VLSI CAD ENGINEERING

GRACE GAO, PRINCIPLE ENGINEER, RAMBUS INC.

AUGUST 5, 2017
 Agenda

• CAD (Computer-Aided Design)
 ◦ General CAD
 • CAD innovation over the years (Short Video)
 ◦ VLSI CAD (EDA)
 • EDA: Where Electronic Begins (Short Video)
 • Zoom Into a Microchip (Short Video)

• Introduction to Electronic Design Automation
 ◦ Overview of VLSI Design Cycle
 ◦ VLSI Manufacturing
 • Intel: The Making of a Chip with 22nm/3D (Short Video)
 ◦ EDA Challenges and Future Trend

• VLSI CAD Engineering
 ◦ EDA Vendors and Tools Development
 ◦ Foundry PDK and IP Reuse
 ◦ CAD Design Enablement
 ◦ CAD as Career

• Q&A
CAD (Computer-Aided Design)
• **Computer-aided design (CAD)** is the use of computer systems (or workstations) to aid in the creation, modification, analysis, or optimization of a design.
CAD innovation over the years (Short Video)

- https://www.youtube.com/watch?v=ZgQD95NhbXk
CAD Tools

Commercial
- Autodesk AutoCAD
- CAD International RealCAD
- Autodesk Inventor
- Bricsys BricsCAD
- Dassault CATIA
- Dassault SolidWorks
- Kubotek KeyCreator
- Siemens NX
- Siemens Solid Edge
- PTC PTC Creo (formerly known as Pro/ENGINEER)
- Trimble SketchUp
- AgiliCity Modelur
- TurboCAD
- IronCAD
- MEDUSA
- ProgeCAD
- SpaceClaim
- PunchCAD
- Rhinoceros 3D
- VariCAD
- VectorWorks
- Cobalt
- Gravotech Type3
- RoutCad RoutCad
- SketchUp

Freeware and open source
- 123D
- LibreCAD
- FreeCAD
- BRL-CAD
- OpenSCAD
- NanoCAD
- QCad

CAD Kernels
- Parasolid by Siemens
- ACIS by Spatial
- ShapeManager by Autodesk
- Open CASCADEx
- C3D by C3D Labs
VLSI CAD (EDA)

- Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining hundreds of thousands of transistors into a single chip.

- The design of VLSI circuits is a major challenge. Consequently, it is impossible to solely rely on manual design approaches. Computer Aided Design (CAD) is widely used, which is also referred as electronic design automation (EDA).
EDA: Where Electronic Begins (Short Video)

- https://www.youtube.com/watch?v=8uj81PWHImk
Zoom Into a Microchip (Short Video)

- https://www.youtube.com/watch?v=Fxv3JoS1uY8
Introduction to Electronic Design Automation
Overview of VLSI Design Cycle

- System Specifications
- Functional Design
- Logic Design
- Circuit Design

• Continue from the left

- Physical Design
- Fabrication
- Packaging
7 Major Steps in IC Design Flow

1. System specification
2. Functional design
3. Logic synthesis
4. Circuit design
5. Physical design and verification
6. Fabrication
7. Packaging

- Other tasks involved: testing, simulation, etc.
- Design metrics: area, speed, power dissipation, noise, design time, testability, etc.
- Design revolution: interconnect (not gate) delay dominates circuit performance in deep submicron era.
 - Interconnects are determined in physical design.
 - Shall consider interconnections in early design stages.
Step 1: System Specification

This is the crucial step as it will affect the future of the product. Here, vendors may want to get feedback from potential customers on what they are looking for:

- Instruction set
- Interface (I/O pins)
- Organization of the system
- Functionality of each unit in the system, and how to communicate it to other units.
Step 2: Architectural Design

This is where the main work starts. With the help of the specification sheet the target IC’s architecture is decided and a layout for same is created by design engineers using EDA tools.
Step 3: Functional and Logic Design

Synthesis: Verilog \rightarrow Gates

// 2:1 Multiplexer
always @ (a or b) begin
 if (a) z = c or b;
 else z = a;
end
Step 4: Circuit Design

M1 3 2 0 0 nch W=1.2u L=0.6u AS=2.16p PS=4.8u AD=2.16p PD=4.8u
M2 3 2 1 1 pch W=1.8u L=0.6u AS=3.24p PS=5.4u AD=3.24p PD=5.4u
CL 3 0 0.2pF

VDD 1 0 3.3
VIN 2 0 DC 0 PULSE (0 3.3 0ns 100ps 100ps 2.4ns 5ns)

.LIB '../mod06' typical

.OPTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF
.DC VIN OV 3.3V 0.001V
.PRINT DC V(3)
.TRAN 0.001N 5N
.PRINT TRAN V(2) V(3)
.END

![Circuit Diagram]
Step 5-1: Physical Design

- Physical design converts a circuit description into a geometric description.
- The description is used to manufacture a chip.
- Physical design cycle:
 1. Logic partitioning
 2. Floorplanning and placement
 3. Routing
 4. Compaction
- Others: circuit extraction, timing verification and design rule checking
Example: Physical Design (Place & Route)
Step 5-2: Physical Verification and Signoff

- DRC
- LVS
- ERC

- Chip Finishing and Signoff
- Tapeout to foundry
VLSI Manufacturing (Coming Step 6 and 7)
Step 6: Fabrication

- After layout and verification, the design is ready for fabrication (called tapeout).
- Layout data is converted into photo-lithographic masks.
Step 7: Packaging and Testing

- After fabrication, each die is tested.
- The wafer is diced into individual chips.
- Each chip is packaged and tested.
Intel: The Making of a Chip with 22nm/3D (Video)

- https://www.youtube.com/watch?v=d9SWNLZvA8g
EDA Challenges and Future Trend

- Several conflicting considerations:
 - **Design complexity:** large number of devices/transistors
 - **Performance:** optimization requirements for high performance
 - **Time-to-market:** about a 15% gain for early birds
 - **Cost:** die area, packaging, testing, etc.
 - **Others:** power, signal integrity (noise, etc), testability, reliability, manufacturability, etc.
Moore's Law: Driving Technology Advances

- Logic capacity doubles per IC at a regular interval
 - Moore: Logic capacity doubles per IC every two years (1975)
 - D. House: Computer performance doubles every 18 months (1975)
Technology Roadmap for Semiconductors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology node (nm)</td>
<td>250</td>
<td>180</td>
<td>130</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>On-chip local clock (GHz)</td>
<td>0.75</td>
<td>1.25</td>
<td>2.1</td>
<td>3.5</td>
<td>6.0</td>
<td>10</td>
<td>16.9</td>
</tr>
<tr>
<td>Microprocessor chip size (mm²)</td>
<td>300</td>
<td>340</td>
<td>430</td>
<td>520</td>
<td>620</td>
<td>750</td>
<td>901</td>
</tr>
<tr>
<td>Microprocessor transistors/chip</td>
<td>11M</td>
<td>21M</td>
<td>76M</td>
<td>200M</td>
<td>520M</td>
<td>1.40B</td>
<td>3.62B</td>
</tr>
<tr>
<td>Microprocessor cost/transistor (x10⁻⁸ USD)</td>
<td>3000</td>
<td>1735</td>
<td>580</td>
<td>255</td>
<td>110</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>DRAM bits per chip</td>
<td>256M</td>
<td>1G</td>
<td>4G</td>
<td>16G</td>
<td>64G</td>
<td>256G</td>
<td>1T</td>
</tr>
<tr>
<td>Wiring level</td>
<td>6</td>
<td>6–7</td>
<td>7</td>
<td>7–8</td>
<td>8–9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Supply voltage (V)</td>
<td>1.8–2.5</td>
<td>1.5–1.8</td>
<td>1.2–1.5</td>
<td>0.9–1.2</td>
<td>0.6–0.9</td>
<td>0.5–0.6</td>
<td>0.37–0.42</td>
</tr>
<tr>
<td>Power (W)</td>
<td>70</td>
<td>90</td>
<td>130</td>
<td>160</td>
<td>170</td>
<td>175</td>
<td>183</td>
</tr>
</tbody>
</table>

- Deep submicron technology: node (feature size) < 0.25 μm
- Nanometer Technology: node < 0.1 μm
Nanometer Design Challenges

- In 2005, feature size ≈ 0.1 \(\mu m \), CPU frequency ≈ 3.5 GHz, die size ≈ 520 mm\(^2\), CPU transistor count per chip ≈ 200M, wiring level ≈ 8 layers, supply voltage ≈ 1 V, power consumption ≈ 160 W.
 - **Chip complexity**
 - effective design and verification methodology? more efficient optimization algorithms? time-to-market?
 - **Power consumption**
 - power & thermal issues?
 - **Supply voltage**
 - signal integrity (noise, IR drop, etc)?
 - **Feature size, dimension**
 - sub-wavelength lithography (impacts of process variation)? noise? wire coupling? reliability? manufacturability? 3D layout?
 - **Frequency**
 - interconnect delay? electromagnetic field effects? timing closure?
Design Complexity Challenges

- **Design issues**
 - Design space exploration
 - More efficient optimization algorithms
- **Verification issues**
 - State explosion problem
 - For modern designs, about 60%-80% of the overall design time was spent on verification; 3-to-1 head count ratio between verification engineers and logic designers
Semiconductor Fabrication Challenges

- Feature-size shrinking approaches physical limitation

1. Photoresist coating
 - Photoresist
 - SiO₂
 - Substrate

2. Exposure
 - Opaque
 - Ultra violet light
 - Mask
 - Unexposed
 - Exposed
 - Substrate

3. Development
 - Substrate

Mask patterns → Printed layout
- Drawn layout → Printed wafer
- Proximity corrected layout → Printed wafer
VLSI CAD Engineering
Introduction

EDA, where HW and SW meet each other
EDA in Chip Design

- EDA is concerned about HW/SW design in terms of
 - Correctness
 - Productivity
 - Optimality
 - Scalability
EDA and Industries

- EDA (in a strict sense) and industries
 - Impact - solving a problem may benefit vast electronic designs
EDA Vendors and Tools Development

- **List of EDA Companies**
- **EDA’s big three:**
 - Cadence
 - Synopsys
 - Mentor

 (Figure S-1: Market Share 2010)

 (Source: Gary Smith EDA, October 2011)

- **EDA R&D**
- **Application Engineer**

- **Lots of Mergers and Acquisitions**
Foundry PDK and IP Reuse

- Full spectrum of foundry design ecosystem

Silicon Proven IP & Foundation Library
- Analog/High speed interface IP
- Multi-media IPs
- SOC platform

Design Enablement
- Spice, PEX, DRC/LVS, CDS, ESD
- Silicon-correlated design environment
- DTCO, Design Yield Co-Optimization, Fast yield ramp-up

Collaboration with Design Partners
- Design service partner alliance
- Technology shared with partners

Reference Design Flow
- EDA reference flow
- Sign-off methodology
- Low power, high performance, silicon proven design methodology
- Yield proven design methodology
CAD Design Enablement

• Work with IT closely (license, network, disk space, remote site, revision control, security …)

• With deep understanding of chip design and EDA tool capabilities make sure to set up and automate all flows running smoothly till successfully tapeout to foundry

• Interfaces between the design teams and EDA vendors to evaluate the design tools that ensure the correct tools are set up for the design project.

• Must be good at:
 ◦ Strong system admin (plus)
 ◦ Solid understanding the chip design methodology and implementation
 ◦ Excellent on programming and scripting
 ◦ Good communication Skill
CAD as Career

• This career field would appeal to someone who enjoys problem solving, both software and hardware and working with engineers
• Someone has creative mindset, interested in exploring problem around them and solve it
• Someone interested in new technology at all levels and wants to learn new things everyday
• Someone has great satisfaction if they create something useful, or helped someone through automation
• Someone acts as “unsung hero in a successful tapeout”
References

- C. (Producer). (2016, October 19). CAD innovation over the years [Video file]. Retrieved from https://www.youtube.com/watch?v=ZgQD95NhbXk
Appendix: Milestones of IC Industry

- **1947:** Bardeen, Brattain & Shockly invented the transistor, foundation of the IC industry.
- **1952:** SONY introduced the first transistor-based radio.
- **1958:** Kilby invented integrated circuits (ICs).
- **1965:** Moore’s law.
- **1968:** Noyce and Moore founded Intel.
- **1970:** Intel introduced 1 K DRAM.
Appendix: Milestones of IC Industry (cont’d)

- **1971**: Intel announced 4-bit 4004 microprocessors (2250 transistors).
- **1976/81**: Apple II/IBM PC.
- **1985**: Intel began focusing on microprocessor products.
- **1987**: TSMC was founded (fabless IC design).
- **1991**: ARM introduced its first embeddable RISC IP core (chipless IC design).
Appendix: Milestones of IC Industry (cont’d)

- **1996**: Samsung introduced 1G DRAM.
- **1998**: IBM announces 1GHz experimental microprocessor.
- **1999/earlier**: System-on-Chip (SoC) methodology applications.
- **2002/earlier**: System-in-Package (SiP) technology
- An Intel P4 processor contains 42 million transistors (1 billion by 2005)
- Today, we produce > 1 billion transistors per person.
Q&A