MODELING JD ON SHEEP FARMS:
A TOOL TO ESTIMATE COST-BENEFIT OF CONTROL STRATEGIES

(Nelly MARQUETOUX, Rebecca Mitchell, Anne RIDLER, Mark STEVENSON, Peter WILSON, Cord HEUER)
Background

- **Sheep farming in NZ:**
 - Pastoral farming
 - Strong *seasonality*

- **Mycobacterium avium paratb.**
 - Complex infection dynamics
 - (MAP infection ↔ Johne’s)
 - JD: *production limiting* factor

- Emphasis on control of JD on-farm

- Modeling: a tool to gain understanding and help decision making
Modeling production

• Not “a typical” sheep farm in New Zealand!

• Model:
 ✓ Traditional NZ breeding flock (end = meat production)
 ✓ Self-replacement
 ✓ Farm type: North island Hill country
Modeling production

Weaning

Drafting for meat production (prime lamb)

Time in months

Number of animals

- Lambs
- Weaners
Model validation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Published data NZ</th>
<th>Value model</th>
</tr>
</thead>
<tbody>
<tr>
<td># lambs tailed/# lambing ewes</td>
<td>132 %</td>
<td>131 %</td>
</tr>
<tr>
<td>% of lamb crop slaughtered by Dec.</td>
<td>21%</td>
<td>20%</td>
</tr>
<tr>
<td># lambs slaughtered/# lambing ewes</td>
<td>101%</td>
<td>92%</td>
</tr>
</tbody>
</table>

Source: Beef+Lamb NZ, statistics New Zealand
Dynamics of infection with MAP

- Mild lesions in gut
 - Low shedding of MAP

 → progression to JD
 OR
 → Recovery

- Severe lesions in gut
 - High shedding of MAP

 → progression to JD
Modeling MAP infection dynamics

- Mild lesions Low shed.
- Severe High shed.

- Progressor track
- Non-progressor track

- Environment

- Variables and parameters:
 - S, Lt, R
 - λ, μ, τ, δ, μ_c
 - σ_p, σ_m
 - χ, α

- Mathematical model equations and parameters are not fully visible in the image provided.
PTB in sheep in NZ

- Average NZ flock clinical incidence = 0.16% (Verdugo 2012)
- **Problem farms**, high mortalities due to JD

Results: clinical incidence of JD = 1%
Model validation

<table>
<thead>
<tr>
<th>Outcome (MA ewes)</th>
<th>Published data</th>
<th>Value model</th>
</tr>
</thead>
<tbody>
<tr>
<td>prev. of “ever infected”</td>
<td>?</td>
<td>70-80%</td>
</tr>
<tr>
<td>prev. of shedding</td>
<td>2-26%<sup>a</sup></td>
<td>6-7%</td>
</tr>
<tr>
<td>annual OJD mortality (all ages)</td>
<td>2.9%<sup>a</sup></td>
<td>2.9%</td>
</tr>
<tr>
<td>annual OJD mortality (ewes only)</td>
<td>1%<sup>b</sup></td>
<td>1.8%</td>
</tr>
</tbody>
</table>

^a Reddacliff, L., J. Eppleston, et al. (2006)

^b Morris, C. A., S. M. Hickey, et al. (2006)
Model outcomes: cost of Johne’s

Prices 2012 (/head):
Prime lamb: $113.5
Mutton: $93

Source: Beef+Lamb Economic service

Annual cost of JD (2012)
NZD 3.2 / ewe

Estimate for 2013:
NZD 2.64

Mortality 93.5% of OJD cost

- Lower LWT 0.5%
- Sub-fertility 6%
- Lamb meat 11.5%
- Mutton meat 82%
Cost effectiveness of vaccination

Annual cost of JD: $3.20
Vaccine per head: $3
Vaccination replacement: 0.37 * 3 = $1.11

Vaccine efficacy: 90% drop in shedders and JD mortality (Reddacliff 2006)
Cost effectiveness of vaccination

JD mortality 1.8%

JD mortality 0.75%
Conclusion

• Vaccination:
 - cost–effective in some scenarios (extra OJD mortality >1%)
 - Long term process

• Cost effectiveness: not the only incentive for control:
 - Perception (stigma)
 - Food safety
 - Welfare

• This model:
 - Sensible prediction (disease/production)
 - Tool to help decision making on farm

• Lack of robust data on true impact of JD on farm
Thank you for your attention
Lambs (0-3 months)
- Seasonal lambing (late winter)
- Weaning at 3 months old

Weaners (3-12 months)
- Drafted regularly for meat
- Keep replacement to maintain flock size

Replacement (12-24 months)
- First mating season as 2-tooth
- Replace culled ewes at following lambing

Ewes (> 2 years)
- Seasonal mating in autumn
- Annual culling (replacement rate 25%)
Situation of PTB in sheep in New Zealand (Verdugo 2012)

Herd level true prevalence: 79%

% of infected herds reporting cases: 54%

Annual clinical incidence (95% CI): 0.16% (0.09 - 0.24%)