There are many types of water, as well as water treatment technologies, processes, and products that are used in agriculture. This sheet combines definitions from U.S. federal agencies and national organizations related to water used in agriculture. Definitions often differ between specific states. We have identified definitions that differ by state with a star (*).

TYPES OF WATER

AGRICULTURAL WATER: Water used on produce normally consumed raw in activities such as growing (including directly applied irrigation water, water used for preparing crop sprays, and water used for growing sprouts), harvesting, packing, and holding (including water used for washing or cooling harvested produce and water used to prevent dehydration). Also includes water intended or likely to come in contact with food-contact surfaces.

– Food and Drug Administration (FDA), 2013

BRACKISH WATER: Distastefully salty but less saline than seawater (between 1,000 to 10,000 ppm [parts per million] in total dissolved solids [TDS]). Brackish water can be found in estuaries as well as aquifers.

– National Ground Water Association, 2010

DESALINATED WATER: Saline water that has had its dissolved salts removed.

– U.S. Geological Survey (USGS), 2016a

EFFLUENT: The final product from a treatment or purification process, specifically water or wastewater treatment plants. Water quality varies depending on the type and amount of treatment; its quality can even meet or exceed drinking water standards.

– WateReuse, 2015

GRAYWATER/GREYWATER: Wastewater from a domestic collection system that is reused on site. This water can come from showers, bathtubs, washing machines, and bathroom sinks. Water from toilets or wash water from diapers is not graywater. In many states, kitchen sink water is also not considered graywater. Many buildings or individual dwellings have systems that capture, treat and distribute greywater for irrigation or other nonpotable uses.

– WateReuse, 2015

GROUNDWATER: The zone beneath the earth’s surface saturated with water that has seeped down through soil and rock.

– EPA, 2004

INDUSTRIAL WATER: Water used for fabrication, processing, washing, and cooling in industries including chemical, food, mining, paper, petroleum refining, and steel industries.

– USGS, 2016

IRRIGATION WATER: Water applied by an irrigation system to grow plants in agricultural, horticultural, and landscaping practices. Irrigation can also include water used for pre-irrigation, frost protection, application of chemicals, weed control, field preparation, crop cooling, harvesting, dust suppression, and leaching salts from the root zone.

– USGS, 2016a
Examples of a drip irrigation system (L) where the water is applied close to the soil surface and an overhead spray irrigation system (R) where the water is applied from above the plant. (L) Adobe Stock Images. (R) iStock Photos.

NONPOTABLE WATER: Water not for drinking. – *EPA, 1998*

NONTRADITIONAL WATER: Any water source other than groundwater including agricultural runoff, treated wastewater, recycled water, produced water, untreated surface water**, and brackish surface and groundwater. – *USDA, 2017*

PRODUCTION WATER: Water that contacts produce usually eaten raw during the growth process. Includes irrigation, fertigation, foliar sprays, and frost protection. – *Produce Safety Alliance (PSA), 2016*

POSTHARVEST WATER: Water used during or after harvest of produce usually eaten raw. Includes water used in the field as well as packing and holding activities. – *PSA, 2016*

POTABLE WATER: Meets federal and state drinking water standards and is considered safe for human consumption. – *WateReuse, 2015*

PRODUCED WATER: Water resulting from oil and gas processes in sub-surface hydraulic aquifers. – *U.S. Bureau of Reclamation, 2017*

RAW WATER: Surface or groundwater that has not gone through an approved water treatment process. – *WateReuse, 2015*

RECLAIMED WATER: Treated municipal wastewater that meets state-specific water quality standards and is intended to be reused for multiple purposes. Some states and organizations use “reclaimed” and “recycled” interchangeably. – *EPA, 2012*

RECYCLED WATER: Treated domestic wastewater used more than once before passing back into water cycle. The terms “reused” and “recycled” are often used interchangeably depending on geographic region. The treatment allows for its reuse for a beneficial purpose. Can include grey water, produced water, fracking water, and wastewater among others. – *WateReuse, 2015*

RETURN FLOW: Surface and subsurface water that leaves a field after the application of irrigation water. – *Womach, 2005*

RUNOFF: Surface flow of water from a specific area. – *Alliance for Water Efficiency, 2016*

SURFACE WATER: Water located on the surface of the earth including ponds, streams, rivers, reservoirs, lakes, and tidewater. Surface water may also include springs, wells, or other collectors that are directly influenced by surface water. – *MDE, 2016; PSA, 2016; Stoeckel et al., 2016*

TAIL WATER: The runoff of irrigation water from the lower end of an irrigated field. – *Federal Remediation Technologies Roundtable, 2016*

WASTEWATER: Used water discharged from homes, businesses, industry, and agricultural facilities. – *EPA, 2012*

CORE TERMS & CONCEPTS

ACRE-FOOT: A volume of water equal to one foot in depth covering an area of one acre, or 43,560 cubic feet; approximately 325,851 gallons or 1234 cubic meters. – *Rock et al., 2012*

BEST MANAGEMENT PRACTICE (BMP): A practice or combination of practices established as the best means of increasing water use efficiency. – *Alliance for Water Efficiency, 2016*

BENEFICIAL REUSE: The use of recycled water for purposes that benefit a community’s water needs, economy, and/or environment. – *WateReuse, 2015*

CONSERVATION: Preserving water resources by reducing water demand, loss, and waste. – *Alliance for Water Efficiency, 2016*

DROUGHT: A long period of decreased precipitation and streamflow. – *USGS, 2016b*

INTEGRATED RESOURCE PLANNING (IRP): A forward-looking method that incorporates environmental, engineering, social, financial, and economic considerations. IRP uses the same criteria to evaluate both supply and demand options while involving stakeholders in the process. – *Rock et al., 2012*

MAXIMUM CONTAMINANT LEVEL (MCL): Maximum level of a contaminant allowed in water delivered to any user of a public water system. – *EPA, 2017*
WATER TREATMENT TECHNOLOGIES, PROCESSES & PRODUCTS

ADVANCED OXIDATION: Process that can be used as a safety barrier in the water purification process. Hydrogen peroxide, ultraviolet (UV) light, and other processes are used in combination to form a powerful oxidant that provides further disinfection of the water and breaks down remaining chemicals and microorganisms, providing further disinfection. – WateReuse, 2015

AUGMENTATION: The process of adding recycled water into an existing raw water supply (such as a reservoir, lake, river, wetland, and/or groundwater basin). – WateReuse, 2015

CHLORINATION: The process of adding chlorine gas or chlorine compounds to wastewater for disinfection. – EPA, 2004

DIRECT INJECTION: Injecting recycled water through an injection well directly into a groundwater basin. If the water will later be used for drinking, the recycled water will receive advanced treatment prior to injection. – Rock et al., 2012

DISCHARGE: The release of effluent, that meets regulatory standards, into the environment. – WateReuse, 2015

DISINFECTION: The killing of pathogens. – EPA, 2004

DUAL MEDIA FILTRATION: Filtration method that uses two different types of filter media, usually sand and finely granulated anthracite. – WateReuse, 2015

FILTRATION: A process that separates small particles or microorganisms from water by using a porous barrier to trap the particles while allowing water to pass. – Rock et al., 2012

GRANULAR ACTIVATED CARBON: Process used to remove chemicals that are dissolved in used water with activated carbon. – WateReuse, 2015

GROUNDWATER RECHARGE: Naturally occurring as part of the water cycle and can be enhanced using constructed facilities to add water into a groundwater basin. – WateReuse, 2015

MICROFILTRATION: A physical separation process where tiny, hollow, straw-like membranes separate particles from water. It is used as a pretreatment for reverse osmosis. – WateReuse, 2015

MULTI-BARRIER PROCESSES: Purification processes that consist of several barriers to ensure sufficient reduction and/or elimination of various substances that need to be controlled. Monitoring is an important component to verify that the processes are working properly and efficiently. Components of a multi-barrier process may include some or all of the following: membrane filtration, reverse osmosis, advanced oxidation, riverbank filtration, soil aquifer treatment, and constructed wetlands. – WateReuse, 2015

OZONATION: Process of applying ozone (O\(_3\)) for the disinfection of water/wastewater. Ozone is a strong oxidant.
– *WateReuse, 2015*

REVERSE OSMOSIS: Method of removing dissolved salts, ions and other constituents from water. Pressure is used to force the water through a semi-permeable membrane that transmits the water but stops most dissolved materials from passing through the membrane. This treatment method is commonly used in desalination.
– *WateReuse, 2015*

SOIL AQUIFER TREATMENT: When water, including recycled water, soaks into the ground and is purified by the physical, chemical, and biological processes that naturally occur in soil.
– *WateReuse, 2015*

TAILWATER RECOVERY: An irrigation system in which all facilities utilized for the collection, storage, and transportation of irrigation tailwater for reuse have been installed.
– *USDA, Natural Resources Conservation Service, 2008*

ULTRAVIOLET TREATMENT (UV): The use of ultraviolet light for disinfection or as part of an advanced oxidation process. This usually renders the pathogens inactive by changing the DNA so that the pathogens cannot replicate.
– *WateReuse, 2015*

ZERO-VALENT IRON (ZVI) BIOSAND FILTERS: Iron hydroxides, oxides and oxyhydroxides are formed from ZVI’s reactions with dissolved oxygen and protons in water. The hydroxides, oxides and oxyhydroxides have high pH point of zero charge (pH\(_{pzc}\)) that strongly adsorb viruses and negatively charged microorganisms. Unlike other chemical treatments, ZVI does not create potentially harmful by-products.
– *Ingram et al., 2012*

*Terms differ by state.

**The term “nontraditional water” defined by the USDA includes untreated surface water to emphasize that its quality can be impacted by external environmental factors such as runoff. The agricultural community (dependent upon region and availability) already uses surface water to irrigate, and considers surface water to be a “traditional water” source.*

REFERENCES

Jessica L. Dery1, Mayhah R. Suri2, Natalie Brassill1, Daphne Pee2, Paul Goeringer2, Amy R. Sapkota4, Channah Rock1, Rachel E. Rosenberg Goldstein2,4†

1Department of Soil, Water & Environmental Science, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ 85721, USA; 2Department of Agricultural & Resource Economics, College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742, USA; 3University of Maryland Extension Family & Consumer Science, College Park, MD 20742, USA; 4Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA.

† Corresponding Author:
Rachel E. Rosenberg Goldstein, Ph.D., M.P.H.
Department of Agricultural & Resource Economics
University of Maryland College of Agriculture & Natural Resources
Maryland Institute for Applied Environmental Health
University of Maryland School of Public Health
2200 Symons Hall
College Park, MD 20742
Phone: 301-458-5125
Email: rerosenb@umd.edu