the functions nrow() and
ncol() give you the number of rows and columns.

To make a diagonal matrix with a given diagonal, use diag(). For example:

diag(1:3)
# [,1] [,2] [,3]
# [1,] 1 0 0
# [2,] 0 2 0
# [3,] 0 0 3

The identity matrix is made by simply passing an integer into diag(). For example, diag(c(1,1,1)) =
diag(3).

Naming matrices is easiest using colnames() <- and rownames() <-, assigning them after the fact. For
example:

A <- diag(1:3)
rownames(A) <- c("a", "b", "c")
colnames(A) <- c("A", "B", "C")
A
# A B C
# a 1 0 0
# b 0 2 0
# c 0 0 3

Data Frames

As described above, vectors and matrices must have the same types of elements. If you try to combine
elements of different types, the elements get changed (“coerced”) into analogues of a higher type following
the scale logical < integer < double < character. For example, look at what happens when you combine a
double and a character:

c(1.1, "a")
# [1] "1.1" "a"
str(c(1.1, "a"))
# chr [1:2] "1.1" "a"
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identical(1.1, "1.1")
# [1] FALSE

Typically, when considering spread-sheet like data, the rows represent different individuals or objects of which
there are n, and the columns represent different measurements. The problem with using a matrix for this
data structure is that the types of different measurements change dependent on what kind of variables you
have. For example, in a dataset containing one column of addresses (a character vector) and valuations (a
numeric vector), a matrix would “promote” all the valuations to characters. The problem with that is that
arithmetic operations aren’t defined for character vectors. Enter the data frame.

A data frame is like a matrix, but its columns can have different types. You usually make a data frame by
passing vectors into the data.frame() function:

data.frame(1:2, c("a","b"))
# X1.2 c..a....b..
# 1 1 a
# 2 2 b

To make a data frame with sensible column names, enter the names before the vectors with an equal sign
dividing them:

data.frame(ints = 1:2, chars = c("a","b"))
# ints chars
# 1 1 a
# 2 2 b

You can also use the names() <- syntax to assign or re-assign column names to a data frame that already
exists:

df <- data.frame(1:2, c("a","b"))
names(df) <- c("ints", "chars")
df
# ints chars
# 1 1 a
# 2 2 b

Lists

In R, lists are vectors whose elements (1) can be any kinds of objects and (2) don’t have to be the same kind
of object. What we have previously referred to as vectors are properly called atomic vectors, because their
elements are one of the atomic types.

You make a list using the list() function:

list(TRUE, 1:3, rnorm(3), data.frame(a = 1:2, b = 3:4))
# [[1]]
# [1] TRUE
#
# [[2]]
# [1] 1 2 3
#
# [[3]]
# [1] -1.35849398 0.03148329 0.21554016
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#
# [[4]]
# a b
# 1 1 3
# 2 2 4

Lists can be given names in the same way vectors and data frames can be given names, by assigning them in
list() or using names() <-:

(l <- list(a = 1:3, b = c("a","b","c")))
# $a
# [1] 1 2 3
#
# $b
# [1] "a" "b" "c"
names(l) <- c("c", "d")
l
# $c
# [1] 1 2 3
#
# $d
# [1] "a" "b" "c"

Notice that the list in this last example looks very much like the data frame data.frame(a = 1:3, b =
c("a","b","c")). In fact, under the hood data frames are lists whose elements are vectors of the same
length. This will have important consequences when we talk about extracting parts of data frames, where we
will see that they can be referenced like lists or like matrices.

Factors and Ordered Factors

Another kind of data structure that is seen frequently in data analysis is the factor, which is used to represent
categorical and ordinal variables. Factors are special types of vectors whose elements must be one of a finite
collection of potential elements. They are made with the factor() function. For example, we may represent
a series of coin flips as follows:

factor(c("H", "H", "T", "H", "T"), levels = c("H","T"))
# [1] H H T H T
# Levels: H T

When each of the levels is observed, you don’t have to put in the levels = c("H","T") part in. R will look
at the unique values, computed with the unique() function, and sort() them to compute the levels. For
example:

factor(c("H", "H", "T", "H", "T"))
# [1] H H T H T
# Levels: H T

Ordinal variables have a natural ordering to their levels. They are made using factor(), too, but you need
to set ordered = TRUE:
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factor(
c("Thr", "Thr", "Fri", "Thr", "Wed", "Wed", "Mon", "Tue"),
levels = c("Mon", "Tue", "Wed", "Thr", "Fri"),
ordered = TRUE

)
# [1] Thr Thr Fri Thr Wed Wed Mon Tue
# Levels: Mon < Tue < Wed < Thr < Fri

A useful function in the context of factors is table(), which computes frequency distributions:

table(factor(c("H", "H", "T", "H", "T")))
#
# H T
# 3 2

Tibbles

A newer data structure that has been gaining popularity recently is the tabled data frame, also called a
“tibble”, made available through the R package tibble. Although they are much more flexible than data
frames, you should think of tibbles as data frames that print more nicely.

They are also the default data structures in many of the RStudio packages, such as dplyr, tidyr, readr,
and so on.

You can create a tibble using the data_frame() function or, if you already have a data frame and you want
to convert it into a tibble, you can use tbl_df(). Example:

library(tibble)
data_frame(ints = 1:2, chars = c("a","b"))
# Source: local data frame [2 x 2]
#
# ints chars
# <int> <chr>
# 1 1 a
# 2 2 b

Coercion

Coercion refers to taking a data structure of one type and changing it into a data structure of another
type. R has a systematic suite of functions that do this: as.logical(), as.integer(), as.numeric(),
as.character(), as.matrix(), as.data.frame(), as.list(). And generally speaking, package developers
obey the pattern, so you get things like as_data_frame() to coerce something into a tibble. (This is,
incidentally, the same as tbl_df().)

In some circumstances R automatically coerces objects. For example, we saw that at the beginning of the
discussion on data frames when you try to make a vector with a number 1.1 and a character "a", it coerced
1.1 to "1.1". However, automatic coercion happens in other circumstances, too. For example, arithmetic
between non-like types involves coercion:

TRUE + 3
# [1] 4
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This coercion is also called “promotion”, because the lower type is always coerced into the higher type,
following the scheme logical < integer < double < character. That’s why in the c(1.1, "a") example I used
the identical() function to test if the number 1.1 is equal to the character "1.1". Ask yourself: why does
the following return TRUE?

1.1 == "1.1"
# [1] TRUE

Extracting Parts of Data Structures

Extracting parts of data structures is done with the [, [[, and $ operators.

Extracting From Vectors and Matrices

[ is the basic subsetting operator; it works on essentially all objects. Here’s a basic example:

x <- c(1.1, 2.1, 3.1, 4.1, 5.1)
x[3]
# [1] 3.1

You can put essentially four kinds of things in the bracket [:

1. a vector of positive integers, in which case those elements are extracted,
2. a vector of negative integers, in which those elements are removed,
3. a logical of vector of the same length as the vector in question, in which the TRUE’s are extracted, or
4. (named vectors only) a character vector, in which case the elements are extracted.

Examples:

x[c(1,3,5)]
# [1] 1.1 3.1 5.1
x[-c(1,3,5)]
# [1] 2.1 4.1
x[c(TRUE, FALSE, TRUE, FALSE, TRUE)]
# [1] 1.1 3.1 5.1
names(x) <- c("a", "b", "c", "d", "e")
x[c("a","c","e")]
# a c e
# 1.1 3.1 5.1

Extracting with logicals is most often done implicitly via an expression with a relational operator >, >=, <,
<=, ==, or !=, for example:

x > 2.5
# a b c d e
# FALSE FALSE TRUE TRUE TRUE
x[x > 2.5]
# c d e
# 3.1 4.1 5.1
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Extracting elements of matrices and arrays works in precisely the same way, but commas are used inside
the bracket to separate dimensions. Blanks are interpreted as all positive integer values in the range of that
index:

A
# A B C
# a 1 0 0
# b 0 2 0
# c 0 0 3
A[1,1]
# [1] 1
A[1, ] # first row
# A B C
# 1 0 0
A[ ,2:3] # second and third columns
# B C
# a 0 0
# b 2 0
# c 0 3
A["b", c(FALSE, TRUE, TRUE)]
# B C
# 2 0

Notice that in the first row subsetting above, the result is a vector, not a matrix. When the result of
subsetting a matrix is one row or one column, R simplifies the result to a vector and does not preserve the
matrix structure. To fix this, you can use drop = FALSE inside the brackets:

A[1, , drop = FALSE]
# A B C
# a 1 0 0

Extracting From Lists and Data Frames

When you use [ on a list, you get a list back following the exact same rules as above. However, when dealing
with lists it is common to want to extract the elements themselves, that’s what [[ and $ are for.

Here’s a typical situation. You have a named list

(l <- list(a = c(TRUE, FALSE, TRUE), b = 1:3, c = c("c", "b", "a")))
# $a
# [1] TRUE FALSE TRUE
#
# $b
# [1] 1 2 3
#
# $c
# [1] "c" "b" "a"

and you want to extract the values in the "b" element. You try

l[2]
# $b
# [1] 1 2 3
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and it looks like it works, until you try to do something with it, like take its mean:

mean(l[2])
# Warning in mean.default(l[2]): argument is not numeric or logical:
# returning NA
# [1] NA

The problem is that subsetting a list with [ always returns a list, and the mean() function expects a numeric
vector. You didn’t want a list of length 1, you wanted the contents of that element. To get that, you use [[:

mean(l[[2]])
# [1] 2

[[ extracts the contents of only one element of a list, so you need to refer to it specifically by index or name.
The name looks like l[["b"]]. Since that’s a lot of typing, the developers of R put in the $ operator, which
does the same in a far cleaner way:

l$b
# [1] 1 2 3

Since data frames are lists, they are subset in precisely the same way. Since the columns of a dataset are
variables, it is very common to see things like data$height to extract all the heights of individuals in a
dataset.

However, since data frames also look and feel like matrices, the double-indexed [ notation (e.g. [1,2]) works
on them just as it does on matrices. For example:

(df <- data.frame(name = c("bob", "jim", "sally"), height = c(5.2, 5.8, 5.5)))
# name height
# 1 bob 5.2
# 2 jim 5.8
# 3 sally 5.5
df$height
# [1] 5.2 5.8 5.5
df[2:3, ]
# name height
# 2 jim 5.8
# 3 sally 5.5

Matrix Algebra

Matrix multiplication is done using the %*% operator. When using %*%, vectors are treated as either row or
column vectors as-needed to make the operation work.

det() computes the determinant of a matrix, and t() transposes it.

solve() computes the inverse of a matrix:

(A <- diag(c(2,4,8)))
# [,1] [,2] [,3]
# [1,] 2 0 0
# [2,] 0 4 0
# [3,] 0 0 8
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solve(A)
# [,1] [,2] [,3]
# [1,] 0.5 0.00 0.000
# [2,] 0.0 0.25 0.000
# [3,] 0.0 0.00 0.125

It is also used to solve matrix equations Ax = b:

b <- c(8,4,2)
solve(A, b)
# [1] 4.00 1.00 0.25

The QR decomposition is given by qr(), but you need to use qr.Q() and qr.R() on it’s output to get the
matrices you want:

(qr_A <- qr(A))
# $qr
# [,1] [,2] [,3]
# [1,] -2 0 0
# [2,] 0 -4 0
# [3,] 0 0 8
#
# $rank
# [1] 3
#
# $qraux
# [1] 2 2 8
#
# $pivot
# [1] 1 2 3
#
# attr(,"class")
# [1] "qr"
(Q <- qr.Q(qr_A))
# [,1] [,2] [,3]
# [1,] -1 0 0
# [2,] 0 -1 0
# [3,] 0 0 1
(R <- qr.R(qr_A))
# [,1] [,2] [,3]
# [1,] -2 0 0
# [2,] 0 -4 0
# [3,] 0 0 8
Q %*% R
# [,1] [,2] [,3]
# [1,] 2 0 0
# [2,] 0 4 0
# [3,] 0 0 8

There actually a lot of QR related functionality in R because that’s how it solves linear regression problems.
See ?qr for details.

The Cholesky decomposition is
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# make a positive (semi)definite matrix
preA <- matrix(c(6,1,8,2,5,4,7,3,9), nrow = 3, ncol = 3)
(A <- t(preA) %*% preA)
# [,1] [,2] [,3]
# [1,] 101 49 117
# [2,] 49 45 65
# [3,] 117 65 139

# compute cholesky decomposition and verify
(chol_A <- chol(A))
# [,1] [,2] [,3]
# [1,] 10.04988 4.875682 11.6419351
# [2,] 0.00000 4.607355 1.7879289
# [3,] 0.00000 0.000000 0.5183211
t(chol_A) %*% chol_A
# [,1] [,2] [,3]
# [1,] 101 49 117
# [2,] 49 45 65
# [3,] 117 65 139

Eigenvalues and eigenvectors can be computed with eigen(), which returns a named list whose elements can
be extracted like any other named list:

(e_stuff <- eigen(A))
# $values
# [1] 268.1359748 16.7356668 0.1283584
#
# $vectors
# [,1] [,2] [,3]
# [1,] -0.6041180 0.42924944 0.6714063
# [2,] -0.3422941 -0.90061996 0.2678030
# [3,] -0.7196362 0.06803385 -0.6910103
e_stuff$values
# [1] 268.1359748 16.7356668 0.1283584

Note: The assignment operator <- does not support multiassignment. Consequently, you can’t replace the
above code with something like list(lambda, V) <- eigen(A).

The singular value decomposition is computed with svd(); it’s a named list, too:

svd(A)
# $d
# [1] 268.1359748 16.7356668 0.1283584
#
# $u
# [,1] [,2] [,3]
# [1,] -0.6041180 0.42924944 -0.6714063
# [2,] -0.3422941 -0.90061996 -0.2678030
# [3,] -0.7196362 0.06803385 0.6910103
#
# $v
# [,1] [,2] [,3]
# [1,] -0.6041180 0.42924944 -0.6714063
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# [2,] -0.3422941 -0.90061996 -0.2678030
# [3,] -0.7196362 0.06803385 0.6910103

You can use this to compute the square root of a matrix as follows:

# compute the svd and extract components
svd_A <- svd(A)
D <- diag(svd_A$d)
U <- svd_A$u
V <- svd_A$v

# check the svd, this is A
U %*% D %*% t(V)
# [,1] [,2] [,3]
# [1,] 101 49 117
# [2,] 49 45 65
# [3,] 117 65 139

# and here's the square root matrix
R <- U %*% sqrt(D) %*% t(V)
R %*% R
# [,1] [,2] [,3]
# [1,] 101 49 117
# [2,] 49 45 65
# [3,] 117 65 139

It can also be computed with the eigen decomposition:

# compute eigen decomposition
D <- diag(eigen(A)$values)
V <- eigen(A)$vectors
V %*% D %*% solve(V)
# [,1] [,2] [,3]
# [1,] 101 49 117
# [2,] 49 45 65
# [3,] 117 65 139

# compute root matrix
R <- V %*% sqrt(D) %*% solve(V)
R %*% R
# [,1] [,2] [,3]
# [1,] 101 49 117
# [2,] 49 45 65
# [3,] 117 65 139

Vectorized Operations

Essentially every basic operation in R is vectorized. This holds for the arithmetic operations +, -, *, /, ˆ, %%
and %/%. For example:
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1 + 1:3
# [1] 2 3 4
1:3 + 7:9
# [1] 8 10 12
1 + diag(3)
# [,1] [,2] [,3]
# [1,] 2 1 1
# [2,] 1 2 1
# [3,] 1 1 2
5*(1:5)
# [1] 5 10 15 20 25

It also works for the relational operators >, >=, <, <=, ==, and !=:

(0:8 %% 2) == 0
# [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
c("a", "b", "c") == c("a", "g", "c")
# [1] TRUE FALSE TRUE

These are very important capabilities in R. When possible, you should vectorize operations, because the
resulting code is clear and fast. In most cases, vectorized code is evaluated using algorithms written in C, so
they are much much faster than their for loop analogues.

The Boolean operators & and |, which we meet next, are also vectorized.

Conditionals: If Statements and Switch

Every programming language has if statements, which execute a chunk of code if a certain condition is met.
In R, they look like this:

if (1 == 1) {
print("yes!")

}
# [1] "yes!"

If the if statement is very simple, you can put it inline as if (1 == 1) print("yes!").

If else statements look like this:

if (1 == 2) {
print("yes!")

} else {
print("no!")

}
# [1] "no!"

And you can chain them like this:

if (1 == 2) {
print("yes!")

} else if (2 == 3) {
print("maybe!")
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} else {
print("no.")

}
# [1] "no."

Boolean Operators

The Boolean operators “and” and “or” are & and | in R. For example:

x <- 5
0 <= x & x <= 10
# [1] TRUE

Note that this can not be shortened to 0 <= x <= 10.

As noted in the section above, & and | are vectorized. We can use this, for example, to make truth tables:

c(T, T, F, F) & c(T, F, T, F)
# [1] TRUE FALSE FALSE FALSE
c(T, T, F, F) | c(T, F, T, F)
# [1] TRUE TRUE TRUE FALSE

The Short Circuiting Boolean Operators && and ||

The input to an if statement is typically an expression that evaluates to a single TRUE or FALSE (e.g. 1 ==
1). If you want to check more than one condition and tie them together with ands or ors, you can do so more
efficiently with && and ||. && and || are short circuiting and and or that are ideal for if statements because
they always return only one logical value.

Concretely, there are two differences between & and && (or | and ||). First, the first is vectorized and the
second is not. Second, && (||) is smart in its evaluation scheme. For example, if you type (1 == 2) && (1
== 1), it will first evaluate 1 == 2 and, seeing that it evaluates to FALSE, immediately evaluates to FALSE
without even evaluating 1 == 1. The same goes for ||.

any() and all()

any() is a function that takes in a logical vector and evaluates to TRUE if any of the values is true. all()
accepts a logical vector and returns TRUE if all the elements are true. For example:

all( (c(2, 4, 6) %% 2) == 0 )
# [1] TRUE

switch()

Most languages also have some kind of switch or cases statement. These evaluate an expression and then
return a value conditional on what the expression evaluates to. In R, this is done with switch().

x <- "b"
switch(x,
"a" = 1,
"b" = 2,
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"c" = 3
)
# [1] 2

Note: switch() works slightly differently if the result from the expression is numeric (integer or double). See
?switch for details.

Loops

There are three types of loops in R: for loops, while loops, and repeat statements.

For Loops

For loops in R look like this:

for (k in 1:5) {
print(k)

}
# [1] 1
# [1] 2
# [1] 3
# [1] 4
# [1] 5

The index variable (x above) can have any valid name in the R language, and the index set 1:5 can be any
kind of vector. For example:

for (letter in c("a", "b","c")) {
if(letter == "b") next
print(toupper(letter))

}
# [1] "A"
# [1] "C"

(Note the use of the next above.)

Like many scripting languages, there’s no incrementing step in the statement of the for loop. In particular,
you don’t see things like i++, because the ++ operator doesn’t exist in R.

For loops are often frowned upon by R programmers because they are perceived to be slow. This really
depends on what the for loop is doing, but as a general rule looping in R will be significantly slower than
looping in some lower level language such as C, C++, or Java, and in some cases much, much slower. As a
consequence, it is quite rare to see R programmers nesting for loops. Typically R programmers write in a
functional style using functions described in the section on functionals.

While Loops

While loops look like this:
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a <- 0
while (a < 5) {

print(a)
a <- a + 1

}
# [1] 0
# [1] 1
# [1] 2
# [1] 3
# [1] 4

Nothing new here, given what we’ve seen in for loops.

Repeat Statements

It’s rare to see repeat statements in R, but they do exist. They just run the same chunk of code over and
over until they meet a break:

repeat{
x <- rnorm(1)
print(x)
if(x > 1.5) break

}
# [1] -0.6264538
# [1] 0.1836433
# [1] -0.8356286
# [1] 1.595281

Note that unlike other functions, repeat uses the curly braces {}, not the parentheses ().

replicate()

In addition to the for, while, and repeat looping constructs, R provides another looping functionality with
the replicate() function. replicate() accepts a chunk of code and the number of times you want it run
(in the opposite order), and it returns the results of each run.

replicate(5, {
x <- rnorm(1)
x^2

})
# [1] 0.1085754 0.6731684 0.2375871 0.5451234 0.3315242

This is very useful for simulation purposes. For example, the central limit theorem (CLT) states that if
you take samples from almost any distribution and average them, the distribution of the mean is at worst
approximately normal. Using samples from the Poisson distribution as an example, we can sample from the
distribution of the average of 30 Poisson(20) observations using replicate():

N <- 5 # the number of desired samples
n <- 30 # the size of the dataset
replicate(N, mean(rpois(n, 20)))
# [1] 19.86667 20.30000 20.93333 17.66667 20.23333
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To assess the CLT approximation, we could change N to 1e4 (i.e. 10000) and then plot a histogram (hist())
or make a normal plot (qqnorm()). Since this crash course doesn’t cover graphics, however, we’ll leave it
there.

Functions

Making a basic function in R is done like this:

f <- function (x) {
x^2

}

For a really short function, you can make it inline as f <- function(x) xˆ2.

They are used like this:

f(2)
# [1] 4

If you want a function of several variables, you do this:

g <- function (x, y) {
x + y

}
g(1, 2)
# [1] 3

You can default values of functions as follows:

h <- function (x = 5) {
x + 2

}
h(1)
# [1] 3
h()
# [1] 7

Here are some key notes on functions:

1. You don’t have to tell the function what kinds of things the arguments (inputs) are.
2. By default, the last thing evaluated (the last line run) is what’s returned by the function. You can

short-circuit this behavior with return() so that the function stops in the middle of its body; however,
don’t get into the habit of putting a return() on the last line of the body. You don’t need it there.

3. You don’t have to specify the type of the returned value when you define the function.

Note also that things that happen within functions don’t persist outside them. We already saw this in the
discussion on the global assignment operator <<- in the section on assignment; however, it bears repeating.
Notice the following behavior:
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z
# Error in eval(expr, envir, enclos): object 'z' not found
f <- function () {
z <- 100
z

}
f()
# [1] 100
z
# Error in eval(expr, envir, enclos): object 'z' not found

Although z was defined inside the function, its value does not persist after the application of the function. In
general, any changes to variables made inside a function won’t persist after the function has executed.

The Pipe Operator %>%

In the past few years, many packages in R have adopted the use of the pipe operator, which in R looks like
%>%, implemented in the magrittr package. The pipe operator simply changes the way that you can specify
the evaluation of a function. For example, instead of writing f(2) as above, the pipe operator allows you to
write 2 %>% f(); or, more simply, 2 %>% f. In other words, with the pipe operator f(x) is written x %>% f.
If the function in question has more than one argument, like g() above, the pipe operator puts the left hand
side into the first argument of the function. For example, g(1, 2) is written 1 %>% g(2). There are more
details and uses of %>%, but that’s the basic idea.

Why is the pipe operator useful? Essentially for one reason: it eases situations with function composition.
For example, if you have functions f(), g(), and h(), we can evaluate h(g(f(x))) by writing x %>% f %>%
g %>% h. In real data analyses, we often take a dataset, manipulate it with various transformations, and
then compute on it in some way. This often involves applying many functions do the dataset and is done
across several lines, as follows:

data %>%
transformation_one(other_arguments) %>%
transformation_two(other_arguments) %>%
computation(other_arguments)

The leading packages implementing this paradigm are dplyr, tidyr, purrr, ggplot2/ggvis, and others
created by RStudio folks. The first two in particular are very, very useful for practical data analysis tasks.

Functionals

In R, functions are first-class citizens. What that means is that you can do things like pass functions into
other functions, return functions from functions (“closures”), store them in lists, and use them anonymously.
There are many functions that do this in R; they generally follow the form of *apply(), like lapply(),
sapply(), vapply(), tapply(), mapply(), and so on. Each of these are functionals, functions that take as
input functions (and maybe other data structures as well) and return data structures.

In essence, each of the *apply() functions above do the same thing: apply a function to a bunch of things.
Consider the following example using lapply():

f <- function (x) x^2
lapply(1:3, f)
# [[1]]
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# [1] 1
#
# [[2]]
# [1] 4
#
# [[3]]
# [1] 9

lapply() takes two arguments – a vector and a function – and it evaluates the function at every element of
the vector. The vector is oftentimes a list, so think of lapply() like “list-apply”.

lapply() take in a list X and a function f, and returns a list Y whose elements are f applied to the elements
of X.

sapply() works similarly but then tries to simplify the list into a simpler data structure, often a vector. For
example, here’s the same statement as before using sapply() instead of lapply():

sapply(1:3, f)
# [1] 1 4 9

The return value is an atomic vector, not a list.

Not all of the *apply() functions are equally important. lapply() and sapply() are the heavy hitters –
they are typically used in place of what otherwise would be a for loop. After those, Map() is probably the
most important.

Map() is a multivariate version of lapply() used when you have function of several variables and several
lists/vectors. For example:

g <- function (x, y) x + y
Map(g, 1:3, 4:6)
# [[1]]
# [1] 5
#
# [[2]]
# [1] 7
#
# [[3]]
# [1] 9

mapply() is the corresponding multivariate version of sapply():

mapply(g, 1:3, 4:6)
# [1] 5 7 9

In any of the above cases, we could have used anonymous functions, where we simply define the function on
the fly in the functional. For example:

sapply(1:5, function(x) log(1 + x))
# [1] 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595

apply(), by itself, is a function that acts as a functional over arrays. Consequently, it takes in an array
(that includes matrices), an index or indices, and a function, and applies the function over the array for all
combinations of that index/those indices. For example, I can compute the sum of the rows of a matrix as
follows:
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preA
# [,1] [,2] [,3]
# [1,] 6 2 7
# [2,] 1 5 3
# [3,] 8 4 9
apply(preA, 1, sum) # row sums
# [1] 15 9 21
apply(preA, 2, sum) # col sums
# [1] 15 11 19

For some common operations, like those above, there are built-in functions such as rowSums() or colMeans():

rowSums(preA)
# [1] 15 9 21
colMeans(preA)
# [1] 5.000000 3.666667 6.333333

The matrixstats package provides tons of these that are very efficient.

Statistics

Statistics Functions

Since R is designed for statistics, it’s got tons of statistics functions built into it. We saw sum() above, there’s
also prod(). cumsum() and cumprod() also exist.

For measures of center, there’s mean(), median(), but not mode. The mode() function does something else.
Google anything else you want.

For measures of dispersion, there’s sd(), var(), range() (or rather diff(range())), IQR(), mad(), and so
on. Google anything else you want.

For multivariate data, there’s cor(), corr(), cov()

Percentiles are computed with the quantile() function. For example:

quantile(1:10, .25)
# 25%
# 3.25

And it’s vectorized across the probabilities, so you can do

quantile(1:10, c(.025, .975)) # the 95% percentile interval
# 2.5% 97.5%
# 1.225 9.775

Distribution Functions

Most of the major probability distributions are built into R. Moreover, four important functions concerning
them follow a pattern that’s easy to remember.

Let’s look at the functions related to the normal distribution. We have

1. rnorm() generates pseudo-random numbers from the distribution,
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2. dnorm() is the probability density function (PDF) of the normal distributions. For discrete distributions,
d*() provides the probability mass function (PMF),

3. pnorm() is the cumulative distribution function (CDF) of the normal distribution, and
4. qnorm() is the quantile function (the inverse of the CDF) of the normal distribution.

They are each vectorized in many ways.

These exist for many common distributions, you just need to know the tag line. Here we have

Continuous Distribution Tag Line Discrete Distribution Tag Line
Normal norm Binomial binom
Uniform unif Poisson pois
Gamma gamma Geometric geom
Chi-squared chisq Negative binomial nbinom
t t Multinomial multinom
F f Hypergeometric hyper
Beta beta . .
Exponential exp . .
Log-normal lnorm . .

So, if you want to generate 10 samples from the negative binomial distribution with parameters n = 10 and
p = 2, you type

rnbinom(10, 10, .2)
# [1] 35 32 52 23 20 34 74 43 36 43

If you want the probabilities that a coin flips heads x times out of 10 flips of a fair coin, you type

round(dbinom(0:10, 10, .5), 2)
# [1] 0.00 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.00

If you want the probability that a N(10, 3) random variable is between 6 and 8, you type

pnorm(8, 10, 3) - pnorm(6, 10, 3)
# [1] 0.1612813

Or, if you want the 99th percentile of the exponential(5) distribution:

qexp(.99, 5)
# [1] 0.921034

All of these functions combined form a really potent platform for statistical analysis. Be sure to familiarize
yourself with them!

Linear Models

Linear models are a massive topic in R, so putting them as a subsection in a crash course is kind of silly.
Nevertheless, here’s the basics:

In R, linear models are fit with the lm() function. Generalized linear models are fit with the glm() function.
Both accept (1) a formula defining the structure of the model and (2) a dataset that contains the data the
model refers to.
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Let’s do a simple example. The code below generates a little fake dataset for us to play with. It has two
predictors (features), X1, a continuous predictor ranging from 0 to 5, and X2, a binary predictor. The
functional relationship between X1, X2 and Y is

Y = 20 − 5X1 +X2
1 + 4X2.

library(dplyr, warn.conflicts = FALSE)
n <- 100
data <- data_frame(x1 = runif(n, 0, 5), x2 = sample(0:1, n, T)) %>%

mutate(y = 20 - 5*x1 + x1^2 + 4*x2 + rnorm(n, sd = .5))
data
# Source: local data frame [100 x 3]
#
# x1 x2 y
# <dbl> <int> <dbl>
# 1 1.3275433 1 18.81447
# 2 1.8606195 0 14.17987
# 3 2.8642668 0 13.42723
# 4 4.5410389 1 21.99485
# 5 1.0084097 1 19.64755
# 6 4.4919484 0 18.60150
# 7 4.7233763 0 19.05176
# 8 3.3039890 0 14.85149
# 9 3.1455702 1 18.35885
# 10 0.3089314 1 23.39187
# .. ... ... ...

To fit the linear model Y = β0 + β1X1 + β2X
2
1 + β3X2 to the data, we use lm() as follows:

(mod <- lm(y ~ x1 + I(x1^2) + x2, data = data))
#
# Call:
# lm(formula = y ~ x1 + I(x1^2) + x2, data = data)
#
# Coefficients:
# (Intercept) x1 I(x1^2) x2
# 20.122 -5.101 1.018 3.937

The output of lm() is a giant named list containing all sorts of aspects of the linear model.

str(mod, max.level = 1, give.attr = FALSE)
# List of 12
# $ coefficients : Named num [1:4] 20.12 -5.1 1.02 3.94
# $ residuals : Named num [1:100] -0.2672 0.0235 -0.4381 0.1029 -0.3029 ...
# $ effects : Named num [1:100] -176.712 -0.661 18.904 -19.438 -0.307 ...
# $ rank : int 4
# $ fitted.values: Named num [1:100] 19.1 14.2 13.9 21.9 20 ...
# $ assign : int [1:4] 0 1 2 3
# $ qr :List of 5
# $ df.residual : int 96
# $ xlevels : Named list()
# $ call : language lm(formula = y ~ x1 + I(x1^2) + x2, data = data)
# $ terms :Classes 'terms', 'formula' length 3 y ~ x1 + I(x1^2) + x2
# $ model :'data.frame': 100 obs. of 4 variables:
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summary() is a function that works on many types of objects in R to summarize them. It is particularly
helpful for models:

summary(mod)
#
# Call:
# lm(formula = y ~ x1 + I(x1^2) + x2, data = data)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.90868 -0.29600 -0.09003 0.29318 1.21384
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 20.12203 0.18945 106.21 <2e-16 ***
# x1 -5.10072 0.15575 -32.75 <2e-16 ***
# I(x1^2) 1.01818 0.02983 34.14 <2e-16 ***
# x2 3.93664 0.09812 40.12 <2e-16 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 0.4845 on 96 degrees of freedom
# Multiple R-squared: 0.9703, Adjusted R-squared: 0.9693
# F-statistic: 1045 on 3 and 96 DF, p-value: < 2.2e-16

Logistic and Poisson regressions are done with the glm() function, which essentially has the same syntax
with another argument describing the conditional distribution of the response, such as family = gaussian()
for ordinary linear regression, family = binomial() for logistic regression, and family = poisson() for
Poisson regression. See ?glm for details.

Basic Applied Math

Quadrature (numerical integration)

Numerical integration of a function is done with the integrate() function:

f <- function (x) sqrt(1-x^2)
integrate(f, lower = -1, upper = 1)
# 1.570796 with absolute error < 1e-09
pi/2 # the theoretical value
# [1] 1.570796

The output value of integrate, like so many other functions in R, is a named list.

int <- integrate(f, lower = -1, upper = 1)
str(int)
# List of 5
# $ value : num 1.57
# $ abs.error : num 1e-09
# $ subdivisions: int 10
# $ message : chr "OK"
# $ call : language integrate(f = f, lower = -1, upper = 1)
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# - attr(*, "class")= chr "integrate"
int$value
# [1] 1.570796

Optimization

R contains a number of routines for optimization. The general-purpose optimization function that comes
with R is optim(). By default, it performs minimization. optim() accepts two arguments: a function and a
starting point for the optimization routine (in the opposite order). Note that the function must have a vector
argument, like f(x) where x is a vector, not f(x, y). This is illustrated in the code below.

g <- function (v) {
x <- v[1]; y <- v[2]
(x-2)^2 + (y-2)^2

}
optim(c(0, 0), g)
# $par
# [1] 2.000160 2.000153
#
# $value
# [1] 4.876462e-08
#
# $counts
# function gradient
# 65 NA
#
# $convergence
# [1] 0
#
# $message
# NULL

Like integrate(), the output of optim() is a named list. The par element contains the argument to the
function that minimizes it (the argmin) and the element value contains the function value at that point
(the min). counts tells you how many times the function was evaluated (and the gradient function, if you
supplied it) and convergence contains codes that indicate how the algorithm performed. For example, 0
means it converged, 1 means it reached the maximum allowed iterations without yet converging, and so on.
See ?optim for the list of all the codes as well as a full run down on the optimization methods available and
your control over them.

Working Directories and Reading in Data

R considers itself to be running from a directory (folder) on your computer. When you save something (like a
data file or a graphic), it saves to that directory. If you ask R to load a file and only tell it the file name (and
not the folder it’s in), it’ll look to that directory.

The directory R thinks it’s in is called the working directory. You can figure out what your working directory
is by typing getwd()

getwd()
# [1] "/Users/david_kahle/Dropbox/Baylor University/Courses/R Crash"
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You can change it with setwd(). setwd() accepts a character that contains a path. For exam-
ple, I could change my working directory to my home directory (/Users/david_kahle) by typing
setwd("/Users/david_kahle").

If you’re having a hard time with setting your path, use the file.choose() function. You don’t need to
give it any arguments, just type file.choose() and R will open a window for you to navigate around your
computer normally and select a file. After you select the file, R will tell you what it’s full path is.

R has a lot of functionality for working with files on your computer since that’s typically where it reads
datasets from. You can list the files in your working directory with

list.files()
# [1] "cache" "cars.csv" "figure"
# [4] "md" "R Crash.Rproj" "R-Crash_cache"
# [7] "R-Crash_files" "R-Crash-md.md" "R-Crash-md.Rmd"
# [10] "R-Crash-pdf.pdf" "R-Crash-pdf.Rmd" "R-Crash.html"
# [13] "R-Crash.Rmd"

Loading data into R is a whole topic in and of itself, so we’ll only talk the basics here. Most data processed
in R comes in the form of spreadsheet-like data stored in a .csv, .txt, or similar file. R’s basic functions
to load these kinds of files is read.csv(), read.table(), and the like. However, I find the functions in the
readr package, read_csv(), read_table(), and the like, to be more helpful. They’re also faster.

Notice in my files listed above that I have a dataset called cars.csv. Here is how I would load that in R.

library(readr)
data <- read_csv("cars.csv")
data
# Source: local data frame [50 x 2]
#
# speed dist
# <int> <int>
# 1 4 2
# 2 4 10
# 3 7 4
# 4 7 22
# 5 8 16
# 6 9 10
# 7 10 18
# 8 10 26
# 9 10 34
# 10 11 17
# .. ... ...

Styling and Where to Go Next

In any kind of computer programming, style matters, even if it does not affect any aspect concerning the
evaluation of the code. As a general style guide, I prefer Hadley Wickham’s discussion on the topic.

In fact, Hadley’s book Advanced R is an authoritative reference for where to go next with your R training. If
you want to get into the details of the stuff above, and learn much more, check that book out.

If you’re more of a data science type, check out Garrett and Hadley’s book on R for Data Science. More than
simply a cookbook of R code that completes data science tasks, Garrett and Hadley are great at giving you
the right way to think about data science and carry it out in R. I highly recommend anything they write.
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https://github.com/hadley/readr
https://github.com/hadley/readr
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz
http://r4ds.had.co.nz
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