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Abstract

Collective memory is believed to decay through two mechanisms, one involving communicative memory–

the memory sustained by oral communication–and another involving cultural memory–the memory sustained

by the physical recording of information. Yet, there is no statistical evidence showing that collective memory

decays through these two mechanisms, or exploring the universality of the decay function across a variety of

cultural domains. Here, we use time series data on papers and patents’ citations, and on the popularity of songs,

movies, and biographies, to test the hypotheses that the decay of human collective memory involves the decay

of communicative and cultural memory, and that the decay function is universal across all of these domains.

We derive a mathematical model from first principles by formalizing these two mechanisms and show that the

function predicted by this model provides a more accurate description of the data than previously proposed decay

functions. Our results support the hypotheses that the decay of human collective memory involves the combined

decay of communicative and cultural memory, and that the decay function is universal across multiple cultural

domains. These findings allow us to explain the dynamics of the attention received by a piece of cultural content

during its lifetime, and suggest that the dynamics of human collective memory follows a universal decay function.

Introduction

In what is probably Pablo Neruda’s most famous poem–Poema 20–he wrote: “Es tan corto el amor, y tan largo el

olvido” (Love is so short, and forgetting so long). Neruda’s words express elegantly the fact that when in love people

are constantly reminded of their loved ones, but once love fades, memories fade too. Inspired by Neruda we ask

whether society also experiences the two phases of memory: an initial intense phase of remembrance followed by a

longer and slower phase of forgetting. There is in fact, a vast literature exploring the decay of collective memory as

a combination of two distinct processes [15, 2, 5, 4, 38, 13, 29, 30, 43, 31, 12]: the decay of communicative memory,

normally sustained by the oral transmission of information, and the decay of cultural memory, which is sustained
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by the physical recording of information. This literature can provide inspiration for the construction of generative

models of memory decay functions.

Yet, the theory of collective memory lacks quantitative models that would allow linking it to empirical data, such

as the data developed in the literature of knowledge diffusion. Indeed, knowledge diffusion models the adoption and

diffusion of cultural content as a combination of two processes [37, 17, 18, 36, 9, 14, 10]: a preferential attachment [6,

1] or cumulative advantage process [27, 42, 24], where popularity begets popularity, and a temporal decay function,

which has been modeled using simple exponential [17] and log normal functions [37]. Overall, while there is consensus

in the fact that cultural adoption should be modeled using a combination of preferential attachment and a temporal

decay, there is no consensus on the exact shape of the temporal decay function or about its universality.

Here, we use data on scientific publications, patents, songs, movies, and biographies to test the hypothesis that

the decay of collective memory is a process involving the decay of both, communicative and cultural memory. We

formalize these ideas by constructing a mathematical model that allows us to compare a quantitative function with

data on diverse forms of cultural production. We validate this model by showing that the bi-exponential function

derived from it is statistically better at explaining the empirically observed decay of collective memory than the

functions previously used in the literature, which lack a generative model. This finding validates the idea that the

decay of collective memory is a process that results from the decay of both communicative and cultural memory. The

model also makes observable both mechanisms and generalizes well to multiple data-sets, suggesting that it captures

a universal feature of the decay of human collective memory.

Data and Methods

We use two types of data sources: time series data for scientific papers and patents, and cross-section data for songs,

movies, and biographies. The American Physical Society (APS) corpus collects data about the attention pattern of

physics articles from twelve different journals, between 1896 and 2016. For our analysis, we use a prospective approach

(See SM 1.1) for all papers published between 1970 and 2003 in Physical Review Letters (PRL), and in Physical

Review A to E [33, 32, 18]. The United States Patent and Trademark Office (USPTO) [20] contains information

about patents granted between 1976 and 2005. We use all patents granted between 1976 and 1995 in all categories:

Chemical (CAT 1), Computers & Computation (CAT 2), Drugs & Medical (CAT 3), Electrical & Electronic (CAT

4), Mechanical (CAT 5) and Others (CAT 6). For both patents and papers we construct two time series, one for

the number of citations obtained in each time window, and another for the accumulated citations obtained up to a

given time. Our interest is to characterize the intrinsic dynamic of knowledge, therefore we deflate both time series

by an inflation factor [18, 17] which accounts by the exponential increasing of the number of publications over time

[37, 33] (See SM 1.2).

For songs, movies, and online biographies we use cross-section data, it means, data collected by observing songs

movies and biographies at the same point of time. For songs, we use weekly ranking data from the “Hot-100 Bill-

board’s ranking” [7] between October 1958 and July 2017. To measure online attention, we use Spotify’s popularity

index [34] taken on October 2016 and July 2017, and last.fm’s play counts [23] for the last week of July 2017 (see

SM2). We also collect data on 14, 633 movies released between 1937 and 2017 that have obtained more than 1,000
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votes in the Internet Movie Database [19] as of July 2017. To measure the current popularity of movies we use the

play counts for the trailer of each movie taken from YouTube [41]. For online biographies we focus on basketball,

tennis, and Olympic medal winners. For basketball players, we consider the “Slam 500 Greatest NBA Players of

All Times,” for tennis players we consider the “Top 600 International males singles tennis player,” and for Olympic

medal winners we consider athletes who have won more than three gold medals. Current popularity was measured

using the number of pageviews received by the Wikipedia biography [39] of each athlete between July 2016 and June

2017–for more information see SM 1.3 and 1.4.

Results

The literature on collective memory [16, 15, 3] suggests that the decay function should involve two mechanisms, an

initial fast decay–signature of communicative memory–followed by a softer decline–resulting from cultural memory–

(Figure 1 A). Using the distinction between communicative and cultural memory [16, 5, 3, 4] we propose a model

where cultural memory and communicative memory co-exist, but decay at different rates.

We model the attention received by a cultural piece by assuming that the present day popularity S of a cultural

piece is the sum of its popularity in both communicative memory u and cultural memory v. Hence, at any given time

S(t) = u(t) + v(t) (see Fig. 1 A). We assume that communicative and cultural memory decay independently with

decay rates p for communicative memory and q for cultural memory, and that information flows from communicative

memory to cultural memory at a rate r. Hence, communicative memory decays as u(t+ 1) = (1− p)u(t)− ru(t) and

cultural memory as v(t + 1) = (1− q)v(t) + ru(t). This defines the following system of differential equations:

S(t) = u(t) + v(t) (1)

du

dt
= −(p + r)u (2)

dv

dt
= −qv + ru. (3)

We set the initial communicative memory u(t = 0) = N and we assume that at the beginning of the process there

is no cultural memory associated to a new cultural product (v(t = 0) = 0)–For more information see SM 2.1.

Using the initial conditions, we find that the solution of the system of equations is the bi-exponential function:

u(t) = Ne−(p+r)t (4)

v(t) =
Nr

p + r − q

(
e−qt − e−(p+r)t

)
(5)

S(t) =
N

p + r − q

[
(p− q)e−(p+r)t + re−qt

]
. (6)

Figure 1 B illustrates S(t) for different values of the parameters, with N = 1, and Figure 1 C compares the bi-

exponential function with the exponential [17, 18] and log-normal [37] decay functions proposed in previous literature

(see SM 3 and 4).

We then apply the bi-exponential model to data by comparing it with the decay functions observed for paper and
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Figure 1: Modelling collective memory. A The red curve shows the bi-exponential function predicted by our model in log-lin
scale. The light-blue and light-green curves show the two exponential of communicative and cultural memory. The inset
illustrates the basic mechanics of the model. At any time point t the total memory is the sum of communicative memory u
and cultural memory v. Both communicate and cultural memory decay with their own respective decay rates p and q. B
The bi-exponential model (Eq. 6) for various parameters p, q, and r, can account for a wide range of decays. C Comparison
between the bi-exponential model (in red), and the exponential and log-normal models in log-log scale.

patent citations, and for the online popularity of past music, movies, and biographies, with a comparable level of

accomplishment. In the case of papers and patents, we group papers and patents with a similar number of cumulative

citations. In the case of songs, movies, and biographies, these comparable sets are built into our selection criterion,

since we study only songs that reached the Billboard ranking, biographies of award winning athletes, and movies that

have received over 1,000 votes on IMDB. By respectively grouping papers, patents, songs, movies, and biographies,

with a similar level of accomplishment, we control for differences in preferential attachment and isolate the temporal

decay of collective memory.

Figure 2 shows the average number of new citations obtained by scientific papers (A, B, C, and D) and patents

(E and F) for different levels of accumulated citations k. The red lines show the fit of the bi-exponential model,

whereas the dashed and dotted lines show, respectively, the the log-normal and exponential decays used in [37] and

[17]. In all cases, we find that, after choosing papers and patents with the same level of cumulative citations, the
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Figure 2: The universal decay of collective memory. Average number of new citations received by A All papers published in
Physical Review B in 1980, B All papers published in Physical Review D in 1980, C All papers published in Physical Review
Letters in 1990, D All papers published in Physical Review L in 1980, E All Mechanical patents granted in 1990, and F All
Chemical patents granted in 1985. Next, for cultural pieces we have the standardized popularity ofG Songs based on spotify’s
popularity index (y-axis) as a function of the date the song first appeared in the Billboard ranking (x-axis). H Songs based
on Last.fm’s play counts (y-axis) as a function of the date the song first appeared in the Billboard ranking (x-axis). I Movies
based on YouTube’s view counts (y-axis) as a function of the date the movie was released (x-axis). J Tennis players based
on Wikipedia’s page views (y-axis) as a function of the date that the tennis player was included in the Top 600 International
males singles tennis player (x-axis). K Olympic medalist based on Wikipedia’s page views (y-axis) as a function of the date
of the middle of the career of the Olympic medalist. L Basketball players based on Wikipedia’s page views (y-axis) as a
function of the date that the Basketball player starts his career (x-axis). Red lines show our bi-exponential model fit, whereas
the dashed lines and dotted lines show the log-normal decay used by [37] and the exponential decay used by [17]. Error bars
represent standard errors.

5



q
r

p
Tc [Years]

Sp
ot

ify
La

st.
fm

Yo
ut

ub
e

Te
nn

is 
Pl

ay
er

s
Ol

ym
pic

 M
ed

ali
sts

Ba
sk

et
ba

ll P
lay

er
s

0.00

0.05

0.10

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

0

10

20

30

C
oe

ffi
ci

en
t E

st
im

at
e

Songs Movies Biographies Patents Papers

CA
T 

1 
19

85
 k*

=1
CA

T 
1 

19
85

 k*
=3

CA
T 

1 
19

85
 k*

=6
CA

T 
5 

19
90

 k*
=1

CA
T 

5 
19

90
 k*

=2
CA

T 
5 

19
90

 k*
=5

PR
B 

19
80

 k*
=2

PR
B 

19
80

 k*
=7

PR
B 

19
80

 k*
=2

0
PR

D 
19

80
 k*

=3
PR

D 
19

80
 k*

=7
PR

D 
19

80
 k*

=2
0

PR
L 

19
80

 k*
=2

PR
L 

19
80

 k*
=5

PR
L 

19
80

 k*
=1

3
PR

L 
19

90
 k*

=3
PR

L 
19

90
 k*

=7
PR

L 
19

90
 k*

=2
0
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represent the standard deviation of the coefficient estimation.

bi-exponential model captures the temporal pattern of human collective forgetting accurately (see SM section 3.4

for AICc comparison of fits for data on all years, journals, and categories). More importantly, in several of these

empirical curves the shoulder of the bi-exponential curve is clearly visible, so the model helps unveil the point at

which cultural memory takes over communicative memory.

We observe a similar behavior when we apply the bi-exponential model to data on music, movies, and biographies.

Since we lack time series data for these three sources, we look at the present day popularity of music, movies, and

biographies as a function of their age. For songs, we determine age using the year they first reached the billboard

ranking. For movies, we calculate age using their release year. For the biographies of athletes we use as the age of the

accomplishment the time when they were introduced in their respective international rankings. Once again, when

we compare our model with the previously proposed log-normal (dashed lines) and exponential models (dotted lines)

(Figure 2 G-L), we find that the bi-exponential model provides a more accurate fit to the data, since it captures the

initial fast decay of communicate memory followed by the slow decay of cultural memory. Also, it visible captures

the transition from communicative to cultural memory.

Together, the data on papers, patents, songs, movies, and biographies, shows that this bi-exponential decay is

universal across all domains. Yet, the parameters of the decay function are different for papers, patents, songs,
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movies, and biographies. We therefore, compared the model parameters (p, q, r, and tc) across all studied domains

(Figure 3). Here tc is the time at which cultural memory overtakes communicate memory, which, according to the

model can be approximated as (see SM 2.2 and 2.3):

tc =
1

p + r − q
log

(
(p + r)(p− q)

rq

)
. (7)

Although our analysis and results suggest that the shape of the decay in attention function is universal across

multiple cultural domains, its parameters are informative of the domain-specific decay dynamics (Figure 3). When

comparing the parameters, we find that the the decay rates of communicative memory are much larger than those of

cultural memory (p >> q) as suggested by the literature [2] (Figure 3 A and C). Also, we find that communicative

memory decays much faster for music and movies than for biographies (Figure 3 C), resulting in critical times that

are relatively low for music, movies, and papers (5 to 10 years, Figure 3 D), and much longer for biographies (15 to 30

years). It means, for biographies, the era dominated by communicative memory lasts longer than the era dominated

by cultural memory.

In order to explain these differences, two aspects of the underlying dynamics of collective memory need to be

considered: i) the support system of each mechanism and ii) the nature and dynamics of network externalities in

their consumption. Greater network externalities imply that your consumption of the cultural piece increases more

with concurrent consumption and thus heightens the effect of communicative memory on the dynamics of collective

memory. Take the case of artistic cultural pieces. Once a movie is released we go together to the theatres and talk

about it when we meet our friends. Recently released songs are played on the radio and in discotheques. Indeed,

carrying capacity for this collective love is limited. Both songs and movies have a relatively high rate of transfer, r (3

B), from communicative to cultural memory, but movies have larger tc than songs, probably because of the dynamism

of music industry. For athletes, in contrast, network externalities by the occasional documentary retrospective are

mainly at work when sports events in which athletes participate take place. Given that athletes are accumulating

accomplishments over time, they are more likely to be highly remembered while their careers are active, in average

20 years. After that, they are remembered mainly through cultural memory. In fact, for as much as a couple of

decades after their main accomplishment.

Together, these results show that the bi-exponential decay predicted from formalizing the mechanisms suggested

by the literature on collective memory provide a universally good approximation for the decay of memory across a

wide variety of cultural domains.

Discussion

Decades ago Neruda observed that love was short and intense, while forgetting moved slowly into oblivion. Here,

we build on the ideas of communicative and cultural memory to show that the decay of human collective memory

follows a universal decay function that is characterized by two phases. We show that the shape of this function is

universal across a variety of cultural domains, but that its parameters are informative of the forgetting dynamics of

specific systems. These findings quantitatively validate the ideas of communicative and cultural memory, and allow
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us to better understand how societies forget.

For decades scholars have been using papers and patents citations to study the spread and adoption of ideas

and cultural content [11, 28, 22, 37, 33, 21, 8, 40, 35, 25, 26, 17, 18]. Yet, while there is consensus on the fact that

preferential attachment processes contribute to the spread of popular pieces, there is no consensus on the nature of the

functional form capturing the decay of attention. Mathematically, the temporal decay curves describing the number

of citations or attention A(t) received by a paper, patent, or piece of cultural content (Figure 4 A) can be expressed

as a function of two parameters: (i) its age t, and (ii) the cumulative citations received by that paper, patent, or

cultural piece k. Formally, it has been shown that A(t) is separable [37, 17, 36, 9, 14, 10], as A(t) = c(k) × S(t),

where c(k) captures the effects of preferential attachment (Figure 4 B) and S(t) captures the temporal decay (Figure

4 C).
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Figure 4: Universal patterns in the decay of human collective memory. A Average number of citations received each semester
by papers published in physical review B (A(t)). B Average number of citations received by a paper as a function of the
cumulative citations received by that paper (∝ c(k)). Different curves represent different ages, C Average number of citations
received by papers with the same number of cumulative citations as a function of their age (∝ S(t)). Different curves represent
groups of papers with a different number of total citations.

The solid line (Figure 4 A) shows the average number of citations received by papers published in Physical Review

B in 1990 (A(t)) as a function of their age. A(t) describes the traditional increase and decline known to characterize

knowledge diffusion or cultural product adoption curves [17, 36, 9, 14, 10].

Figure 4 B shows the preferential attachment component, by presenting the number of new citations (∆c) received

by a paper as a function of its cumulative citations (c(k)) [6, 1]. Figure 4 C shows the temporal decay component

(S(t)), representing the number of new citations received by papers with the same number of cumulative citations

k = k∗ as a function of their age. That is, the dashed lines show papers for which the effect of preferential attachment

is kept constant: A(t)|k=k∗ = c(k∗)× S(t). Here, we observe the initially fast decay followed by a milder decline.

But what gives rise to this unorthodox decay function? Our results indicate that the fast decay followed by a mild

decline observed in these empirical decay functions is the result of a universal bi-exponential curve that can be derived

from first principles by distinguishing two concepts rooted in the literature on collective memory: communicative

and cultural memory [15, 2, 5, 4, 38, 13, 29, 30, 43, 31]. The agreement between this model and the empirical data
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validates these theoretical mechanisms and offers a mean to measure the model parameters. Interestingly, we find

that while the shape of the decay function is universal, its parameters are informative of the decay dynamics of

specific systems (Figure 3). For instance, compared to songs, movies, papers, and patents; biographies have relative

large critical times (tc), meaning that athletes are remembered mainly through oral culture for as much as a couple

of decades after their main accomplishment. Songs, on the other hand, have a relatively high rate of transfer (r)

from communicative to cultural memory, suggesting that the fast decay of songs from communicative memory is

dampened by the rapid reproduction of music in cultural memory –for more implications and comments see SM 5.

Our results support the hypotheses that the decay of human collective memory involves the combined decay of

communicative and cultural memory, and that the decay function is universal across multiple cultural domains.

These findings allow us to explain the dynamics of the attention received by a piece of cultural content during its

lifetime, and suggest that the dynamics of human collective memory follows a universal decay function.
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