117. Answers will vary; One possible answer is f(x) = x + 1 and g(x) = x - 1. **118.** $\{(4, -2), (1, -1), (1, 1), (4, 2)\}$; no

119.
$$y = \frac{5}{x-4}$$
 120. $y = \sqrt{x+1}$

Section 2.7

Check Point Exercises

1.
$$f(g(x)) = 4\left(\frac{x+7}{4}\right) - 7 = x + 7 - 7 = x; g(f(x)) = \frac{(4x-7)+7}{4} = \frac{4x}{4} = x$$
 2. $f^{-1}(x) = \frac{x-7}{2}$ 3. $f^{-1}(x) = \sqrt[3]{\frac{x+1}{4}}$

4.
$$f^{-1}(x) = \frac{3}{x+1}$$
 5. (b) and (c)

5.
$$(-1,0)$$
 $(-2,-2)$ $(-$

Exercise Set 2.7

1.
$$f(g(x)) = x$$
; $g(f(x)) = x$; f and g are inverses. 2. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.

5.
$$f(g(x)) = x$$
; $g(f(x)) = x$; f and g are inverses.
5. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.
5. $f(g(x)) = x$; f

1.
$$f(g(x)) = x$$
; $g(f(x)) = x$; f and g are inverses.
2. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.
3. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.
4. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.
5. $f(g(x)) = \frac{5x - 56}{9}$; $g(f(x)) = \frac{5x - 4}{9}$; f and g are not inverses.
6. $f(g(x)) = \frac{3x - 40}{7}$; $g(f(x)) = \frac{3x - 4}{7}$; f and g are not inverses.

7.
$$f(g(x)) = x$$
; $g(f(x)) = x$; f and g are inverses. 8. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.

7.
$$f(g(x)) = x$$
; $g(f(x)) = x$; f and g are inverses.
9. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.
10. $f(g(x)) = x$; $g(f(x)) = x$; f and g are inverses.
11. $f^{-1}(x) = x - 3$
12. $f^{-1}(x) = x - 5$
13. $f^{-1}(x) = \frac{x}{2}$
14. $f^{-1}(x) = \frac{x}{4}$
15. $f^{-1}(x) = \frac{x - 3}{2}$
16. $f^{-1}(x) = \frac{x + 1}{3}$
17. $f^{-1}(x) = \sqrt[3]{x - 2}$

18.
$$f^{-1}(x) = \sqrt[3]{x+1}$$
 19. $f^{-1}(x) = \sqrt[3]{x} - 2$ 20. $f^{-1}(x) = \sqrt[3]{x} + 1$ 21. $f^{-1}(x) = \frac{1}{x}$ 22. $f^{-1}(x) = \frac{2}{x}$ 23. $f^{-1}(x) = x^2, x \ge 0$ 24. $f^{-1}(x) = x^3$ 25. $f^{-1}(x) = \frac{7}{x+3}$ 26. $f^{-1}(x) = \frac{4}{x-9}$ 27. $f^{-1}(x) = \frac{3x+1}{x-2}; x \ne 2$ 28. $f^{-1}(x) = \frac{-x-3}{x-2}; x \ne 2$ 29. The function is not one-to-one, so it does not have an inverse function. 31. The function is not one-to-one, so it does have an inverse function. 32. The function is one-to-one, so it does have an inverse function.

24.
$$f^{-1}(x) = x^3$$
 25. $f^{-1}(x) = \frac{7}{x^2}$ 26. $f^{-1}(x) = \frac{4}{x}$ 27. $f^{-1}(x) = \frac{3x+1}{x}$: $x \neq 2$ 28. $f^{-1}(x) = \frac{-x-3}{x}$: $x \neq 2$

29. The function is not one-to-one, so it does not have an inverse function.
$$x-2$$
30. The function is one-to-one so it does have an inverse function.

39. a.
$$f^{-1}(x) = \frac{x+1}{2}$$

40. a.
$$f^{-1}(x) = \frac{x+3}{2}$$

- c. domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$

- c. domain of $f = \text{range of } f^{-1} = (-\infty, 0];$ range of $f = \text{domain of } f^{-1} = [-1, \infty)$
- c. domain of $f = \text{range of } f^{-1} = (-\infty, 1];$ range of $f = \text{domain of } f^{-1} = [0, \infty)$
- **c.** domain of $f = \text{range of } f^{-1} = [1, \infty);$ range of $f = \text{domain of } f^{-1} = [0, \infty)$

45. a.
$$f^{-1}(x) = \sqrt[3]{x+1}$$

47. a.
$$f^{-1}(x) = \sqrt[3]{x} - 2$$

- c. domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$
- **c.** domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ **c.** domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$
 - range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$

AA26 Answers to Selected Exercises

- c. domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$
- **49.** a. $f^{-1}(x) = x^2 + 1, x \ge 0$

c. domain of $f = \text{range of } f^{-1} = [1, \infty);$ range of $f = \text{domain of } f^{-1} = [0, \infty)$

c. domain of $f = \text{range of } f^{-1} = [0, \infty)$; range of $f = \text{domain of } f^{-1} = [2, \infty)$

51. a. $f^{-1}(x) = (x-1)^3$

52. a. $f^{-1}(x) = x^3 + 1$

- 54. -1
- 55. 1 56. 2
- 57. 2 58. -1
- 59. -7 60. -21
- 61. 3 62. 2 63. 11 64. 25

- **c.** domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$
- c. domain of $f = \text{range of } f^{-1} = (-\infty, \infty);$ range of $f = \text{domain of } f^{-1} = (-\infty, \infty)$
- **65. a.** {(17, 9.7), (22, 8.7), (30, 8.4), (40, 8.3), (50, 8.2), (60, 8.3)} **b.** $\{(9.7, 17), (8.7, 22), (8.4, 30), (8.3, 40), (8.2, 50), (8.3, 60)\}$; no; The inverse of f is **66.** a. {(17, 9.3), (22, 9.1), (30, 8.8), (40, 8.5), (50, 8.4), (60, 8.5)} b. {(9.3, 17), (9.1, 22), (8.8, 30), (8.5, 40), (8.4, 50), (8.5, 60)}; no; The inverse of g is not a function. 67. a. f is a one-to-one function. b. $f^{-1}(0.25)$ is the number of people in a room for a 25% probability of two people sharing a birthday. $f^{-1}(0.5)$ is the number of people in a room for a 50% probability of two people sharing a birthday. $f^{-1}(0.7)$ is the number of people in a room for a 70% probability of two people sharing a birthday. 68. a. No; the horizontal line y = 3 intersects the graph b. 12 P.M. and 7 P.M.; (12, 3) and (19, 3) c. No, the graph does not represent a one-to-one function; the points (12, 3) and (19, 3) have the same second coordinate but different first coordinates.
- **69.** $f(g(x)) = \frac{9}{5} \left[\frac{5}{9} (x 32) \right] + 32 = x \text{ and } g(f(x)) = \frac{5}{9} \left[\left(\frac{9}{5} x + 32 \right) 32 \right] = x$

76.

77.

79.

not one-to-one

81.

82.

83.

not one-to-one

one-to-one

not one-to-one

84.

f and g are inverses.

f and g are inverses.

- f and g are inverses.
 - 88. makes sense
- 89. makes sense
- 90. makes sense
- 93. false

- 91. false
- 92. false
- 94. true

- **95.** $(f \circ g)^{-1}(x) = \frac{x-15}{3}$; $(g^{-1} \circ f^{-1})(x) = \frac{x}{3} 5 = \frac{x-15}{3}$
- 96. $(f \circ f)(x) = x$, so f is its own inverse.
- 97. No; The space craft was at the same height, s(t), for two different values of t-once during the ascent and once again during the descent. **100.** 3√5 102. $\{3 \pm \sqrt{13}\}$

98. 7