Name: \_\_\_\_\_\_ Hour: \_\_\_\_\_

# 7.1 Convert the following expressions to either Radical or Rational Exponent form. Simplify exponents if possible.

1.  $\sqrt[6]{11^3}$ 

 $4.8^{\frac{3}{4}}$ 

 $2.6^{\frac{4}{9}}$ 

5.  $\sqrt[7]{19^2}$ 

3.  $\sqrt{41}$ 

6.  $23^{\frac{7}{2}}$ 

## 7.1 Evaluate the expression. (Pre-AP: Do these by hand)

7.  $27^{\frac{2}{3}}$ 

9.  $64^{\frac{1}{3}}$ 

8. <sup>3</sup>√125

10.  $8^{\frac{4}{3}}$ 

## 7.1 Simplify the following expressions. (Pre-AP: Do 14-16. Regular Algebra 2: skip 14-16)

**11**. <sup>3</sup>√16

14.  $\sqrt[4]{16x^4y^7z}$ 

12.  $\sqrt[2]{300}$ 

15.  $\sqrt[5]{2xy^{11}z^{10}}$ 

13.  $\sqrt[3]{81}$ 

16.  $\sqrt[3]{128x^{10}y^5}$ 

## 7.2 State the transformations of the given functions. You do NOT have to graph the functions.

17.  $f(x) = \sqrt{x+2} - 1$ 

Transformations:

18.  $g(x) = -\sqrt[3]{x-5}$ 

Transformations:

19.  $k(x) = \frac{1}{2}\sqrt[3]{x+1} + 6$ 

Transformations:

20.  $h(x) = -3\sqrt{x} - 4$ 

Transformations:

## 7.2 Graph the following functions.

21. 
$$f(x) = -\sqrt[3]{x} - 3$$



22. 
$$f(x) = \frac{1}{2}\sqrt{x+2}$$



23. 
$$f(x) = \sqrt{x+3} - 4$$



24. 
$$f(x) = -2\sqrt[3]{x-1} + 3$$



## 7.2 Give a function that would have the following transformations.

25. Cube root function reflected about the x-axis and shifted up 7 units.

Function:

26. Square root function vertically shrank by  $\frac{1}{3}$ , shifted left 5 and down 1.

Function:

27. Cube root function vertically stretched by 2, reflected about the x-axis and shifted right 9 units.

Function:

28. Square root function shifted up 5 and left 11.

Function:

## 7.3 Solve the following radical or rational equations.

29. 
$$\sqrt{x+5} = 6$$

32. 
$$2x^{\frac{3}{2}} = 54$$

30. 
$$7 - \sqrt{x+1} = 5$$

33. 
$$(4x + 5)^{\frac{1}{2}} = -5$$

31. 
$$\sqrt[3]{x+3} + 5 = 9$$

$$34. -2(5x+7)^{\frac{3}{5}} = -16$$

#### 7.4 Function Operations and Inverses

Given that  $f(x) = x^2 - 4$ ,  $g(x) = 2\sqrt{x+4}$ , k(x) = 2x, simplify the following...

35. 
$$f(k(x))$$

36. 
$$k(f(x))$$

37. 
$$g(f(x))$$

38. 
$$f(g(x))$$

# State the inverse of the following function given a set of its ordered pairs.

$$39.\{(1,0),(-2,-4),(0,5),(3,9)\}$$

40. 
$$\left\{ (-11,3), \left(\frac{1}{2},4\right), \left(0,-\frac{2}{3}\right), (1,2) \right\}$$

- 41. Prove that the two functions are or aren't inverses of each other.  $f(x) = \frac{2}{3}x 14$ ,  $g(x) = \frac{3}{2}x + 21$
- 42. Same instructions as #41.  $f(x) = \sqrt[3]{3x 7}$ , and  $g(x) = \frac{x^3}{3} 7$