Dynamic Asset-Backed Security Design

Discussion of Ozdenoren, Yuan, Zhang

by Saki Bigio (UCLA)
on May 27, 2021
Introduction
Overview

- Comment: view paper as static security design w/ long-lived assets
 - dynamic security in the spirit of dynamic contracts
> Overview

* Comment: view paper as static security design w/ long-lived assets
 * dynamic security in the spirit of dynamic contracts

* Beautiful Economics
 * feedback: future prices to extent of asymmetric information

* Discussion
 * simplify/clarify model
 * discuss features
Models of private information in financial market:

<table>
<thead>
<tr>
<th>Market Structure \ Security</th>
<th>One Period</th>
<th>Long-Lived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Market</td>
<td>Akerlof '71</td>
<td>This paper</td>
</tr>
<tr>
<td>Security Design</td>
<td>DeMarzo-Duffie '00</td>
<td>This paper</td>
</tr>
</tbody>
</table>

- Embedded funding friction
 - Kiyotaki & Moore, Kurlat, Bigio
 - investigate stability when asset is long-lived
 - market structure
Simplified Model
Core Model

* Holmstrom-Tirole notation
Core Model

* Holmstrom-Tirole notation

* Population
 * entrepreneur: linear U, long-lived discount β, specialist,
 * investor: linear U, live one period, OLG, deep pocket

* Asset
Core Model

* Holmstrom-Tirole notation

* Population
 * entrepreneur: linear U, long-lived discount β, specialist,
 * investor: linear U, live one period, OLG, deep pocket

* Asset
 * Lucas tree
 * State: $Q \in \{L, H\}$
 * Fruit: $s(H) > s(L)$
 * Symmetric Markov chain:
 \[
 P = \begin{bmatrix}
 p & 1 - p \\
 1 - p & p
 \end{bmatrix}
 \]
 * Unconditional prob: 1/2
Timing + Information

- Market design
 - once at time 0
> Timing + Information

* Market design
 * once at time 0

* Each period t, two stages
 * contracting stage
 * matched
 * agents can opt out
 * entrepreneur: exploits private information
 * settlement, resell
 * investor paid
 * if ends with collateral, resells at spot market
> Timing + Information

- Market design
 - once at time 0

- Each period t, two stages
 - contracting stage
 - matched
 - agents can opt out
 - entrepreneur: exploits private information
 - settlement, resell
 - investor paid
 - if ends with collateral, resells at spot market

- Investment opportunity
 - great return $\rho > 1$
 - but not too much, $\rho < 2$
<table>
<thead>
<tr>
<th>Market Structure \ Security</th>
<th>One Period</th>
<th>Long-Lived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Market</td>
<td>Akerlof '71</td>
<td>This paper</td>
</tr>
<tr>
<td>Security Design</td>
<td>DeMarzo-Duffie '00</td>
<td>This paper</td>
</tr>
</tbody>
</table>
Assume $\beta = 0$

In a pooling equilibrium

Good asset sold if:

$$\rho \mathbb{E}[s] - s(H) > 0$$

Otherwise, market unravels (not separates)

- single “static” equilibrium
- depends on “information sensitivity”
<table>
<thead>
<tr>
<th>Market Structure \ Security</th>
<th>One Period</th>
<th>Long-Lived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Market</td>
<td>Akerlof '71</td>
<td>This paper</td>
</tr>
<tr>
<td>Security Design</td>
<td>DeMarzo-Duffie '00</td>
<td>This paper</td>
</tr>
</tbody>
</table>
Classic Akerlof + long-lived asset

* Assume $\beta > 0$

* Asset price is $\phi(Q)$

* Good asset sold if: $\rho \mathbb{E}[s + \phi] > s(H) + \phi(H)$

* Re-arranging condition:

 $$\rho (\mathbb{E}[s] - s(H)) + \rho (\mathbb{E}[\phi] - \phi(H)) > 0$$

 Akerlof condition + price condition
> Classic Akerlof + long-lived asset

* Observation
 * Akerlof condition may fail
 \[
 \rho \left(\mathbb{E}[s] - s(H) \right) < 0
 \]
 Akerlof condition
 * still, prices may sustain equilibrium if:
 \[
 \rho \left(\mathbb{E}[\phi] - \phi(H) \right) >> 0
 \]
 price condition

* Multiplicity: strategic complementarity
> long-lived asset

Strategic complementarity

* If market illiquid:
 * Lucas price:

\[\phi (Q) = \mathbb{E} \left[\sum_{t} \beta^t s_{t+1} | Q \right] \]

* high information sensitivity \implies illiquid market

* If market liquid:
 * conjecture constant resale price

\[\phi = \rho \mathbb{E} [s] + \frac{(\rho - 1) \phi}{1 - \beta} \]

* no information sensitivity \implies liquid market
Classic Akerlof + long-lived asset

Compstats:

* Recall need

\[\rho \left(\mathbb{E} [\phi] - \phi (H) \right) > 0 \]

* Higher \(\beta \) helps scale up price relative to \(s \)
* Persistence \(p \) creates greater sensitivity
> **Spot - Short Lived**

<table>
<thead>
<tr>
<th>Market Structure \ Security</th>
<th>One Period</th>
<th>Long-Lived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Market</td>
<td>Akerlof '71</td>
<td>This paper</td>
</tr>
<tr>
<td>Security Design</td>
<td>DeMarzo-Duffie '00</td>
<td>This paper</td>
</tr>
</tbody>
</table>
Security Design

- Market unravels if Akerlof condition fails

\[\rho \mathbb{E}[s] - s(H) < 0 \implies s(L) < \frac{\Lambda}{\frac{2}{\rho} - 1} s(H) \]
Security Design

* Market unravels if Akerlof condition fails

\[\rho \mathbb{E}[s] - s(H) < 0 \implies s(L) < \frac{\Lambda}{s(H)} \equiv \left(\frac{2}{\rho} - 1 \right) \]

* This sucks!
 * lose ability to invest in good state
Security Design

* Clever idea: security design
 * issue debt D
 * default if $s < D$
Security Design

*Clever idea: security design
 * issue debt D
 * default if $s < D$

*Collateralized
 * Akerlof condition:
 \[s(L) = \Lambda \cdot D \]
 * sold at:
 \[q = \frac{1}{2} (s(L) + D) \]
 * Self financed:
 \[D < s(H) \]
 \[s(L) = s(L) \]
Spot - Short Lived

<table>
<thead>
<tr>
<th>Market Structure \ Security</th>
<th>One Period</th>
<th>Long-Lived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Market</td>
<td>Akerlof ’71</td>
<td>This paper</td>
</tr>
<tr>
<td>Security Design</td>
<td>DeMarzo-Duffie ’00</td>
<td>This paper</td>
</tr>
</tbody>
</table>
Security Design

- Condition:

\[s(L) + \phi(L) < \Lambda (s(H) + \phi(H)) \]
Security Design

- Condition:
 \[s(L) + \phi(L) < \Lambda (s(H) + \phi(H)) \]

- Same principle

- Uniqueness
 - Always issue debt
 - Constant price: \(q \)
 - Per unit return is unique
 \[\phi = \frac{\rho q}{1 - \beta} \]
Comments
> Some Comments

* Comment 1:
 * security design assumes ex-ante commitment
 * fine only in some market
 * Bigio-Shi (2020) with ex-post competition
 * curious to see dynamics there

* Comment 2:
 * Message here: securitization reduces volatility
 * but Brunnermeier-Pedersen
 * asset-backed securities
 * re-hypothecation: generates large spirals
 * amplification of aggregate shocks
 * tail events provoked by leverage
 * curious to know if you could build both