MN NWAC Risk	Common Name	Latin Name
Assessment Worksheet (04-2011)	Canada thistle	Cirsium arvense (L.) Scop.
Reviewer	Affiliation/Organization	Date (mm/dd/yyyy)
Roger Becker	University of Minnesota	Aug. 16, 2013

Box	Question	Answer	Outcome
1	Is the plant species or genotype non- native?	Yes (Slotta et al., 2010).	Go to box 3
2	Does the plant species pose significant human or livestock concerns or has the potential to significantly harm agricultural production?		
	A. Does the plant have toxic qualities that pose a significant risk to livestock, wildlife, or people?		
	B. Does the plant cause significant financial losses associated with decreased yields, reduced quality, or increased production costs?		
3	Is the plant species, or a related species, documented as being a problem elsewhere?	Yes, northern hemisphere world-wide. (Donald, W. 1994), is a U.S. Federal Noxious Weed, and is declared noxious weed in 33 states (PLANTS database <u>http://plants.usda.gov/core/profile?symbol=CIAR4</u> , Accessed 8/16/13).	Go to box 6
4	Is the plant species' life history & Growth requirements understood?		
5	Gather and evaluate further information:	(Comments/Notes)	
6	Does the plant species have the capacity to establish and survive in Minnesota?		

Box	Question	Answer	Outcome
	A. Is the plant, or a close relative, currently established in Minnesota?	Yes. U of M Herbarium records show first specimen from Minneapolis in 1878. Maps show distribution throughout the U.S. in 43 states and all but 2 Canadian Provinces (USDA Plants, <u>http://plants.usda.gov/core/profile?symbol=CIAR4</u> and in every county in Minnesota (EDDMapS <u>http://www.eddmaps.org/distribution/usstate.cfm?sub=2792</u>) (Appendix A).	Go to box 7
	B. Has the plant become established in areas having a climate and growing conditions similar to those found in Minnesota?		
7	Does the plant species have the potential to reproduce and spread in Minnesota?		
	A. Does the plant reproduce by asexual/vegetative means?	Yes (Moore, 1975).	Go to 7B
	B. Are the asexual propagules effectively dispersed to new areas?	Yes.	Go to 7F
	C. Does the plant produce large amounts of viable, cold-hardy seeds?	[not directed to here by analysis but yes (Becker et al., 2008).]	
	D. If this species produces low numbers of viable seeds, does it have a high level of seed/seedling vigor or do the seeds remain viable for an extended period?		
	E. Is this species self-fertile?F. Are sexual propagules – viable seeds – effectively dispersed to new areas?	Yes via various means on equipment, in mulch and hay, in feed and seed, etc. However, wind dispersal attached to pappi is minimal. (Becker et al., 2008).	Go to 7I
	G. Can the species hybridize with native species (or other introduced species) and produce viable seed and fertile offspring in the absence of human intervention?	[no]	
	H. If the species is a woody (trees, shrubs, and woody vines) is the juvenile period less than or equal to 5 years for tree species or 3 years for shrubs and vines?		

Box	Question	Answer	Outcome
	I. Do natural controls exist, species native to Minnesota, that are documented to effectively prevent the spread of the plant in question?	Not presently. There is a long history of biological control efforts on Canada thistle McClay (2002), which have resulted in some elements of control with insects and pathogens but currently none effectively prevent spread on a broad geographical basis. <i>Ceutorhynchus litura</i> (F.) (synonym <i>Hadroplontus litura</i>) may provide significant reductions of Canada thistle in Minnesota with augmented release, but has yet to be widely accepted as host specific (personal observations) nor have wide-spread efforts been made to implement <i>C. litura</i> in Minnesota. (personal communication, Monkia Chandler MDA).	Go to Box 8
8	Does the plant species pose significant human or livestock concerns or has the potential to significantly harm agricultural production, native ecosystems, or managed landscapes?		
	A. Does the plant have toxic qualities, or other detrimental qualities, that pose a significant risk to livestock, wildlife, or people?	No known plant toxins. Physical deterrent. Spines on leaves on some biotypes are fairly rigid and pose a risk to foraging animals when mature and in wide-spread, vigorous populations.	Go to box 9
	B. Does, or could, the plant cause significant financial losses associated with decreased yields, reduced crop quality, or increased production costs?	[yes, Ziska, L. 2010; Bork, et al., 2007; Grekul, C.W. and E.W. Bork. 2004; Donald and Khan, 1996.]	
	C. Can the plant aggressively displace native species through competition (including allelopathic effects)?	(debatable)	
	D. Can the plant hybridize with native species resulting in a modified gene pool and potentially negative impacts on native populations?	(no)	
	E. Does the plant have the potential to change native ecosystems (adds a vegetative layer, affects ground or surface water levels, etc.)?		

Box	Question	Answer	Outcome
	F. Does the plant have the potential to	(no)	
	introduce or harbor another pest or serve		
	as an alternate host?		
9	Does the plant species have clearly		
	defined benefits that outweigh associated		
	negative impacts?	N	
	A. Is the plant currently being used or	No.	Go to box10
	produced and/or sold in Minnesota or native to Minnesota?		
	B. Is the plant an introduced species and		
	can its spread be effectively and easily		
	prevented or controlled, or its negative		
	impacts minimized through carefully		
	designed and executed management		
	practices?		
	C. Is the plant native to Minnesota?		
	D. Is a non-invasive, alternative plant		
	material commercially available that could		
	serve the same purpose as the plant of		
	concern?		
	E. Does the plant benefit Minnesota to a		
	greater extent than the negative impacts identified at Box #8?		
10	Should the plant species be enforced as a		
10	noxious weed to prevent introduction &/or		
	dispersal; designate as prohibited or		
	restricted?		
	A. Is the plant currently established in	Yes (see box 6A).	Go to 10 B
	Minnesota?		
	B. Does the plant pose a serious human	No (though can be a physical deterrent, see box 8A).	Go to 10 C
	health threat?		

Box	Question	Answer	Outcome
	C. Can the plant be reliably eradicated	No, not on a statewide basis. [self-evident in distribution	List as Restricted
	(entire plant) or controlled (top growth	maps and history in the state. Yes at the local, field specific	Noxious Weed. If could
	only to prevent pollen dispersal and seed	level (Bork et al., 2007; De Bruijn, S.L. and Bork, E.W. 2006;	develop effective
	production as appropriate) on a statewide	numerous others).]	biological control
	basis using existing practices and		programs in Minnesota,
	available resources?		list as a Prohibited/
			Control Noxious Weed
11	Should the plant species be allowed in		
	Minnesota via a species-specific		
	management plan; designate as specially		
	regulated?		
		Final Results of Risk Assessment	
	Review Entity	Comments	Outcome
	NWAC Listing Subcommittee	First review – 06/20/2013, Final Review 08/12/2013	Restricted Noxious
		The general consensus of the subcommittee based on the risk	Weed
		assessment data and the widespread nature of Canada thistle,	
		was to reclassify this species as a Restricted Noxious Weed.	
	NWAC Full-group	Review 12/18/2014 – Members agree unanimously that	Vote $8 - 4$ to
		Canada thistle is widespread and has been a large focus of	recommend
		weed management for over a century in MN. However, a	reclassifying Canada
		difference in opinion arises when the discussion centers on	thistle as a Restricted
		whether or not current efforts have any impact on controlling	Noxious Weed
		or eradicating populations. Some members expressed	
		concerns that the risk assessment is ignoring the fact that	
		without the century-long battle against this plant by counties	
		and townships, this species would be worse today.	

Box	Question	Answer	Outcome
	MDA Commissioner	Reviewed 02/24/2014 -Petition letters received by the	The commissioner
		commissioner's office from four member organizations	rejected NWAC's
		overwhelmingly disagreed with NWAC's final	recommendation and
		recommendations for Canada thistle. Counties and townships	has directed that
		also reflected the displeasure their constituents had with the	Canada thistle remain
		notion of reclassifying this species from an enforcement	as a Prohibited-
		perspective. They also indicated that their constituents and	Control species to
		citizens consider this to be one of the most important weed	support the counties and
		species statewide. The MDA also received other comments	townships opinion, in
		regarding the recommendations to reclassify Canada thistle	addition to comments
		that basically reflected that farmers and private landowners	from the Farmer's
		alike would be upset if the recommendation was approved.	Union and MN Crop
			Improvement
			Association, that any
			changes would be
			detrimental to grazing
			agriculture and
			potentially cause
			confusion within the
			seed industry
	FILE # MDARA00034CANT_2_24_2014	Prohibited-Control Noxious Weed	

References:

Literature Cited. (May 2013).

- Becker, R.L., M.J. Haar, B.D. Kinkaid, L.D., Klossner, and F. Forcella. Production and Wind Dispersal of Canada Thistle (Cirsium arvense L.) Achenes. 2008. Report no. Mn/DOT 2008-39. <u>http://www.cts.umn.edu/Publications/ResearchReports/reportdetail.html?id=1672</u>
- Bork, E.W., C.W. Grekul, and S.L. DeBruijn. 2007. Extended pasture forage sward responses to Canada thistle (*Cirsium arvense*) control using herbicides and fertilization. Crop Protection 26(10): 1546-1555.
- De Bruijn, S.L. and E.W. Bork. 2006. Biological control of Canada thistle in temperate pastures using high density rotational cattle grazing. Biological Control: Theory and Appl. in Pest Mgt. 36(3): 305-315.

Donald, W.W. (1994). "The biology of Canada thistle (Cirsium arvense)." Reviews of Weed Sci. 6:77-101.

- EDDMapS EDDMapS. 2013. Early Detection & Distribution Mapping System. The University of Georgia Center for Invasive Species and Ecosystem Health. Available online at <u>http://www.eddmaps.org/distribution/usstate.cfm?sub=2792</u>; (last accessed August 16, 2013).
- McClay, A. 2002. Canada thistle. pgs. 217- 228 *In* Van Driesche, R., B. Blossey, M. Hoddle, S. Lyon, and R. Reardon. 2002. Biological Control of Invasive Plants in the Eastern United States, USDA Forest Service Publication FHTET-2002-04, 413 p.

Moore, R.J. (1975). "The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop." Canadian J. Plant Sci. 55:1033-1048.

Slotta, T.A.B., M.E. Foley, S. Chao, R.A. Hufbauer, and D.P. Horvath. 2010. Assessing genetic diversity of Canada thistle (*Cirsium arvense*) in North America with microsatellites. Weed Sci. 58(4): 387-394.

University of Minnesota Herbarium – Bell Museum. http://search.bellmuseum.umn.edu/ (accessed 8/8/13.)

USDA, NRCS. 2013. The PLANTS Database (http://plants.usda.gov, 16 August 2013). National Plant Data Team, Greensboro, NC 27401-4901 USA. http://plants.usda.gov/core/profile?symbol=CIAR4 (Accessed 8/8/13).

Additional Literature. (May 2013).

- Amor, R.L. and R.V. Harris. (1974) "Distribution and seed production of *Cirsium arvense* (L.) Scop." In Victoris, Australia, Weed Research 14:317-323.
- Alexander, J. M., P.J. Edwards, M. Poll, C.G. Parks, and H. Dietz. 2009. Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology 90(3): 612-622.
- Almquist, T.L. and R.G. Lym. 2010. Effect of aminopyralid on Canada thistle (*Cirsium arvense*) and the native plant community in a restored tallgrass prairie. Invasive Plant Sci. and Mgmt. 3(2): 155-168.

Anderson, M. (1991). "Mechanistic models for the seed shadows of wind-dispersed plants." American Naturalist 137:476-497.

- Anderson, M.C. (1992). "An analysis of variability in seed settling velocities of several wind-dispersed asteraceae." American Journal of Botany 79:1087-1091.
- Armel, G.R., G.J. Hall, H.P. Wilson, and N. Cullen. 2005. Mesotrione plus atrazine mixtures for control of Canada thistle (*Cirsium arvense*). Weed Sci. 53(2): 202-211.
- Bakker, D. (1960). "A comparative life-history study of Cirsium arvense (L.) Scop." And "Tussilago farfara L., the most troublesome weed

in the newly reclaimed polders of the former Zuiderzee." Pages 205-222 in HJ. L. Harper, ed. *The Biology of Weeds*. Blackwell Scientific Publisher, Ltd., Oxford, UK.

- Berestetskiy, A., A. Dmitriev, G. Mitina, I. Lisker, A. Andolfi, and A. Evidente. 2008. Nonenolides and cytochalasins with phytotoxic activity against *Cirsium arvense* and *Sonchus arvensis*: A structure-activity relationships study. Phytochemistry 69(4): 953-960.
- Bicksler, A.J. and J.B. Masiunas. 2009. Canada thistle (*Cirsium arvense*) suppression with Buckwheat or Sudangrass cover crops and mowing. Weed Tech. 23(4): 556-563.
- Blumenthal, D., R.A. Chimner, J.M. Welker, and J.A. Morgan. 2008. Increased snow facilitates plant invasion in mixedgrass prairie. New Phytologist 179(2): 440-448.
- Boerboom, C.M. and D.L. Wyse. 1988. Influence of glyphosate concentration on glyphosate absorption and translocation in Canada thistle (*Cirsium arvense*). Weed Sci 36(3): 291-295.
- Bommarco, R., M. Lonn, U. Danzer, K-J. Palsson, and P. Torstensson. Genetic and phenotypic differences between thistle populations in response to habitat and weed management practices. Biological J. of the Linnean Society 99(4): 797-807.

Bostock, S.J. and R.A. Benton. (1979). "The reproductive strategies of five perennial compositae." Journal of Ecology 67:91-107.

- Bourdot, G.W., D. Baird, G.A. Hurrell, and M.D. de Jong. 2006. Safety zones for a Sclerotinia sclerotiorum-based mycoherbicide: Accounting for regional and yearly variation in climate. Biocontrol Sci. and Technol. 16(4): 345-358.
- Bourdot, G.W., G.A. Hurrell, D.J. Saville, and D.M. Leathwick. 2006. Impacts of applied Sclerotinia sclerotiorum on the dynamics of a *Cirsium arvense* population. Weed Res. 46(1): 61-72.
- Brandsaeter, L.O., M. Goul Thomsen, K. WcErnhus, and H. Fykse. 2012. Effects of repeated clover undersowing in spring cereals and stubble treatments in autumn on *Elymus repens*, *Sonchus arvensis* and *Cirsium arvense*. Crop Protection. 32: 104-110.
- Bukun, B., T.A. Gaines, S.J. Nissen, P. Westra, G. Brunk, D.L. Shaner, B.B. Sleugh, and V.F. Peterson. 2009. Aminopyralid and clopyralid absorption and translocation in Canada thistle (*Cirsium arvense*). Weed Sci. 57: 10-15.
- Bukun, B., R.B. Lindenmayer, S.J. Nissen, P. Westra, D.L. Shaner, and G. Brunk. 2010. Absorption and translocation of aminocyclopyrachlor and aminocyclopyrachlor-methyl ester in Canada thistle (*Cirsium arvense*). Weed Sci. 58(2): 96-102.
- Burt, G.W. and T.J. Muzik. (1968). "The effect of different Canada thistle ecotypes on amitrole activity." Weed Sci. 16:413-414.
- Candido, V., T. D'Addabbo, V. Miccolis, and D. Castronuovo. 2011. Weed control and yield response of soil solarization with different plastic films in lettuce. Scientia Horticulturae 130(3): 491-497.

- Cimmino, A., A. Andolfi, A. Berestetskiy, and A. Evidente. 2008. Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J. Agric. and Food Chem. 56(15): 6304-6309.
- Clough, Y., A. Kruess, and T. Tscharntke. 2007. Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. J. of Applied Ecology 44(1): 22-28.
- Collier, T.R., S.F. Enloe, J.K. Sciegienka, and F.D. Menalled. 2007. Combined impacts of *Ceutorhynchus litura* and herbicide treatments for Canada thistle suppression. Biological Control 43(2): 231-236.
- Cripps, M.G., G.W. Bourdot, D.J. Saville, H.L. Hinz, S.V. Fowler, and G.R. Edwards. 2011. Influence of insects and fungal pathogens on individual and population parameters of *Cirsium arvense* in its native and introduced ranges. Biological invasions 13(12): 2739-2754.
- Cripps, M.G., G.R. Edwards, G.W. Bourdot, D.J. Saville, H.L. Hinz, and S.V. Fowler. 2010. Effects of pasture competition and specialist herbivory on the performance of *Cirsium arvense*. Biocontrol Sci. and Technol. 20(6): 641-656.
- Cripps, M.G., G.R. Edwards, N.W. Waipara, G.W. Bourdot, D.J. Saville, and S.V. Fowler. 2009. Does transmission of the rust pathogen, *Puccinia punctiformis*, require stem mining vectors? Biocontrol Sci. and Technol. 19: 447-454.

Dandeno, J.B. (1905). "The parachute effect of thistle-down." Science 22:568-572.

- Derscheid, L.A. and R.E. Shultz. (1960). "Seed development of Canada thistle and perennial sowthistle." Weeds 8:55-62.
- Davis, J. 2006. Establishing Dialogue Between Alternative Agricultural Producers and the Land-Grant University in Colorado. Sustainable Agriculture Research and Education (SARE) research projects--Western Region.
- De Bruijn, S.L., E.W. Bork, W. Edward, and C.W. Grekul. 2010. Neighbor defoliation regulates Canada thistle (*Cirsium arvense*) in pasture by mediating interspecific competition. Crop protection 29(12): 1489-1495.
- Demers, A.M., D.K. Berner, and P.A. Backman. 2006. Enhancing incidence of Puccinia punctiformis, through mowing, to improve management of Canada thistle (*Cirsium arvense*). Biological Control: Theory and Appl. in Pest Mgt. 39(3): 481-488.
- Detmers, F. (1927). "Canada thistle (*Cirsium arvense* Tourn): Field thistle, creeping thistle." *Bulletin of The Ohio Agricultural Experiment Station* 414:1-45, The University of Ohio, Columbus, OH.
- Dixon, F.L., D.V. Clay, and I. Willoughby. 2005. The tolerance of young trees to applications of clopyralid alone and in mixture with foliaracting herbicides. Forestry.78(4): 353-364.
- Donald, W.W. and M. Khan. 1992. Yield loss assessment for spring wheat (*Triticum aestivum*) infested with Canada thistle (*Cirsium arvense*). Weed Sci. 40(4): 590-598.

- Dugan, F.M. and D.A. Glawe. 2007. Powdery mildews on weeds in the Pacific Northwest: a miscellany of new records. Pacific Northwest Fungi 2(2): 1-7, n.p.
- Durgan, B.R. (1998). *Identification of the Primary Noxious Weeds of Minnesota*. University of Minnesota Extension Publication, St. Paul, MN. Item no. 05620 (cited August 2008), <u>http://appliedweeds.cfans.umn.edu/weedbull/Perennial Weeds.pdf</u>
- El-Sayed, A.M., J.A. Byers, L.M. Manning, A. Jurgens, V.J. Mitchell, and D.M. Suckling. 2008. Floral scent of Canada thistle and its potential as a generic insect attractant. J. Economic Entomology 101(3): 720-727.
- Endlweber, K. and S. Scheu. 2006. Effects of collembola on root properties of two competing ruderal plant species. Soil Biology & Biochemistry 38(8): 2025-2031.
- Enloe, S.F., R.G. Lym, R. Wilson, P. Westra, S. Nissen, G. Beck, M. Moechnig, V. Peterson, R.A. Masters, and M. Halstvedt. 2007. Canada thistle (*Cirsium arvense*) control with aminopyralid in range, pasture, and noncrop areas. Weed Tech. 21(4): 890-894.
- Evidente, A., A. Berestetskiy, A. Andolfi, M.C. Zonno, A. Cimmino, and M. Vurro. 2006. Relation between *In Vitro* production of ascosonchine and virulence of strains of the potential mycoherbicide *Ascochyta sonchi*: a method for its quantification in complex samples. Phytochemical Analysis 17(5): 357-364.
- Evidente, A., A. Cimmino, A. Andolfi, M. Vurro, M.C. Zonno, C.L. Cantrell, and A. Motta. 2008. Phyllostictines A-D, oxazatricycloalkenones produced by *Phyllosticta cirsii*, a potential mycoherbicide for *Cirsium arvense* biocontrol. Tetrahedron 64(8): 1612-1619.
- Evidente, A., A. Cimmino, A. Andolfi, M. Vurro, M.C. Zonno, and A. Motta. 2008. Phyllostoxin and phyllostin, bioactive metabolites produced by *Phyllosticta cirsii*, a potential mycoherbicide for *Cirsium arvense* biocontrol. J. Agric. and Food Chem. 56(3): 884-888.
- Evidente, A., A. Cimmino, A. Berestetskiy, G. Mitina, A. Andolfi, and A. Motta. 2008. Stagonolides B-F, nonenolides produced by *Stagonospora cirsii*, a potential mycoherbicide of *Cirsium arvense*. J. of Natural Products 71(1): 31-34.
- Evidente, A., A. Cimmino, A. Berestetskiy, A. Andolfi, and A. Motta. 2008. Stagonolides G-I and modiolide A, nonenolides produced by *Stagonospora cirsii*, a potential mycoherbicide for *Cirsium arvense*. J. of Natural Products 71(11): 1897-1901.
- Ferrero-Serrano, A., T.R. Collier, A.L. Hild, B.A. Mealor, and T. Smith. 2008. Combined impacts of native grass competition and introduced weevil herbivory on Canada Thistle (*Cirsium arvense*). Rangeland Ecology & Management 61(5): 529-534.
- Forcella, F. and D. Archer. 2006. Canada thistle phenology. 2006 North Central Weed Sci. Society Proceedings 61: 158.
- Frank, J.R. and T.J. Tworkoski. (1993). "Response of Canada thistle, *Cirsium arvense* (L.) Scop. and leafy spurge, *Euphorbia esula* L. genotypes to systemic herbicides." Weed Sci. Society of America Abstract 33:49.

- Gange, A.C., S. Dey, A.F. Currie, and B.C. Sutton. 2007. Site- and species-specific differences in endophyte occurrence in two herbaceous plants. J. of Ecology 95(4): 614-622.
- Ghazoul, J. 2006. Floral diversity and the facilitation of pollination. J. of Ecology 94(2): 295-304.
- Graglia, E., B. Melander, and R.K. Jensen. 2006. Mechanical and cultural strategies to control *Cirsium arvense* in organic arable cropping systems. Weed Res. 46(4): 304-312.
- Grekul, C.W and E.W. Bork. 2004. Herbage yield losses in perennial pasture due to Canada thistle (*Cirsium arvense*). Weed Tech. 18(3): 784-794.
- Grekul, C.W. and E.W. Bork. 2007. Fertilization augments Canada thistle (*Cirsium arvense* L. Scop) control in temperate pastures with herbicides. Crop Protection 26(4): 668-676.
- Gronwald, J.W., K.L. Plaisance, D.A. Ide, and D.L. Wyse. 2002. Assessment of *Pseudomonas syringae* pv. *tagetis* as a biocontrol agent for Canada thistle. Weed Sci. 50(3): 397-404.
- Gruber, S. and W. Claupein. 2009. Effect of tillage intensity on weed infestation in organic farming. Soil & Tillage Research 105(1): 104-111.
- Hansen, A.A. (1918). Canada Thistle and Methods of Eradication. USDA Farmers Bulletin 1002, Washington, D.C.
- Hansen A.A. (1921). *Canada thistle*. Penn State Agricultural Experiment Station, Weed Leaflet No. 2, 4 pp., Penn State University, College Station, PA.
- Hausman, C.E., J.F. Jaeger, and O.J. Rocha. 2010. Impacts of the emerald ash borer (EAB) eradication and tree mortality: potential for a secondary spread of invasive plant species. Biological Invasions 12(7): 2013-2023.

Hay, W.D. (1937). "Canada thistle seed production and its occurrence in Montana seed." Seed World, March 26. pp. 6-7.

Hayden, A. (1934). "Distribution and reproduction of Canada thistle in Iowa." American Journal of Botany 21:355-373.

- Heimann, B. and G.W. Cussans. (1996). "The importance of seeds and sexual reproduction in the population biology of *Cirsium arvense* A literature review." Weed Research 36:493-503.
- Hill, R.J. (1983). *Canada thistle, Cirsium arvense (L.) Scop.* Registration Horticulture Weed Circulation No. 2, (cited dates: April and October 1983), Pennsylvania Department of Agriculture, Bureau of Plant Industry Vol. 9, No. 1-2.

Hodgson, J.M. (1964). "Variations in ecotypes of Canada thistle." *Weeds* 12:167-171. Hodgson, J.M. and H.D. Moore. (1972). "Stomatal variations in Canada thistle and response to herbicides, *Cirsium arvense*. *Weed Sci.* 20:68-70.

Hodgson, J.M. (1968). The Nature, Ecology, and Control of Canada thistle. U.S. Department of Agriculture Technical Bulletin 1386. 32 pp.

Hodgson, J.M. (1970). "The response of Canada thistle ecotypes to 2,4-D, amitrole, and intensive cultivation." Weed Sci. 18:68-70.

Hodgson, J.M. (1971). Canada Thistle and its Control. Leaflet 523. USDA. Washington D.C. 8 pp.

Hodgson, J.M. (1973). "Lipid deposition on leaves of Canada thistle ecotypes." Weed Sci. 21:169-172.

- Hoebeke, E.R. and A.G. Wheeler Jr. 2003. *Sphaeroderma testaceum* (F.) (Coleoptera: Chrysomelidae), a Palearctic flea beetle new to North America. Proc. of the Entomological Society of Washington 105(4): 990-994.
- Holmes, R.J. and R.J. Froud-Williams. 2005. Post-dispersal weed seed predation by avian and non-avian predators. Agriculture, Ecosystems & Environment 105(1-2): 23-27.
- Holm, L.G., D.L. Plucknett, J.V. Pancho and J.P. Herberger. (1977). pp 217-224 In The World's Worst Weeds. Distribution and Biology. ISBN 0-8248-0295-0. 609 pp. John Wiley & Sons, Inc. New York, N.Y.
- Hovick, S.M. and J.A. Reinartz. 2005. Combination of treatments influence survival of woody species planted to suppress Reed canarygrass (Wisconsin). Ecological Restoration 23(2): 126.
- Humber, J.M. and L. Hermanutz. 2011. Impacts of non-native plant and animal invaders on gap regeneration in a protected boreal forest. Biological Invasions 13(10): 2361-2377.

Hunter, J.H. and L.W. Smith. (1972). "Environment and herbicide effects on Canada thistle ecotypes." Weed Sci. 20:163-167.

- Janz, N. 2005. The relationship between habitat selection and preference for adult and larval food resources in the polyphagous butterfly *Vanessa cardui* (Lepidoptera: Nymphalidae). J. of Insect Behavior 18(6): 767-780.
- Jump, A.S., D.A. Dawson, C.M. James, F.I. Woodward, and T. Burke. 2002. Isolation of polymorphic microsatellites in the stemless thistle (*Cirsium acaule*) and their utility in other *Cirsium* species. Molecular Ecology Notes 2(4): 589-592.
- Kay, Q.O.N. (1985). "Hermaphrodites and subhermaphrodites in a reputedly dioecious plant, *Cirsium arvense* (L.) Scop. New Phytologist 100 (3):457-472.

Klinkhamer, P.G.L. and T.J. de Jong. (1993). "Cirsium vulgare (Savi) Ten." Journal of Ecology 81(1):177-191.

- Kluth, S., A. Kruess, and T. Tscharntke. 2005. Effects of two pathogens on the performance of *Cirsium arvense* in a successional fallow. Weed Res. 45(4): 261-269.
- Kong, H., C. Blackwood, J.S. Buyer, T.J. Gulya Jr., and J. Lydon. 2005. The genetic characterization of *Pseudomonas syringae* pv. *tagetis* based on the 16S-23S rDNA intergenic spacer regions. Biological Control: Theory and Appl. in Pest Mgt. 32(3): 356-362.
- Kong, H., C.D. Patterson, W. Zhang, Y. Takikawa, A. Suzuki, and J. Lydon. 2004. A PCR protocol for the identification of *Pseudomonas syringae* pv. *tagetis* based on genes required for tagetitoxin production. Biological Control: Theory and Appl. in Pest Mgt. 30(1): 83-89.
- Lalonde, R.G. and B.D. Roitberg. (1989). "Resource limitation and offspring size and number trade-offs in *Cirsium arvense* (Asteraceae)." American Journal of Botany 76(8):1107-1113.
- Lalonde, R.G. and B.D. Roitberg. (1994). "Mating system, life-history, and reproduction in Canada thistle (*Cirsium arvense*; Asteraceae)." American Journal of Botany 81(1):21-28.
- Larson, D.L. 2009. Evaluation of restoration methods to minimize Canada thistle (*Cirsium arvense*) infestation. USDI, USGS Open-File Report 2009-1130. 56 pp. <u>http://pubs.usgs.gov/of/2009/1130/pdf/ofr2009-1130.pdf</u> Accessed May 3, 2013.
- Larson, D.L., J.B. Bright, P. Drobney, J.L. Larson, N. Palaia, P.A. Rabie, S. Vacek, and D. Wells. 2011. Effects of planting method and seed mix richness on the early stages of tallgrass prairie restoration. Biological Conservation 144: 3127-3139.
- Larson, D.L., J.B. Bright, P. Drobney, J.L. Larson, N. Palaia, P.A. Rabie, S. Vacek, and D. Wells. 2013. Using prairie restoration to curtail invasion of Canada thistle: the importance of limiting similarity and seed mix richness. Biological Invasions. DOI 10.1007/s10530-013-0432-0. 15 pp. <u>http://link.springer.com/article/10.1007%2Fs10530-013-0432-0</u> Accessed May 3, 2013.
- Laubhan, M.K. and T.L. Shaffer. 2006. Seed germination of *Cirsium arvense* and *Lepidium latifolium*: Implications for management of Montane wetlands. Wetlands 26(1): 69-78.
- Leth, V., J. Netland, and C. Andreasen. 2008. Phomopsis cirsii: a potential biocontrol agent of Cirsium arvense. Weed Res. 48(6): 533-541.
- Link, A.J. and T. Kommedahl. (1958). "Canada thistle spotlight on a troublesome weed." Minnesota Farm and Home Science 15:21-22.

Lloyd, D.G. and A.J. Myall. (1976). "Sexual dimorphism in Cirsium arvense (1.) Scop." Annals of Botany 40:115-123.

- Lukashyk, P., M. Berg, and U. Kopke. 2008. Strategies to control Canada thistle (*Cirsium arvense*) under organic farming conditions. Renewable Agriculture and Food Systems 23(1): 13-18.
- Lundkvist, A., L. Salomonsson, L. Karlsson, and A-M.D. Gustavsson. 2008. Effects of organic farming on weed flora composition in a long term perspective. European J. of Agronomy 28(4): 570-578.
- Majka, C.G. and L. LeSage. 2006. Introduced leaf beetles of the Maritime Provinces. 1: *Sphaeroderma testaceum* (F.) (Coleoptera: Chrysomelidae). Proc. of the Entomological Society of Washington.108(1): 243-247.
- McAllister, R.S. and L.C. Haderlie. (1985). "Seasonal variations in Canada thistle, *Cirsium arvense*, root bud growth and root carbohydrate reserves." *Weed Sci.* 33:44-49.
- McKinney, M. and A. Jerup. 2010. Do you know these infamous weeds? Barnyards & Backyards 6(4): 15.
- Mesbah, A.O. and S.D. Miller. 2005. Canada thistle (*Cirsium arvense*) control in established alfalfa (*Medicago sativa*) grown for seed production. Weed Tech. 19(4): 1025-1029.
- Michels, G.J. Jr., V.A. Carney, J. Lydon, R. Ochoa, and R.L. Renn. 2008. New records for *Aceria anthocoptes* (Acari: Eriophyidae) occurring on Canada thistle in Colorado, Nebraska, and Wyoming, U.S.A. Entomological News 119(5): 483-491.
- Miller, A.M., C. McArthur, and J. Smethurst. 2006. Characteristics of tree seedlings and neighbouring vegetation have an additive influence on browsing by generalist herbivores. Forest Ecology and Management 228(1-3): 195-205.
- Narumalani, S, D.R. Mishra, R. Wilson, P. Reece, and A. Kohler. 2009. Detecting and mapping four invasive species along the floodplain of North Platte River, Nebraska. Weed Tech. 23(1): 99-107.
- Navratil, M., P. Valova, R. Fialova, P. Lauterer, D. Safarova, and M. Stary. 2009. The incidence of stolbur disease and associated yield losses in vegetable crops in South Moravia (Czech Republic). Crop Protection 28(10): 898-904.
- Newcombe, G. and C. Nischwitz. 2004. First report of powdery mildew caused by *Erysiphe cichoracearum* on creeping thistle (*Cirsium arvense*) in North America. Plant Disease 88(3): 312.
- Noble, S.D. and T.G. Crowe. 2005. Analysis of crop and weed leaf diffuse reflectance spectra. Transactions of the ASAE 48(6): 2379-2387.
- Nordmeyer, H. and A. Hausler. 2004. Impact of soil properties on weed distribution within agricultural fields. [in German] J. of Plant Nutrition and Soil Science = Zeitschrift fur Pflanzenernahrung und Bodenkunde 167(3): 328-336.

Norris, R.F. (2007). "Weed fecundity: Current status and future needs." Crop Protection 26:182-188.

- [ORS] Office of the Reviser of Statutes State of Minnesota. (2007). Chapter 20. Noxious Bushes and Weeds. (Cited August 2008). https://www.revisor.leg.state.mn.us/
- Papiernik, S., F. Forcella, R. Gesch, and G. Amundson. 2006. Clopyralid tolerance of cuphea. North Central *Weed Sci.* Society Proceedings 61: 25.
- Peschken, D.P. 1984. Host range of *Lema cyanella* (Coleoptera:Chrysomelidae), a candidate for biocontrol of Canada thistle, and of four stenophagous, foreign thistle insects in North America [Orellia ruficauda, Cleonus piger, Cassida rubiginosa, Rhinocyllus conicus]. Canadian Entomologist 116(10): 1377-1384.
- Poritz, N. 2003. Biological weed control: education and implementation. Sustainable Agriculture Research and Education (SARE). Project Number FW01-032, West Region.

Prischmann-Voldseth, D.A. 2009. Biological Control of Canada Thistle. Crop and Pest Report. : n.p.

- Pritekel, C., A. Whittemore-Olson, N. Snow, and J.C. Moore. 2006. Impacts from invasive plant species and their control on the plant community and belowground ecosystem at Rocky Mountain National Park, USA. Agriculture, Ecosystems & Environment with Applied Soil Ecology 32(1): 132-141.
- Quimby, P.C., S. Gras, T. Widmer, W. Meikle, and D. Sands. 2004. Formulation of *Sclerotinia sclerotiorum* for use against *Cirsium arvense*. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz: 491-495.
- Rancic, D., B. Stevanovic, R. Petanovic, B. Magud, I. Tosevski, and A. Gassmann. 2006. Anatomical injury induced by the Eriophyid mite Aceria anthocoptes on the leaves of *Cirsium arvense*. Experimental & Applied Acarology 38(4): 243-253.
- Rew, L.J., B.D. Maxwell, and R. Aspinall. 2005. Predicting the occurrence of nonindigenous species using environmental and remotely sensed data. Weed Sci. 53(2): 236-241.
- Schreiber, M. (1967). "Effect of density and control of Canada thistle on production and utilization of alfalfa pasture." Weeds 15:138-142.
- Seefeldt, S.S., J.M.C. Stephens, M.L. Verkaaik, and A. Rahman. 2005. Quantifying the impact of a weed in a perennial ryegrass-white clover pasture. Weed Sci. 53(1): 113-120.
- Sheldon, J.C. and F.M. Burrows. (1973). "The dispersal effectiveness of the achene-pappus units of selected compositae in steady winds with convection." New Phytologist 72:665-675.
- Shmida, A. (1985). "Why do some compositae have an inconsistently deciduous pappus?" Annals of the Missouri Botanical Garden. 72:184-186.

Shorthouse, J.D. and R.G. Lalonde. 1986. Formation of flowerhead galls by the Canada thistle gall-fly Urophora cardui (Diptera:

Tephritidae), under cage conditions. The Canadian Entomologist 118(11): 1199-1203.

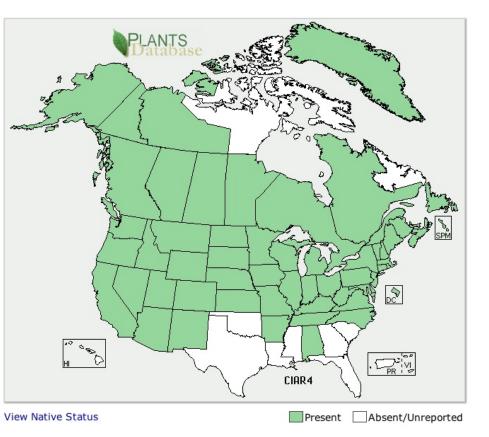
- Slotta, T.A.B., M.E. Foley, and D. Horvath. 2005. Development of polymorphic markers for *Cirsium arvense*, Canada thistle, and their amplification in closely related taxa. Molecular Ecology Notes 5(4): 917-919.
- Slotta, T.A.B., J.M. Rothhouse, D.P. Horvath, and M.E. Foley. 2006. Genetic diversity of Canada thistle (*Cirsium arvense*) in North Dakota. Weed Sci. 54(6): 1080-1085.
- Skinner, K., L. Smith and P. Rice. (2000). "Using noxious weed lists to prioritize targets for developing weed management strategies." *Weed Sci.* 48:640-644.

Smith, L.M. and L.T. Kok. (1984). "Dispersal of musk thistle (Carduus nutans) seeds." Weed Sci. 32:120-125.

- Stringer, L.D., A.M. El-Sayed, L.M. Cole, L-A.M. Manning, and M.D. Suckling. 2008. Floral attractants for the female soybean looper, *Thysanoplusia* I (Lepidoptera: Noctuidae). Pest Mgt. Sci. 64(12): 1218-1221.
- Theis, N. and R.A. Raguso. 2005. The effect of pollination on floral fragrance in thistles. J. Chem. Ecology 31(11): 2581-2600.
- Theis, N., M. Lerdau, and R.A. Raguso. 2007. The challenge of attracting pollinators while evading floral herbivores: patterns of fragrance emission in *Cirsium arvense* and Cirsium repandum (Asteraceae). International J. of Plant Sciences 168(5): 587-601.
- Thines, M., R. Zipper, D. Schauffele, and O. Spring. 2006. Characteristics of *Pustula tragopogonis* (syn. *Albugo tragopogonis*) newly occurring on cultivated sunflower in Germany. J. of Phytopathology 154(2): 88-92.
- Tichich, R.P. and J.D. Doll. 2006. Field-based evaluation of a novel approach for infecting Canada thistle (*Cirsium arvense*) with *Pseudomonas syringae* pv. *tagetis*. Weed Sci. 54(1): 166-171.
- Tichich, R.P., J.D. Doll, and P.S. McManus. 2006. *Pseudomonas syringae* pv. *tagetis* (PST) population dynamics both on and in Canada thistle (*Cirsium arvense*) leaves as affected by rain events. Weed Sci. 54(5): 934-940.
- Toepfer, S., M.M. Ellsbury, R. Eschen, and U. Kuhlmann. 2007. Spatial clustering of *Diabrotica virgifera virgifera* and *Agriotes ustulatus* in small-scale maize fields without topographic relief drift. Entomologia Experimentalis et Applicata. 124(1): 61-75.

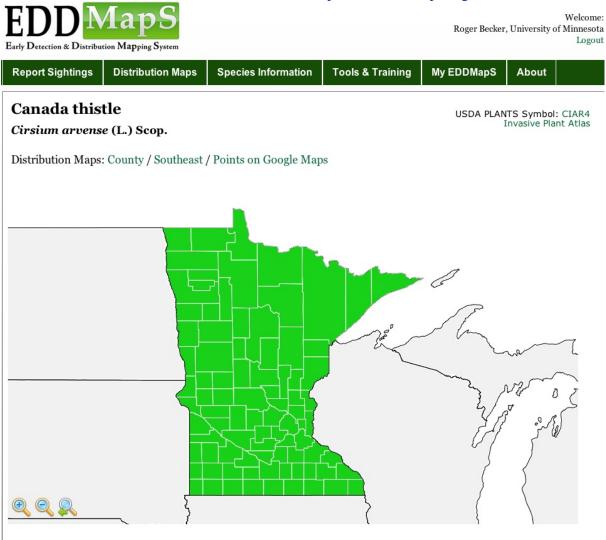
Top 10 invasive plants. 2006. Arbor Age 26:12-14.

- Travnicek, A.J., R.G. Lym, and C. Prosser. 2005. Fall-prescribed burn and spring-applied herbicide effects on Canada thistle control and soil seedbank in a northern mixed-grass prairie. Rangeland Ecology & Management 58(4): 413-422.
- Turner, S.K., K. Fay, E.L. Sharp and D.C. Sands. (1981). "Resistance of Canada thistle, *Cirsium arvense*, ecotypes to a rust pathogen, *Puccinia obtegens*." Weed Sci. 29:623-624.


- Tschanz, B., L.F. Bersier, and S. Bacher. 2007. Functional responses: A question of alternative prey and predator density. Ecology 88(5): 1300-1308.
- Wandeler, H. and S. Bacher. 2006. Insect-transmitted Urediniospores of the Rust *Puccinia punctiformis* cause systemic infections in established *Cirsium arvense* Plants. Phytopathology 96(8): 813-818.
- Wandeler, H., W. Nentwig, and S. Bacher. 2008. Establishing systemic rust infections in *Cirsium arvense* in the field. Biocontrol Sci. and Technol. 18(1-2): 209-214.
- Wiese, A.H., D.A. Netzer, D.E. Riemenschneider, and R.S. Jr. Zalesny. 2006. A weed compaction roller system for use with mechanical herbicide application. Northern J. of Applied Forestry 23(1): 66-69.
- Wilson RG, Martin AR, Kachman SD (2006) Seasonal changes in carbohydrates in the root of Canada thistle (*Cirsium arvense*) and the disruption of these changes by herbicides. Weed Technol. 20: 242-248. doi: 10.1614/WT-05-052R1.1
- Yuzikhin, O., G. Mitina, and A. Berestetskiy. 2007. Herbicidal potential of Stagonolide, a New Phytotoxic Nonenolide from *Stagonospora cirsii*. J. Agric. and Food Chem. 55(19): 7707-7711.
- Ziska, L.H., S. Faulkner, and J. Lydon. 2004. Changes in biomass and root:shoot ratio of field-grown Canada thistle (*Cirsium arvense*), a noxious, invasive weed, with elevated CO₂: implications for control with glyphosate. Weed Sci. 52(4): 584-588.
- Ziska, L.H. 2010. Elevated carbon dioxide alters chemical management of Canada thistle in no-till soybean. Field Crops Research 119(2-3): 299-303.
- Zonno, M.C., M. Vurro, S. Lucretti, A. Andolfi, C. Perrone, and A. Evidente. 2008. Phyllostictine A, a potential natural herbicide produced by *Phyllosticta cirsii: In vitro* production and toxicity. Plant Sci. 175(6): 818-825.

Appendix A. Distribution of Canada thistle in the U.S. PLANTS <u>http://plants.usda.gov/core/profile?symbol=CIAR4 (Accessed 8/9/13)</u>

Cirsium arvense (L.) Scop. Canada thistle


General Information		
Symbol:	CIAR4	
Group:	Dicot	
Family:	Asteraceae	
Duration:	Perennial	
Growth Habit:	Forb/herb	
Native Status:	CAN I GL I SPM I L48 I AK I	
Data Source and Documentation		

See U.S. county distributions (when available) by clicking on the map or the linked states below:

USA (AK, AL, AR, AZ, CA, CO, CT, DC, DE, IA, ID, IL, IN, KS, KY, MA, MD, ME, MI, MN, MO, MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OR, PA, RI, SD, TN, UT, VA, VT, WA, WI, WV, WY), **CAN** (AB, BC, MB, NB, NF, NS, NT, ON, PE, QC, SK, YT), **DEN** (GL), **FRA** (SPM)

Distribution of Canada thistle in Minnesota. http://www.eddmaps.org/distribution/usstate.cfm?sub=2792 (Accessed 8/16/13)

Please cite the EDDMapS as:

EDDMapS. 2013. Early Detection & Distribution Mapping System. The University of Georgia - Center for Invasive Species and Ecosystem Health. Available online at http://www.eddmaps.org/; last accessed August 16, 2013.