
Sherlock: A Deep Learning Approach to
Semantic Data Type Detection

Madelon Hulsebos
MIT Media Lab

madelonhulsebos@gmail.com

Kevin Hu
MIT Media Lab
kzh@mit.edu

Michiel Bakker
MIT Media Lab
bakker@mit.edu

Emanuel Zgraggen
MIT CSAIL

emzg@mit.edu

Arvind Satyanarayan
MIT CSAIL

arvindsatya@mit.edu

Tim Kraska
MIT CSAIL

kraska@mit.edu

Çağatay Demiralp
Megagon Labs

cagatay@megagon.ai

César Hidalgo
MIT Media Lab

hidalgo@mit.edu

4. Semantic Type Detection2. Sampled Dataset and Features1. Source Corpus 3. Training and Testing Set

DateCountry
Nigeria

...
Germany

Name

Canada

M Buhari 08-18-2018
06-14-2015

07-20-2017

... ...
A Merkel

J Trudeau

Unseen
Data

Model

Predicted
Types and
Confidences

Location: 0.9
Name: 0.7
Year: 0.8

Prediction

Date

Character Distributions

Word Embeddings

Paragraph Vectors

Global Statistics

Country

Name

...

Feature
Extraction

Jo
in

Jo
in

Tr
ai
ni
ng

Feature Categories Types

Neural Network

FeaturesExact
MatchingColumn Header

Column Values

...

Figure 1: Data processing and analysis flow, starting from (1) a corpus of real-world datasets, proceeding to (2) feature extrac-
tion, (3) mapping extracted features to ground truth semantic types, and (4) model training and prediction.

ABSTRACT
Correctly detecting the semantic type of data columns is crucial for
data science tasks such as automated data cleaning, schema match-
ing, and data discovery. Existing data preparation and analysis sys-
tems rely on dictionary lookups and regular expression matching to
detect semantic types. However, these matching-based approaches
often are not robust to dirty data and only detect a limited number
of types. We introduce Sherlock, a multi-input deep neural network
for detecting semantic types. We train Sherlock on 686, 765 data
columns retrieved from the VizNet corpus by matching 78 seman-
tic types from DBpedia to column headers. We characterize each
matched column with 1, 588 features describing the statistical prop-
erties, character distributions, word embeddings, and paragraph
vectors of column values. Sherlock achieves a support-weighted
F1 score of 0.89, exceeding that of machine learning baselines, dic-
tionary and regular expression benchmarks, and the consensus of
crowdsourced annotations.

CCS CONCEPTS
• Computing methodologies → Machine learning; Knowl-
edge representation and reasoning; • Information systems
→ Data mining.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330993

KEYWORDS
Tabular data, type detection, semantic types, deep learning

ACM Reference Format:
Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind
Satyanarayan, Tim Kraska, Çağatay Demiralp, and César Hidalgo. 2019.
Sherlock: A Deep Learning Approach to Semantic Data Type Detection. In
The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3292500.3330993

1 INTRODUCTION
Data preparation and analysis systems rely on correctly detecting
types of data columns to enable and constrain functionality. For
example, automated data cleaning facilitates the generation of clean
data through validation and transformation rules that depend on
data type [15, 26]. Schema matching identifies correspondences be-
tween data objects, and frequently uses data types to constrain the
search space of correspondences [25, 35]. Data discovery surfaces
data relevant to a given query, often relying on semantic similarities
across tables and columns [6, 7].

While most systems reliably detect atomic types such as string,
integer, and boolean, semantic types are disproportionately more
powerful and in many cases essential. Semantic types provide finer-
grained descriptions of the data by establishing correspondences
between columns and real-world concepts and as such, can help
with schema matching to determine which columns refer to the
same real-world concepts, or data cleaning by determining the
conceptual domain of a column. In some cases, the detection of a
semantic type can be easy. For example, an ISBN or credit card
number are generated according to strict validation rules, lending
themselves to straightforward type detection with just a few rules.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1500

https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/3292500.3330993

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Hulsebos et al.

Table 1: Data values sampled from real-world datasets.

Type Sampled values

location TBA | Chicago, Ill. | Detroit, Mich. | Nashville, Tenn.
location UNIVERSITY SUITES | U.S. 27; NA | NORSE HALL
location Away | Away | Home | Away | Away
date 27 Dec 1811 | 1852 | 1855 | - | 1848 | 1871 | 1877
date – –, 1922 | – –, 1902 | – –, 1913 | – –, 1919
date December 06 | August 23 | None
name Svenack | Svendd | Sveneldritch | Svengöran
name HOUSE, BRIAN | HSIAO, AMY | HSU, ASTRID
name D. Korb | K. Moring | J. Albanese | l. dunn

But most types, including location, birth date, and name, do not
adhere to such structure, as shown in Table 1.

Existing open source and commercial systems take matching-
based approaches to semantic type detection. For example, regular
expression matching captures patterns of data values using pre-
defined character sequences. Dictionary approaches use matches
between data headers and values with internal look-up tables.
While sufficient for detecting simple types, these matching-based
approaches are often not robust to malformed or dirty data, sup-
port only a limited number of types, and under-perform for types
without strict validations. For example, Figure 2 shows that Tableau
detects a column labeled “Continent Name” as string. After re-
moving column headers, no semantic types are detected. Note that
missing headers or incomprehensible headers are not uncommon.
For example, SAP’s system tableT 005 contains country information
and column NMFMT is the standard name field, whereas INTCA
refers to the ISO code or XPLZS to zip-code.

Country/Region String Latitude Longitude Country/Region String

String String Decimal Decimal String String

Detected Types Without Column Headers

Detected Types With Column Headers

Remove Headers

Figure 2: Data types detected by Tableau Desktop 2018.3 for
a dataset of country capitals, with and without headers.

Machine learning models, coupled with large-scale training and
benchmarking corpora, have proven effective at predictive tasks
across domains. Examples include the AlexNet neural network
trained on ImageNet for visual recognition and the Google Neural
Machine Translation system pre-trained on WMT parallel corpora
for language translation. Inspired by these advances, we introduce
Sherlock, a deep learning approach to semantic type detection
trained on a large corpus of real-world columns.

To begin, we consider 78 semantic types described by T2Dv2
Gold Standard,1 which matches properties from the DBpedia on-
tology with column headers from the WebTables corpus. Then, we
use exact matching between semantic types and column headers
to extract 686, 765 data columns from the VizNet corpus [14], a
large-scale repository of real world datasets collected from the web,
popular visualization systems, and open data portals.

We consider each column as a mapping from column values
to a column header. We then extract 1, 588 features from each
column, describing the distribution of characters, semantic content
of words and columns, and global statistics such as cardinality and
uniqueness. Treating column headers as ground truth labels of the
semantic type, we formulate semantic type detection as a multiclass
classification problem.

A multi-input neural network architecture achieves a support-
weighted F1-score of 0.89, exceeding that of decision tree and ran-
dom forest baseline models, two matching-based approaches that
represent type detection approaches in practice, and the consensus
of crowdsourced annotations. We then examine types for which
the neural network demonstrates high and low performance, inves-
tigate the contribution of each feature category to model perfor-
mance, extract feature importances from the decision tree baseline,
and present an error-reject curve suggesting the potential of com-
bining learned models with human annotations.

To conclude, we discuss promising avenues for future research
in semantic type detection, such as assessing training data quality
at scale, enriching feature extraction processes, and establishing
shared benchmarks. To support benchmarks for future research
and integration into existing systems, we open source our data,
code, and trained model at https://sherlock.media.mit.edu.

Key contributions:
(1) Data (§3): Demonstrating a scalable process for match-

ing 686, 675 columns from VizNet corpus for 78 semantic
types, then describing with 1, 588 features like word- and
paragraph embeddings.

(2) Model (§4): Formulating type detection as a multiclass
classification problem, then contributing a novel multi-
input neural network architecture.

(3) Results (§5): Benchmarking predictive performance against
a decision tree and random forest baseline, two matching-
based models, and crowdsourced consensus.

2 RELATEDWORK
Sherlock is informed by existing commercial and open source sys-
tems for data preparation and analysis, as well as prior research
work on ontology-based, feature-based, probabilistic, and synthesized
approaches to semantic type detection.

Commercial and open source. Semantic type detection enhances
the functionality of commercial data preparation and analysis sys-
tems such as Microsoft Power BI [20], Trifacta [31], and Google
Data Studio [12]. To the best of our knowledge, these commercial
tools rely on manually defined regular expression patterns dictio-
nary lookups of column headers and values to detect a limited set of

1http://webdatacommons.org/webtables/goldstandardV2.html

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1501

https://sherlock.media.mit.edu
http://webdatacommons.org/webtables/goldstandardV2.html

Sherlock: A Deep Learning Approach to Semantic Data Type Detection KDD ’19, August 4–8, 2019, Anchorage, AK, USA

semantic types. For instance, Trifacta detects around 10 types (e.g.,
gender and zip code) and Power BI only supports time-related se-
mantic types (e.g., date/time and duration). Open source libraries
such as messytables [10], datalib [9], and csvkit [13] similarly use
heuristics to detect a limited set of types. Benchmarking directly
against these systems was infeasible due to the small number of
supported types and lack of extensibility. However, we compare
against learned regular expression and dictionary-based bench-
marks representative of the approaches taken by these systems.

Ontology-based. Prior research work, with roots in the semantic
web and schemamatching literature, provide alternative approaches
to semantic type detection. One body of work leverages existing
data on the web, such as WebTables [5], and ontologies (or, knowl-
edge bases) such as DBPedia [2], Wikitology [30], and Freebase [4].
Venetis et al. [33] construct a database of value-type mappings,
then assign types using a maximum likelihood estimator based on
column values. Syed et al. [30] use column headers and values to
build a Wikitology query, the result of which maps columns to
types. Informed by these approaches, we looked towards existing
ontologies to derive the 275 semantic types considered in this paper.

Feature-based. Several approaches capture and compare prop-
erties of data in a way that is ontology-agnostic. Ramnandan et
al. [27] use heuristics to first separate numerical and textual types,
then describe those types using the Kolmogorov-Smirnov (K-S)
test and Term Frequency-Inverse Document Frequency (TF-IDF),
respectively. Pham et al. [23] use slightly more features, including
the Mann-Whitney test for numerical data and Jaccard similarity
for textual data, to train logistic regression and random forest mod-
els. We extend these feature-based approaches with a significantly
larger set of features that includes character-level distributions,
word embeddings, and paragraph vectors. We leverage orders of
magnitude more features and training samples than prior work in
order to train a high-capacity machine learning model, a deep neu-
ral network. We include a decision tree and random forest model as
benchmarks to represent these “simpler” machine learning models.

Probabilistic. The third category of prior work employs a prob-
abilistic approach. Goel et al. [11] use conditional random fields
to predict the semantic type of each value within a column, then
combine these predictions into a prediction for the whole column.
Limaye et al. [19] use probabilistic graphical models to annotate
values with entities, columns with types, and column pairs with
relationships. These predictions simultaneously maximize a po-
tential function using a message passing algorithm. Probabilistic
approaches are complementary to our machine learning-based ap-
proach by providing a means for combining column-specific pre-
dictions. However, as with prior feature-based models, code for
retraining these models was not made available for benchmarking.

Synthesized. Puranik [24] proposes a “specialist approach” com-
bining the predictions of regular expressions, dictionaries, and ma-
chine learning models. More recently, Yan and He [34] introduced
a system that, given a search keyword and set of positive exam-
ples, synthesizes type detection logic from open source GitHub
repositories. This system provides a novel approach to leveraging
domain-specific heuristics for parsing, validating, and transforming

semantic data types. While both approaches are exciting, the code
underlying these systems was not available for benchmarking.

3 DATA
We describe the semantic types we consider, how we extracted data
columns from a large repository of real-world datasets, and our
feature extraction procedure.

3.1 Data Collection
Ontologies like WordNet [32] and DBpedia [2] describe semantic
concepts, properties of such concepts, and relationships between
them. To constrain the number of types we consider, we adopt the
types described by the T2Dv2 Gold Standard,1 the result of a study
matching DBpedia properties [29] with columns from the Web
Tables web crawl corpus [5]. These 275 DBpedia properties, such
as country, language, and industry, represent semantic types
commonly found in datasets scattered throughout the web.

To expedite the collection of real-world data from diverse sources,
we use the VizNet repository [14], which aggregates and character-
izes data from two popular online visualization platforms and open
data portals, in addition to the Web Tables corpus. For feasibility,
we restricted ourselves to the first 10M Web Tables datasets, but
considered the remainder of the repository in its entirety. We then
match data columns from VizNet that have headers corresponding
to our 275 types. To accomodate variation in casing and formatting,
single word types matched case-altered modifications (e.g., name
= Name = NAME) and multi-word types included concatenations of
constituent words (e.g., release date = releaseDate).

The matching process resulted in 6, 146, 940 columns matching
the 275 considered types. Manual verification indicated that the
majority of columns were plausibly described by the correspond-
ing semantic type, as shown in Table 1. In other words, matching
column headers as ground truth labels of the semantic type yielded
high quality training data.

3.2 Feature Extraction
To create fixed-length representations of variable-length columns,
aid interpretation of results, and provide “hints” to our neural net-
work, we extract features from each column. To capture different
properties of columns, we extract four categories of features: global
statistics (27), aggregated character distributions (960), pretrained
word embeddings (200), and self-trained paragraph vectors (400).

Global statistics. The first category of features describes high-
level statistical characteristics of columns. For example, the “column
entropy” feature describes how uniformly values are distributed.
Such a feature helps differentiate between types that contain more
repeated values, such as gender, from types that contain many
unique values, such as name. Other types, like weight and sales,
may consist of many numerical characters, which is captured by the
“mean of the number of numerical characters in values.” A complete
list of these 27 features can be found in Table 8 in the Appendix.

Character-level distributions. Preliminary analysis indicated that
simple statistical features such as the “fraction of values with nu-
merical characters” provide surprising predictive power. Motivated

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1502

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Hulsebos et al.

by these results and the prevalence of character-based matching ap-
proaches such as regular expressions, we extract features describing
the distribution of characters in a column. Specifically, we compute
the count of all 96 ASCII-printable characters (i.e., digits, letters,
and punctuation characters, but not whitespace) within each value
of a column. We then aggregate these counts with 10 statistical
functions (i.e., any, all, mean, variance, min, max, median, sum,
kurtosis, skewness), resulting in 960 features. Example features
include “whether all values contain a ‘-’ character” and the “mean
number of ‘/’ characters.”

Word embeddings. For certain semantic types, columns frequently
contain commonly occurring words. For example, the city type
contains values such as New York City, Paris, and London. To char-
acterize the semantic content of these values, we used word embed-
dings that map words to high-dimensional fixed-length numeric
vectors. In particular, we used a pre-trained GloVe dictionary [22]
containing 50-dimensional representations of 400K English words
aggregated from 6B tokens, used for tasks such as text similar-
ity [16]. For each value in a column, if the value is a single word,
we look up the word embedding from the GloVe dictionary. We
omit a term if it does not appear in the GloVe dictionary. For values
containing multiple words, we looked up each distinct word and
represented the value with the mean of the distinct word vectors.
Then, we computed the mean, mode, median and variance of word
vectors across all values in a column.

Paragraph vectors. To represent each column with a fixed-length
numerical vector, we implemented the Distributed Bag of Words
version of Paragraph Vector (PV-DBOW) [18]. Paragraph vectors
were originally developed to numerically represent the “topic” of
pieces of texts, but have proven effective for more general tasks,
such as document similarity [8]. In our implementation, each col-
umn is a “paragraph” while values within a column are “words”:
both the entire column and constituent values are represented by
one-hot encoded vectors.

After pooling together all columns across all classes, the training
procedure for each column in the same 60% training set used by the
main Sherlock model is as follows. We randomly select a window
of value vectors, concatenate the column vector with the remaining
value vectors, then train a single model to predict the former from
the latter. Using the Gensim library [28], we trained this model
for 20 iterations. We used the trained model to map each column
in both the training and test sets to a 400-dimensional paragraph
vector, which provided a balance between predictive power and
computational tractability.

3.3 Filtering and Preprocessing
Certain types occur more frequently in the VizNet corpus than
others. For example, description and city are more common
than collection and continent. To address this heterogeneity,
we limited the number of columns to at most 15K per class and
excluded the 10% types containing less than 1K columns.

Other semantic types, especially those describing numerical con-
cepts, are unlikely to be represented by word embeddings. To con-
tend with this issue, we filtered out the types for which at least
15% of the columns did not contain a single word that is present in

the GloVe dictionary. This filter resulted in a final total of 686,765
columns corresponding to 78 semantic types, of which a list is
included in Table 7 in the Appendix. The distribution of number of
columns per semantic type is shown in Figure 3.

Description
Album
Weight

Rank
City

Location
Product
Grades

Plays
Elevation

Depth
Family

Collection
Birth place

Capacity
Continent

0 2,500 5,000 7,500 10,000 12,500 15,000
Number of Samples

Se
m

an
tic

 T
yp

es

Figure 3: Number of columns per semantic type extracted
fromVizNet after filtering out the types withmore than 15%
of the columns not present in the GloVe dictionary, or with
less than 1K columns.

Before modeling, we preprocess our features by creating an ad-
ditional binary feature indicating whether word embeddings were
successfully extracted for a given column. Including this feature
results in a total of 1,588 features. Then, we impute missing values
across all features with the mean of the respective feature.

4 METHODS
We describe our deep learning model, random forest baseline, two
matching-based benchmarks, and crowdsourced consensus bench-
mark. Then, we explain our training and evaluation procedures.

4.1 Sherlock: A Multi-input Neural Network
Prior machine learning approaches to semantic type detection [19,
33] trained simple models, such as logistic regression, on relatively
small feature sets. We consider a significantly larger number of
features and samples, which motivates our use of a feedforward
neural network. Specifically, given the different number of features
and varying noise levels within each feature category, we use a
multi-input architecture with hyperparameters shown in Figure 4.

At a high-level, we train subnetworks for each feature category
except the statistical features, which consist of only 27 features.
These subnetworks “compress” input features to an output of fixed
dimension. We chose this dimension to be equal to the number of
types in order to evaluate each subnetwork independently. Then,
we concatenate the weights of the three output layers with the
statistical features to form the input layer of the primary network.

Each network consists of two hidden layers with rectified linear
unit (ReLU) activation functions. Experiments with hidden layer
sizes between 100 and 1, 000 (i.e., on the order of the input layer
dimension) indicate that hidden layer sizes of 300, 200, and 400
for the character-level, word embedding, and paragraph vector
subnetworks, respectively, provides the best results. To prevent

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1503

Sherlock: A Deep Learning Approach to Semantic Data Type Detection KDD ’19, August 4–8, 2019, Anchorage, AK, USA

overfitting, we included drop out layers and weight decay terms.
The final class predictions result from the output of the final softmax
layer, corresponding to the network’s confidence about a sample
belonging to each class, the predicted label then is the class with
the highest confidence. The neural network, which we refer to as
“Sherlock,” is implemented in TensorFlow [1].

Primary Network

Batch Norm
(size=128)

Concatenate

ReLU (500 units)

ReLU (500 units)

Output (78 units)

Softmax

Input Features

ReLU (x units)

Batch Norm

Dropout

ReLU (x units)

Output (78 units)

Softmax

Feature-specific
Subnetwork

Dropout
(rate=0.3)

Output

Character

Output

Word

Output

Paragraph

Statistical

Metric
Accuracy
Loss Function
Cross-Entropy
Optimizer
Adam

Epochs
100
Early Stopping Patience
5

Hyperparameters

Learning Rate
1e-4
Weight Decay Rate
1e-4

Figure 4: Architecture of the primary network and its
feature-specific subnetworks, and the hyperparameters
used for training.

4.2 Benchmarks
To measure the relative performance of Sherlock, we compare
against four benchmarks.

Machine learning classifiers. The first benchmark is a decision
tree, a non-parametric machine learning model with reasonable
“out-of-the-box” performance and straightforward interpretation.
We use the decision tree to represent the simpler models found
in prior research, such as the logistic regression used in Pham et
al. [23]. Learning curves indicated that decision tree performance
plateaued beyond a depth of 50, which we then used as the maxi-
mum depth. We also add a random forest classifier we built from
10 such trees, which often yields significantly better performance.
For all remaining parameters, we used the default settings in the
scikit-learn package [21].

Dictionary. Dictionaries are commonly used to detect seman-
tic types that contain a finite set of valid values, such as country,
day, and language. The first matching-based benchmark is a dic-
tionary that maps column values or headers to semantic types. For

each type, we collected the 1, 000 most frequently occurring values
across all columns, resulting in 78, 000 { value : type } pairs. For
example, Figure 5 shows examples of entries mapped to the grades
type. Given an unseen data column at test time, we compare 1, 000
randomly selected column values to each entry of the dictionary,
then classify the column as the most frequently matched type.

Dictionary Entries (20 out of 1000)

Learned Regular Expression
\w\w \-(?: \w\w)*+|[06PK][A-Za-z]*+\-\w|\w\w\w\w\w\w \w\w \w\w\w \w\w

9-12
K-5
PK - 05
09 - 12

KG - 05
PRESCHOOL-5
6-8
KG-06

06 - 08
PK -
PRESCHOOL-8
PK - 8

KG - 12
K-8
06 - 12
K-^

KG - 08
- 12
PK - 12
PK - 08

Figure 5: Examples of dictionary entries and a learned regu-
lar expression for the grades type.

Learned regular expressions. Regular expressions are frequently
used to detect semantic types with common character patterns, such
as address, birth date, and year. The second matching-based
benchmark uses patterns of characters specified by learned regular
expressions. We learn regular expressions for each type using the
evolutionary procedure of Bartoli et al. [3]. Consistent with the
original setup, we randomly sampled 50 “positive values” from each
type, and 50 “negative” values from other types. An example of a
learned regular expression in Java format for the grades type is
shown in Figure 5. As with the dictionary benchmark, we match
1, 000 randomly selected values against learned regular expressions,
then use majority vote to determine the final predicted type.

Crowdsourced annotations. To assess the performance of human
annotators at predicting semantic type, we conducted a crowd-
sourced experiment. The experiment began by defining the concepts
of data and semantic type, then screened out participants unable to
select a specified semantic type. After the prescreen, participants
completed three sets of ten questions separated by two attention
checks. Each question presented a list of data values, asked “Which
one of the following types best describes these data values?”, and
required participants to select a single type from a scrolling menu
with 78 types. Questions were populated from a pool of 780 samples
containing 10 randomly selected values from all 78 types.

We used the Mechanical Turk crowdsourcing platform [17] to
recruit 390 participants that were native English speakers and had
≥95% HIT approval rating, ensuring high-quality annotations. Par-
ticipants completed the experiment in 16 minutes and 22 seconds on
average and were compensated 2 USD, a rate slightly exceeding the
United States federal minimum wage of 7.25 USD. Detailed worker
demographics are described in Appendix A.2. Overall, 390 partic-
ipants annotated 30 samples each, resulting in a total of 11, 700
annotations, or an average of 15 annotations per sample. For each
sample, we used the most frequent (i.e., the mode) type from the 15
annotations as the crowdsourced consensus annotation.

4.3 Training and Evaluation
To ensure consistent evaluation across benchmarks, we divided the
data into 60/20/20 training/validation/testing splits. To account for

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1504

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Hulsebos et al.

class imbalances, we evaluate model performance using the average
F1-score = 2 × (precision × recall)/(precision + recall), weighted
by the number of columns per class in the test set (i.e., the support).
To estimate the mean and 95% percentile error of the crowdsourced
consensus F1 score, we conducted 105 bootstrap simulations by
resampling annotations for each sample with replacement.

Computational effort and space required at prediction time are
also important metrics for models incorporated into user-facing
systems. We measure the average time in seconds needed to extract
features and generate a prediction for a single sample, and report
the space required by the models in megabytes.

5 RESULTS
We report the performance of our multi-input neural network and
compare against benchmarks. Then, we examine types for which
Sherlock demonstrated high and low performance, the contribution
of each feature category in isolation, decision tree feature impor-
tances, and the effect of rejection threshold on performance.

5.1 Benchmark Results
We compare Sherlock against decision tree, random forest, dictionary-
based, learned regular expression, and crowdsourced consensus
benchmarks. Table 2 presents the F1 score weighted by support,
runtime in seconds per sample, and size in megabytes of each model.

Table 2: Support-weighted F1 score, runtime at prediction,
and size of Sherlock and four benchmarks.

Method F1 Score Runtime (s) Size (Mb)
Machine Learning

Sherlock 0.89 0.42 (±0.01) 6.2
Decision tree 0.76 0.26 (±0.01) 59.1
Random forest 0.84 0.26 (±0.01) 760.4

Matching-based

Dictionary 0.16 0.01 (±0.03) 0.5
Regular expression 0.04 0.01 (±0.03) 0.01

Crowdsourced Annotations

Consensus 0.32 (±0.02) 33.74 (±0.86) −

We first note that the machine learning models significantly out-
perform the matching-based and crowdsourced consensus bench-
marks, in terms of F1 score. The relatively low performance of
crowdsourced consensus is perhaps due to the visual overload of
selecting from 78 types, such that performance may increase with a
smaller number of candidate types. Handling a large number of can-
didate classes is a benefit of using an ML-based or matching-based
model. Alternatively, crowdsourced workers may have difficulties
differentiating between classes that are unfamiliar or contain many
numeric values. Lastly, despite our implementing basic training
and honeypot questions, crowdsourced workers will likely improve
with longer training times and stricter quality control.

Inspection of the matching-based benchmarks suggests that dic-
tionaries and learned regular expressions are prone to “overfitting”
on the training set. Feedback from crowdsourced workers suggests

that annotating semantic types with a large number of types is a
challenging and ambiguous task.

Comparing the machine learning models, Sherlock significantly
outperforms the decision tree baseline, while the random forest
classifier is competitive. For cases in which interpretability of fea-
tures and predictions are important considerations, the tree-based
benchmarks may be a suitable choice of model.

Despite poor predictive performance, matching-based bench-
marks are significantly smaller and faster than both machine learn-
ing models. For cases in which absolute runtime and model size are
critical, optimizing matching-based models may be a worthwhile
approach. This trade-off also suggests a hybrid approach of combin-
ing matching-based models for “easy” types with machine learning
models for more ambiguous types.

5.2 Performance for Individual Types
Table 3 displays the top and bottom five types, as measured by the
F1 score achieved by Sherlock for that type. High performing types
such as grades and industry frequently contain a finite set of
valid values, as shown in Figure 5 for grades. Other types such as
birth date and ISBN, often follow consistent character patterns,
as shown in Table 1.

Table 3: Top five and bottom five types by F1 score.

Type F1 Score Precision Recall Support

Top 5 Types

Grades 0.991 0.989 0.994 1765
ISBN 0.986 0.981 0.992 1430
Birth Date 0.970 0.965 0.975 479
Industry 0.968 0.947 0.989 2958
Affiliation 0.961 0.966 0.956 1768

Bottom 5 Types

Brand 0.685 0.760 0.623 574
Person 0.630 0.654 0.608 579
Director 0.537 0.700 0.436 225
Sales 0.514 0.568 0.469 322
Ranking 0.468 0.612 0.349 439

Table 4: Examples of low precision and low recall types.

Examples True type Predicted type
Low Precision

81, 13, 3, 1 Rank Sales
316, 481, 426, 1, 223 Plays Sales
$, $$, $$$, $$$$, $$$$$ Symbol Sales

Low Recall
#1, #2, #3, #4, #5, #6 Ranking Rank
3, 6, 21, 34, 29, 36, 54 Ranking Plays
1st, 2nd, 3rd, 4th, 5th Ranking Position

To understand types for which Sherlock performs poorly, we
include incorrectly predicted examples for the lowest precision

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1505

Sherlock: A Deep Learning Approach to Semantic Data Type Detection KDD ’19, August 4–8, 2019, Anchorage, AK, USA

type (sales) and the lowest recall type (ranking) in Table 4. From
the three examples incorrectly predicted as sales, we observe that
purely numerical values or values appearing in multiple classes (e.g.,
currency symbols) present a challenge to type detection systems.
From the three examples of incorrectly predicted ranking columns,
we again note the ambiguity of numerical values.

5.3 Contribution by Feature Category
We trained feature-specific subnetworks in isolation and report
the F1 scores in Table 5. Word embedding, character distribution,
and paragraph vector feature sets demonstrate roughly equal per-
formance to each other, and significantly above that of the global
statistics features, though this may be due to fewer features. Each
feature set in isolation performs significantly worse than the full
model, supporting our combining of each feature set.

Table 5: Performance contribution of isolated feature sets.

Feature set Num. Features F1 Score
Word embeddings 201 0.79
Character distributions 960 0.78
Paragraph vectors 400 0.73
Global statistics 27 0.25

5.4 Feature Importances
We measure feature importance by the total reduction of the Gini
impurity criterion brought by that feature to the decision treemodel.
The top 10 most important features from the global statistics and
character-level distributions sets are shown in Table 6. While word
embedding and paragraph vector features are important, they are
difficult to interpret and are therefore omitted.

Inspecting Table 6a, we find that the “number of values” in a
column is the most important feature. Certain classes like name
and requirements tended to contain fewer values, while others
like year and family contained significantly more values. The
second most important feature is the “maximum value length” in
characters, which may differentiate classes with long values, such
as address and description, from classes with short values, such
as gender and year.

The top character-level distribution features in Table 6b suggest
the importance of specific characters for differentiating between
types. The third most important feature, the “minimum number of
‘-’ characters”, likely helps determine datetime-related types. The
fifth most important feature, “whether all values have a ‘,’ charac-
ter” may also distinguish datetime-related or name-related types.
Further study of feature importances for semantic type detection is
a promising direction for future research.

5.5 Rejection Curves
Given unseen data values, Sherlock assesses the probability of those
values belonging to each type, then predicts the type with the high-
est probability. Interpreting probabilities as a measure of confidence,
we may want to only label samples with high confidence of belong-
ing to a type. To understand the effect of confidence threshold on

Table 6: Top-10 features for the decision tree model. “Score”
denotes normalized gini impurity.

(a) Top-10 global statistics features (out of 27).

Rank Feature Name Score

1 Number of Values 1.00
2 Maximum Value Length 0.79
3 Mean # Alphabetic Characters in Cells 0.43
4 Fraction of Cells with Numeric Characters 0.38
5 Column Entropy 0.35
6 Fraction of Cells with Alphabetical Characters 0.33
7 Number of None Values 0.33
8 Mean Length of Values 0.28
9 Proportion of Unique Values 0.22
10 Mean # of Numeric Characters in Cells 0.16

(b) Top-10 character-level distribution features (out of 960).

Rank Feature Name Score

1 Sum of ‘D’ across values 1.00
2 Mean number of ‘M’ 0.77
3 Minimum number of ‘-’ 0.69
4 Skewness of ‘,’ 0.59
5 Whether all values have a ‘,’ 0.47
6 Maximum number of ‘g’ 0.45
7 Skewness of ‘]’ 0.45
8 Mean number of ‘,’ 0.40
9 Mean number of ‘z’ 0.37
10 Sum of ‘n’ 0.36

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Samples Rejected

0.80

0.85

0.90

0.95

1.00

F1
 S

co
re

 W
ei

gh
te

d
by

 S
up

po
rt

Neural Network (Sherlock)
Random Forest Baseline

Model

Figure 6: Rejection curves showing performance while re-
jecting all but the top x% highest confidence samples.

predictive performance, we present the error-rejection curves of
Sherlock and the decision tree model in Figure 6.

By introducing a rejection threshold of 10% of the samples, Sher-
lock reaches an F1 score of ∼0.95. This significant increase in pre-
dictive performance suggests a hybrid approach in which low con-
fidence samples are manually annotated. Note that the higher re-
jection threshold, the lower the error we make in predicting labels,
at the cost of needing more expert capacity.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1506

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Hulsebos et al.

6 DISCUSSION
We began by considering a set of semantic types described by
prior work that identifies correspondences between DBPedia [2]
and WebTables [5]. Then, we constructed a dataset consisting of
matches between those types with columns in the VizNet [14]
corpus. Inspection of these columns suggests that such an approach
yields training samples with few false positives. After extracting
four categories of features describing the values of each column,
we formulate type detection as a multiclass classification task.

A multi-input neural network demonstrates high predictive per-
formance at the classification task compared to machine learning,
matching-based, and crowdsourced benchmarks.We note that using
real-world data provides the examples needed to train models that
detect many types, at scale. We also observe that the test examples
frequently include dirty (e.g., missing or malformed) values, which
suggests that real-world data also affords a degree of robustness.
Measuring and operationalizing these two benefits, especially with
out-of-distribution examples, is a promising direction of research.

Developers have multiple avenues to incorporating ML-based
semantic type detection approaches into systems. To support the
use of Sherlock “out-of-the-box,” we distribute Sherlock as a Python
library3 that can be easily installed and incorporated into existing
codebases. For developers interested in a different set of seman-
tic types, we open source our training and analysis scripts.2 The
repository also supports developers wishing to retrain Sherlock
using data from their specific data ecologies, such as enterprise or
research settings with domain-specific data.

To close, we identify four promising avenues for future research:
(1) enhancing the quantity and quality of the training data, (2)
increasing the number of considered types, (3) enriching the set
of features extracted from each column, and (4) developing shared
benchmarks.

Enhancing data quantity and quality. Machine learning model
performance is limited by the number of training examples. Sher-
lock is no exception. Though the VizNet corpus aggregates datasets
from four sources, there is an opportunity to incorporate train-
ing examples from additional sources, such as Kaggle,2 datasets
included alongside the R statistical environment,3 and the ClueWeb
web crawl of Excel spreadsheets.4 We expect increases in training
data diversity to improve the robustness and generalizability of
Sherlock.

Model predictions quality is further determined by the corre-
spondence between training data and unseen testing data, such as
datasets uploaded by analysts to a system. Our method of matching
semantic types with columns from real-world data repositories af-
fords both the harvesting of training samples at scale and the ability
to use aspects of dirty data, such as the number of missing values,
as features. While we verified the quality of training data through
manual inspection, there is an opportunity to label data quality at
scale by combining crowdsourcing with active learning. By assess-
ing the quality of each training dataset, such an approach would
support training semantic type detection models with completely
“clean” data at scale.
2https://www.kaggle.com/datasets
3https://github.com/vincentarelbundock/Rdatasets
4http://lemurproject.org/clueweb09.php

Increasing number of semantic types. To ground our approach in
prior work, this paper considered 78 semantic types described by
the T2Dv2 Gold Standard. While 78 semantic types is a substantial
increase over what is supported in existing systems, it is a small
subset of entities from existing knowledge bases: the DBPedia on-
tology [2] covers 685 classes, WordNet [32] contains 175K synonym
sets, and Knowledge Graph5 contains millions of entities. The enti-
ties within these knowledge bases, and hierarchical relationships
between entities, provide an abundance of semantic types.

In lieu of a relevant ontology, researchers can count frequency
of column headers in available data to determine which semantic
types to consider. Such a data-driven approach would ensure the
maximum number of training samples for each semantic type. Addi-
tionally, these surfaced semantic types are potentially more specific
to usecase and data ecology, such as data scientists integrating
enterprise databases within a company.

Enriching feature extraction. We incorporate four categories of
features that describe different aspects of column values. A promis-
ing approach is to include features that describe relationships be-
tween columns (e.g., correlation, number of overlapping values,
and name similarity), aspects of the entire dataset (e.g., number of
columns), and source context (e.g., webpage title for scraped tables).
Additionally, while we used features to aid interpretation of results,
neural networks using raw data as input are a promising direction
of research. For example, a character-level recurrent neural network
could classify concatenated column values.

Developing shared benchmarks. Despite rich prior research in se-
mantic type detection, we could not find a benchmark with publicly
available code that accommodates a larger set of semantic types.
We therefore incorporated benchmarks that approximated state-
of-the-art data systems, to the best of our knowledge. However,
domains such as image classification and language translation have
benefited from shared benchmarks and test sets. Towards this end,
we hope that open-sourcing the data and code used in this paper
can benefit future research.

7 CONCLUSION
Correctly detecting semantic types is critical to many important
data science tasks. Machine learning models coupled with large-
scale data repositories have demonstrated success across domains,
and suggest a promising approach to semantic type detection. Sher-
lock provides a step forward towards this direction.

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: A system for large-scale machine learning.

In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 265–283.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A nucleus for a web of open data. (2007),
722–735.

[3] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Infer-
ence of regular expressions for text extraction from examples. IEEE Transactions
on Knowledge and Data Engineering 28, 5 (2016), 1217–1230.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’08). ACM, New York, NY, USA, 1247–1250.

5https://developers.google.com/knowledge-graph

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1507

https://www.kaggle.com/datasets
https://github.com/vincentarelbundock/Rdatasets
http://lemurproject.org/clueweb09.php
https://developers.google.com/knowledge-graph

Sherlock: A Deep Learning Approach to Semantic Data Type Detection KDD ’19, August 4–8, 2019, Anchorage, AK, USA

[5] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. WebTables: Exploring the Power of Tables on the Web. Proc. VLDB Endow.
1, 1 (Aug. 2008), 538–549. https://doi.org/10.14778/1453856.1453916

[6] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System.
1001–1012.

[7] Raul Castro Fernandez, Essam Mansour, Abdulhakim Qahtan, Ahmed Elma-
garmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and
Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word Embeddings
for Data Discovery. https://doi.org/10.1109/ICDE.2018.00093

[8] Andrew M Dai, Christopher Olah, and Quoc V Le. 2015. Document embedding
with paragraph vectors. arXiv preprint arXiv:1507.07998 (2015).

[9] Interactive Data Lab. 2019. Datalib: JavaScript Data Utilities. http://vega.
github.io/datalib

[10] Open Knowledge Foundation. 2019. messytables · PyPi. https://pypi.org/
project/messytables

[11] Aman Goel, Craig A Knoblock, and Kristina Lerman. 2012. Exploiting structure
within data for accurate labeling using conditional random fields. In Proceedings
on the International Conference on Artificial Intelligence (ICAI).

[12] Google. 2019. Google Data Studio. https://datastudio.google.com
[13] Christopher Groskopf and contributors. 2016. csvkit. https://csvkit.

readthedocs.org
[14] Kevin Hu, Neil Gaikwad, Michiel Bakker, Madelon Hulsebos, Emanuel Zgraggen,

César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayan, and Çağatay
Demiralp. 2019. VizNet: Towards a large-scale visualization learning and bench-
marking repository. In Proceedings of the 2019 Conference on Human Factors in
Computing Systems (CHI). ACM.

[15] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive Visual Specification of Data Transformation Scripts. In ACM
Human Factors in Computing Systems (CHI).

[16] Tom Kenter and Maarten De Rijke. 2015. Short text similarity with word embed-
dings. In Proceedings of the 24th ACM international on conference on information
and knowledge management. ACM, 1411–1420.

[17] Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008. Crowdsourcing User Studies
with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’08). ACM, New York, NY, USA, 453–456.

[18] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International Conference on Machine Learning. 1188–1196.

[19] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating and
searching web tables using entities, types and relationships. Proceedings of the
VLDB Endowment 3, 1-2 (2010), 1338–1347.

[20] Microsoft. 2019. Power BI | Interactive Data Visualization BI. https://powerbi.
microsoft.com

[21] Fabian Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12 (2011), 2825–2830.

[22] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[23] Minh Pham, Suresh Alse, Craig A Knoblock, and Pedro Szekely. 2016. Semantic
labeling: a domain-independent approach. In International Semantic Web Confer-
ence. Springer, 446–462.

[24] Nikhil Waman Puranik. 2012. A Specialist Approach for Classification of Column
Data. Master’s thesis. University of Maryland, Baltimore County.

[25] Erhard Rahm and Philip A. Bernstein. 2001. A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal 10, 4 (Dec. 2001), 334–350.

[26] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Inter-
active Data Cleaning System. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 381–390.

[27] S Krishnamurthy Ramnandan, Amol Mittal, Craig A Knoblock, and Pedro Szekely.
2015. Assigning semantic labels to data sources. In European Semantic Web
Conference. Springer, 403–417.

[28] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, 45–50.

[29] Dominique Ritze and Christian Bizer. 2017. Matching web tables to DBpedia – a
feature utility study. context 42, 41 (2017), 19.

[30] Zareen Syed, Tim Finin, Varish Mulwad, Anupam Joshi, et al. 2010. Exploiting
a web of semantic data for interpreting tables. In Proceedings of the Second Web
Science Conference.

[31] Trifacta. 2019. Data Wrangling Tools & Software. https://www.trifacta.com
[32] Princeton University. 2010. About WordNet. https://wordnet.princeton.

edu
[33] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei

Wu, Gengxin Miao, and Chung Wu. 2011. Recovering semantics of tables on the
web. Proceedings of the VLDB Endowment 4, 9 (2011), 528–538.

[34] Cong Yan and Yeye He. 2018. Synthesizing type-detection logic for rich seman-
tic data types using open-source code. In Proceedings of the 2018 International
Conference on Management of Data. ACM, 35–50.

[35] Benjamin Zapilko, Matthäus Zloch, and Johann Schaible. 2012. Utilizing Regular
Expressions for Instance-Based Schema Matching. CEUR Workshop Proceedings
946.

A APPENDIX
A.1 Supplemental Tables

Table 7: 78 semantic types included in this study.

Semantic Types
Address Code Education Notes Requirement
Affiliate Collection Elevation Operator Result
Affiliation Command Family Order Sales
Age Company File size Organisation Service
Album Component Format Origin Sex
Area Continent Gender Owner Species
Artist Country Genre Person State
Birth date County Grades Plays Status
Birth place Creator Industry Position Symbol
Brand Credit ISBN Product Team
Capacity Currency Jockey Publisher Team name
Category Day Language Range Type
City Depth Location Rank Weight
Class Description Manufacturer Ranking Year
Classification Director Name Region
Club Duration Nationality Religion

Table 8: Description of the 27 global statistical features. As-
terisks (*) denote features included in Venetis et al. [33].

Feature description
Number of values.
Column entropy.
Fraction of values with unique content.*
Fraction of values with numerical characters.*
Fraction of values with alphabetical characters.
Mean and std. of the number of numerical characters in values.*
Mean and std. of the number of alphabetical characters in values.*
Mean and std. of the number special characters in values.*
Mean and std. of the number of words in values.*
{Percentage, count, only/has-Boolean} of the None values.
{Stats, sum, min, max, median, mode, kurtosis, skewness,
any/all-Boolean} of length of values.

A.2 Mechanical Turk Demographics
Of the 390 participants, 57.18% were male and 0.43% female. 1.5%
completed some high school without attaining a diploma, while
others had associates (10.5%), bachelor’s (61.0%), master’s (13.1%), or
doctorate or professional degree (1.8%) in addition to a high school
diploma (12.3%). 26.4% of participants worked with data daily, 33.1%
weekly, 17.2% monthly, and 11.0% annually, while 12.3% never work
with data. In terms of age: 10.0% of participants were between 18-23,
24-34 (60.3%), 35-40 (13.3%), 41-54 (12.6%), and above 55 (3.8%).

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1508

https://doi.org/10.14778/1453856.1453916
https://doi.org/10.1109/ICDE.2018.00093
http://vega.github.io/datalib
http://vega.github.io/datalib
https://pypi.org/project/messytables
https://pypi.org/project/messytables
https://datastudio.google.com
https://csvkit.readthedocs.org
https://csvkit.readthedocs.org
https://powerbi.microsoft.com
https://powerbi.microsoft.com
https://www.trifacta.com
https://wordnet.princeton.edu
https://wordnet.princeton.edu

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	3.1 Data Collection
	3.2 Feature Extraction
	3.3 Filtering and Preprocessing

	4 Methods
	4.1 Sherlock: A Multi-input Neural Network
	4.2 Benchmarks
	4.3 Training and Evaluation

	5 Results
	5.1 Benchmark Results
	5.2 Performance for Individual Types
	5.3 Contribution by Feature Category
	5.4 Feature Importances
	5.5 Rejection Curves

	6 Discussion
	7 Conclusion
	References
	A Appendix
	A.1 Supplemental Tables
	A.2 Mechanical Turk Demographics

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 36.68, 717.60 Width 538.64 Height 30.39 points
 Origin: bottom left

 1
 0
 BL

 5
 AllDoc
 5

 CurrentAVDoc

 36.6779 717.5964 538.6406 30.3903

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 9
 8
 9

 1

 HistoryList_V1
 qi2base

