Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood

Sonja Entringera, Elissa S. Epelb, Robert Kumstad, Jue Lind, Dirk H. Hellhammerd, Elizabeth H. Blackburnd, Stefan Wüsta,1, and Pathik D. Wadhwaa bcd g h

aDepartment of Pediatrics, University of California, Irvine, CA 92697; bDepartment of Psychiatry, University of California, San Francisco, CA 94143; cDepartment of Psychology, University of Freiburg, 79104 Freiburg, Germany; dDepartment of Biochemistry and Biophysics, University of California, San Francisco, CA 94143; eDepartment of Clinical and Physiological Psychology, University of Trier, 54290 Trier, Germany; fDepartment of General Epidemiology in Psychiatry, Central Institute of Mental Health, 68159 Mannheim, Germany; and gDepartments of Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, CA 92697

Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved July 15, 2011 (received for review June 3, 2011)

Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility.

We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; \(d = 0.41\) SD units; \(P < 0.05\)). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; \(d = 0.68\) SD units; \(P < 0.01\)). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.

\textbf{Author contributions:} S.E., D.H.H., S.W., and P.D.W. designed research; S.E. and R.K. performed research; S.E. and R.K. performed data analysis; S.E., E.S.E., E.H.B., and P.D.W. wrote the paper.

Conflict of interest statement: E.S.E., J.L., and E.H.B. are cofounders of Telome Health, a company focused on telomere measurement. This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. E-mail: pwadhwa@uci.edu.

See Author Summary on page 13377.

This article contains supporting information online at www.pnas.org lookup supp/doi:10.1073/pnas.1107759108/DCSupplemental.

Telomeres are DNA–protein complexes that cap chromosomal ends, promoting chromosomal stability. When cells divide, the telomere is not fully replicated because of limitations of the DNA polymerases in completing the replication of the ends of the linear molecules, leading to telomere shortening with every replication (10). Telomeres that are shortened past a critical length cause the cell to enter a state of arrest (i.e., cell senescence) when cells can no longer divide. Telomeres shorten with age in all replicating somatic cells, including leukocytes (11). Telomerase, a cellular enzyme, provides maintenance of telomeres and can counteract shortening and its functional consequences by adding telomeric DNA to shortened telomeres. Telomere maintenance has relevance for long-term health. Shortened telomere length and/or reduced telomerase activity have been consistently associated with health risk and diseases (12–15). Declines in the telomere/telomerase maintenance system may play a causal role in aging, serve as a biomarker of aging, or both. A recent study in mice suggests that telomerase plays a causal role in aging and regeneration of cells, tissues, and physiological function (16).

Several cross-sectional studies in humans have reported associations between telomere biology and high levels of psychosocial stress exposure (8, 17, 18) or stress biomarkers (17, 19), suggesting that stress-related changes in telomere integrity may be one possible mechanism linking psychosocial stress and age-related disease (20). Experimentally, high levels of cortisol exposure (a potent stress hormone) have been shown to dampen telomerase activity in leukocytes (21). Behavioral interventions that reduce stress have also been linked to higher telomerase activity. For example, in one study, an intensive lifestyle change program consisting of dieting, counseling, and stress management was associated with increases in telomerase activity (22), and in a second study, intensive meditation was associated with higher postintervention telomerase (23).

Many, but not all, studies in humans have found an association between exposure to adverse conditions in early postnatal life (infancy and childhood) and subsequent telomere length (24–28). One important question that has yet to be addressed to our awareness is whether exposure to stress during intrauterine development can produce variations in telomere length, thereby potentially setting up a long-term trajectory at birth that defines
or contributes to individual susceptibility for complex, common age-related diseases. Stress exposure during fetal development is an important factor shaping adult health and has been linked to adverse outcomes including, but not limited to, immune, endocrine, and metabolic dysregulation and related disorders (29–34). However, we are aware of no studies to date that have examined the relationship between prenatal stress exposure and telomere length. Evidence linking other adverse conditions during fetal development with subsequent telomere length provides biological plausibility for this relationship. Several studies in animals have reported that intrauterine adversity is associated with shorter telomeres in cells of different tissues. For instance, experimentally induced fetal growth restriction in rodents has been shown to produce significant telomere attrition in the kidneys (35), and manipulations of maternal diet during pregnancy have produced shortening of telomere length in aortic and pancreatic islet cells (36, 37). In humans, telomeres in placental trophoblasts are found to be shorter in pregnancies complicated with intrauterine growth restriction (38). Last, one study in preschool-age children found that children who were born low birth weight had shorter leukocyte telomere length (LTL) than age-matched children who had a normal birth weight (39).

The objective of the present study was to test the hypothesis that maternal psychosocial stress exposure during pregnancy is associated with shorter telomeres in their offspring in adult life. Because it is not possible to randomly assign exposure to stress during human pregnancy, we approximated experimental exposure by using a quasiexperimental design by enrolling young adults whose prenatal stress group (PSG) than in the comparison group (CG).

Results

Subject Characteristics. Table 1 provides the subject characteristics for the two groups, including sociodemographic, birth outcomes, and the childhood and adult variables of interest. As depicted in the table, there were no differences between the two groups in any of the subject characteristics except body mass index (BMI), which was marginally higher \(P = 0.07 \) in the prenatal stress group (PSG) than in the comparison group (CG).

Telomere Length. The mean LTL \((±SD) \) was 1.23 \(± \) 0.18 telomere repeat copy number-to-single gene copy number (T/S) ratio (which is equivalent to 6,234 \(± \) 431 bp). LTL was normally distributed (Fig. 1).

In the unadjusted univariate regression models, a crude relationship between prenatal stress and telomere length was found, with prenatal stress exposure predicting significantly shorter LTL \[\text{unstandardized } \beta = -0.074; 95\% \text{ confidence interval } [\text{CI}], -0.146 \text{ to } -0.001; P < 0.05 \] (Fig. 1). Birth weight percentile (birth weight adjusted for gestational age at delivery) also was significantly associated with LTL \[\beta = 0.002; 95\% \text{ CI} = 0.000 \text{ to } 0.003; P < 0.05 \], replicating an association that has been previously reported (39). Results from the fully adjusted multivariate regression model [that, in addition to prenatal stress exposure, included subject characteristics (e.g., age, BMI sex), birth weight percentile, postnatal early-life adversity (e.g., early trauma, maternal care), and exposure to concurrent life stress (e.g., chronic stress, depressive symptoms)] indicate this adjustment produced a small increase in the prenatal stress coefficient \[\beta = -0.090; 95\% \text{ CI} = -0.179 \text{ to } -0.001; P < 0.05 \]. Birth weight percentile remained a significant

<table>
<thead>
<tr>
<th>Table 1. Subject characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td>High school, %</td>
</tr>
<tr>
<td>Perceived stress (PSS, mean item score)</td>
</tr>
<tr>
<td>Depressive symptoms (CES-D)</td>
</tr>
<tr>
<td>History</td>
</tr>
<tr>
<td>Birth characteristics</td>
</tr>
<tr>
<td>Birth weight (g)</td>
</tr>
<tr>
<td>Birth weight percentile</td>
</tr>
<tr>
<td>Length of gestation (wk)</td>
</tr>
<tr>
<td>Maternal education</td>
</tr>
<tr>
<td>High school, %</td>
</tr>
<tr>
<td>College graduate, %</td>
</tr>
<tr>
<td>Presence of childhood traumatic events</td>
</tr>
<tr>
<td>Perceived maternal care (PBI)</td>
</tr>
<tr>
<td>Factors controlled for by study design</td>
</tr>
<tr>
<td>Current chronic diseases</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Obstetric risk condition during mother’s pregnancy</td>
</tr>
</tbody>
</table>

Values presented as means \(± \) SD where applicable. CES-D, Center for Epidemiological Studies-Depression scale; PBI, Parental Bonding Instrument.
The separate analyses stratified by sex (i.e., women-only and men-only groups) suggest that the effect of prenatal stress exposure and birth weight percentile were independent of one another, and that the effect of prenatal stress on LTL was not mediated via a reduction in percentile. The coefficients for all covariates for the unadjusted and fully adjusted regression models predicting LTL are depicted in Table S1. The coefficients for the men-only group; however, the coefficients were larger in the women-only models. The coefficients for the unadjusted and fully adjusted regression models predicting LTL are depicted in Table S1. In the interest of presenting complete data, we include the regression coefficients for the men-only group; however, the relatively smaller number of men in the study sample and the larger variation in their estimates of LTL preclude inference regarding possible sex-specific effects.

On average, there was a 178-bp difference in LTL between PSG and CG in the whole group (i.e., unadjusted effect; effect size [Cohen’s d] = 0.41 SD units), and a 295-bp difference in LTL between PSG and CG in the women-only group (d = 0.68 SD units).

Discussion

To the best of our knowledge, this is the first report in humans that demonstrates that exposure to maternal psychosocial stress during intrauterine life is associated subsequently with significantly shorter LTL in young adulthood. This effect persists after adjusting for a number of potential confounders, including age, sex, BMI, birth weight, postnatal/early-life adversity, and concurrent life stress. This finding suggests that cellular aging in humans may be influenced by prenatal stress, thereby potentially increasing the susceptibility of prenatally stressed individuals for complex, common age-related diseases. The magnitude of the observed difference in LTL between the prenatal stress exposure group and the CG is striking (0.41 SD units), and particularly so in the female offspring (0.68 SD units). The LTL of individuals in the prenatally stressed individuals was, on average, 178 bp shorter than that of individuals in the CG (and 295 bp shorter in female subjects). The most recent and comprehensive review of studies of age-related attrition in telomere length suggests that, in adults, telomere length attrition averages approximately 60 bp/y at 20 y of age, and the attrition rate appears to decrease to approximately 20 bp/y by age 80 y (40). Given that the participants in our study were approximately 25 y old, translating telomere shortening of this observed difference of 178 bp (295 bp for the women-only group) to years of aging indicates that the lymphocytes individuals in the PSG had aged the equivalent of approximately 3.5 additional years (5 additional years in the women-only group) relative to those in the CG.

One of the major paradigms to explain variation in susceptibility for complex, common adverse health disorders in adult life is the fetal or developmental origins model, which is believed to act through “biological embedding”—the ability of early life experience to change biology (41–44). Classic examples include fetal programming effects, such as maternal stress or undernutrition leading to fetal growth retardation, compromises in fetal cerebral development, catch-up growth, and early onset of insulin resistance and adult cardiometabolic diseases (1, 2, 45, 46). It has been suggested that telomere length may, in part, underlie this association (47–49). Telomere length differs widely at birth between babies. Okuda et al. (50), one of the few groups of investigators who have studied LTL in early life, state that “the variability in telomere length among newborns and synchrony in telomere length within organs of the newborn are consistent with the concept that variations in telomere length among adults are in large part attributed to determinants that start exerting their effect in early life.” Accordingly, it has been hypothesized that prenatal stress in utero would lead to shorter adult LTL (9). Our findings lend support for this concept.

There are several mutually nonexclusive pathways that may have led to the striking observation in the present study. There may be latency effects from early life that emerge at a later time point, or pathway effects wherein early stress leads to later vulnerability throughout the lifespan (4, 41). In terms of biological mechanisms, prenatal psychosocial stress exposure could affect cellular aging through several mechanisms: changes in immune function, changes in metabolic and oxidative stress-related pathways, and/or changes in telomerase activity. These changes, in turn, may be mediated by epigenetic modifications, thereby setting up long-term trajectories (27, 51). Stress is transmitted from the pregnant mother to her fetus through various pathways, including transplacental transport of the stress hormone cortisol, maternal stress-induced release of placental hormones that enter the fetal circulation (e.g., placental corticotrophin-releasing hormone), and maternal stress-induced effects on placental physiology, including alterations in blood flow and changes in metabolism impacting oxygen and glucose availability and use (52, 53). Exposure to high levels of maternal stress hormones during pregnancy is known to produce deleterious effects on the offspring’s developing immune system (32, 54, 55), and our previously published studies in this cohort have reported that the prenatally stressed individuals exhibited alterations in several immune parameters (33), including higher proinflammatory cytokines (56–57). We also have found that the prenatally stressed individuals in this cohort exhibited insulin and leptin resistance, as well as a higher BMI (31). As insulin resistance is associated with chronological age, and longstanding insulin resistance can accelerate biological aging (58–60), it is possible that insulin resistance also may have contributed to more rapid cellular aging in the PSG individuals. Notably, we have described in this cohort alterations in the regulation of the hypothalamic–pituitary–adrenal axis in the PSG individuals (34). Finally, other studies found that blood levels of oxidative stress—a factor promoting telomere shortening (61)—may be elevated, in part, by stress hormones and insulin (62). Although we have previously reported these associations between prenatal stress exposure and immune,
metabolic, and endocrine dysregulation in this study cohort, and the current report extends these findings to shortened telomere length, the cross-sectional design of this study precludes us from determining the temporal sequence and interrelationships between these different outcomes. Prospective, longitudinal studies are currently under way to address this important question.

The caveat that correlation cannot establish causality is well recognized. Although the use of animal models confers many benefits, such as the ability to perform experimental manipulations, one of their major limitations, particularly for research in the area of intrauterine development, is the considerable interspecies variation in the physiology of pregnancy and in the developmental timeline (63, 64). Because it is not possible to randomly assign humans to prenatal stress exposure, we approximated experimental exposure by using a quasiexperimental design [see, e.g., the considerations about association and causation first articulated by Bradford Hill in his seminal 1965 article (65), and elaborated subsequently by others (66–68)]. It is possible that the effects of prenatal stress exposure may be confounded or exacerbated or attenuated by postnatal experience. However, another strength of the present study was the ability to eliminate the potential confounding effects of many of these factors by study design (exclusionary criteria, e.g., obstetric risk, adverse birth outcomes, smoking, concurrent diseases). In addition, we assessed and accounted for the possible effects of several other key potential confounding factors, e.g., subject characteristics like age, BMI, sex, postnatal/early-life adversity, and exposure to concurrent life stress. The effect was substantially unchanged after adjusting for these potential confounders. Furthermore, the effect was not altered after entering birth weight into the model, suggesting that the association between prenatal stress and LTL was independent of alterations in birth weight. Last, it is established that stressful life events occur more frequently in individuals of lower socioeconomic status; however, we note that the SES range was narrow and did not differ across groups.

The present study had some limitations. First, prenatal stress exposure was assessed retrospectively. Although retrospective assessments of psychosocial factors such as stress are prone to biases such as “after-the-fact” reporting (i.e., individuals who develop health disorders are more prone to retrospectively report higher levels of adverse exposures before the development of the disorder) and those produced by memory and current psychological state (affect/mood), we believe it is unlikely these biases significantly impacted our assessment of prenatal stress in the present study. All subjects were healthy young adults (i.e., with no underlying disease); they received identical information before and upon entering the study; they were not provided any information about the study hypotheses; and they (as well as the experimenters) were blinded to and had no a priori knowledge about the expected direction of study findings. Subjects in the two groups did not differ in their current baseline psychological state (e.g., depressive symptoms, perceived stress) or memory performance scores. Moreover, our use of major negative life events to retrospectively assess psychosocial stress exposure provides greater confidence for construct validity than would have been the case for retrospective assessments of other components of stress, such as perceived severity of stress appraisals or stress symptoms. We note, however, that the occurrence of a major negative life event during the index pregnancy does not constitute a single, discrete programming event; it is well established that acute circumstances such as stressful life events produce chronic psychological distress and a concomitant cascade of progressive alterations in stress-related immunological, endocrine, and cellular physiological processes. Second, men were underrepresented in the study. The absence of acute or chronic health conditions was ascertained by self-report and confirmed by a medical examination. All subjects were nonsmokers and reported to be medication-free except for oral contraceptives. A copy of the prenatal medical record (which is detailed later) constituted the PSG and 49 whose mothers had a healthy, unequivocal index pregnancy constituted the CG. All subjects were of Western European decent. The characteristics of the study population are provided in Table 1.

Methods

Sample. The study sample consisted of 94 subjects: 45 whose mothers experienced a high level of psychological stress during the index pregnancy (as detailed later) constituted the PSG and 49 whose mothers had a healthy, unequivocal index pregnancy constituted the CG. All subjects were of Western European decent. The characteristics of the study population are provided in Table 1.

Procedures. Study participants were recruited in Trier, Germany, through an announcement in local newspapers and a solicitation to local university students. Before entering the study, the absence of acute or chronic health conditions was ascertained by self-report and confirmed by a medical examination. All subjects were nonsmokers and reported to be medication-free except for oral contraceptives. A copy of the prenatal medical record (which is provided to every mother during her prenatal care) was obtained from each participant. From this record, information was abstracted about maternal age, parity, obstetric complications (e.g., gestational diabetes, hypertension/preeclampsia, infection), birth outcomes (length of gestation/preterm birth and birth weights/small for gestational-age birth, height, and head circumference at birth), and newborn complications. Participants received a modest monetary compensation on completion of the study assessments. All investigations were conducted in accordance with the guidelines described in the Declaration of Helsinki, the study protocol was approved by the ethics committee of the German Psychological Society, and written informed consent was obtained from all participants.

Prenatal Stress Measurement. We adopted a conservative strategy for the conceptualization of prenatal stress (as described elsewhere; e.g., refs. 31, 34). Briefly, we defined a high level of prenatal psychosocial stress exposure as the presence of major negative life events that occurred to the mother during her index pregnancy (i.e., after conception and before birth). We selected a list of negative life events that are considered highly stressful across individuals [e.g., death or sudden severe illness of an immediate family member, loss of primary residence (34)]. All subjects underwent semistructured interviews about maternal exposure to these major negative life events during gestation and were instructed to review the items with their mothers before the interview. To minimize potential self-selection bias and retrospective after-the-fact recall bias, subjects were not informed about the study hypotheses; all subjects received the same information be-

