Introduction

- Venue, loos, escapes, contacts....
- Workshop outline
 - Key concepts
 - Thresholds for intervention
 - Key epidemiological aspects
 - Metrics for diagnostic test performance
 - Diagnostics available
 - Review of science
 - Case study
 - Typical testing scenarios and some estimated costs
 - Work through some examples
 - Conclude

Acknowledgements

The material we cover this afternoon has accumulated over many years by a range of experts in diagnostics and Johne’s disease. In particular an acknowledgement of support from

- Disease Research Laboratory, University of Otago
- EpiCentre, Massey University
- AgResearch
- Canterbury Health Laboratory
- AbacusBio Ltd
- Johne’s Disease Research Consortium

Key concepts

- Youngest stock by far most susceptible, out to ~ 12 months old
 - Keep them away from MAP and there is no problem

- Keep a closed herd
 - Reality is purchase minimal risk stock

- Blood testing in diseased herds will help if used right
 - Get expert advice to ensure cost-effectiveness

- One ‘super-shedding’ deer can ruin a lot of effort
 - The amount of bacteria shed in some cases is hard to believe...
Nature of JD

Shedding spectrum

- How much is too much?
 - Pass through
 - Mild
 - Medium
 - Max
 - Log scale increases in shedding rate
 - Consider that ~60+ of deer on a property with disease may be culture positive, irrespective of disease levels
 - 10,000 or more organisms (by qPCR) typically accepted as confident the animal is actively shedding

Super shedding

- Somewhat dependent on disease levels for farm in question
- 9 months old minimum age, recommended for major issue farms
 - Going into winter to minimize seasonal impact on clinical rate
- Post winter for farms with less issue – more time for disease and immune response to develop with winter
- Overall minimizing contamination
- Of course can qPCR at any time
300,000 bugs/g looks a lot

But it’s all relative

Shedding over time

Does it come back?

- If we:
 - Controlled clinical losses
 - Achieved a declining JD-suspect lesion rate in processed deer
 - Reality is purchase minimal risk stock
 - Keep essentially a closed herd (except stags)
 - *Would JD levels rebuild in the absence of testing?*
Summary of JD control in deer

Where and when might we intervene

- A risk based approach to managing exposure
- Present on most farms
- Serious issue in small proportion of herds
- Point at which decide to intervene is personal
- Experience shows >$4/deer stock unit losses often a trigger
- Intervening directly in fawn management not feasible
- Reduce contamination by removing highly infectious deer
- Substantial reduction in losses usually achieved in 1-3 years
- Depends on intensity of intervention
- Trickle on effect of JDSLN can extend years

JDSLN rate by farm

On-farm economic cost
Key question: seeking what?

- Defining condition of interest is essential
 - MAP all but ubiquitous
 - Deer with MAP?
 - Normal looking deer infected with MAP?
 - Sub-clinical Johne’s disease
 - Clinical Johne’s disease
 - Differential diagnoses?
 - Direct costs of...
 - Repercussions of results...

Metrics 1

- Sensitivity
- Specificity
- Predictive values: influenced by prevalence, Se & Sp are not.

Metrics 2

- Effect of combining tests
- Effect of repeat testing
Sensitive & specific

Sensitive but not specific

Specific, not sensitive

Paralisa picking 10,000+
As a selection process

- Contend with imperfect specificity
- Get equivalent money for test pos and neg
 - Provided source of replacements to maintain capital stock
 - Use as last step in selection process of R2 hinds
 - Test during peak schedule if possible
 - Test pregnant R2s up until September 30 to enable transport – schedule is high then

- CRITICAL QUESTION: Opportunity cost of culled false positives

- Stag pre-sale testing over 3 years
 - Condition of interest: minimal chance of developing disease

Diagnostic options

- Diagnostics – a little theory but mostly practicalities
 - Types of diagnostics
 - Pros and cons
 - Reading test results
 - Using appropriate tests
 - Useful materials and resources
 - Biological limitations of testing

On-farm post mortems

- Cheap for farmers
- Easy to organise
- Timely
- Moderate sensitivity
- Easily increase sensitivity with vet and/or lab input
- Valuable first step in surveillance
ELISA

- Well established in deer industry and beyond
- Low cost
- Quick
- Measures immune response as proxy for disease/exposure
- Useful performance when used appropriately
- Subjective interpretation of results
- Offered by Disease Research Lab, Otago University
- Offered by Canterbury Health Laboratories
- Gribbles and NZ Vet Path
- DRL ~ $15 per test plus collection and shipping
- Following graphs are from DRL
qPCR

- Well established but seldom used
- Quick
- High specificity, high sensitivity
- Measures actual shedding directly
- Requires standardized methodology
- Ideal back-up test for high value animals or uncertain Paralisa results
- Pooled option available
- $50 + collection and shipping
- Offered by DRL
- Massey developing their own

Culture

- Traditionally the definitive Gold Standard for MAP
- High sensitivity, very high specificity
- Comparatively slow (up to 16 weeks for low CFUs)
- Valuable research tool
- Limited supplies of BACTEC media
- General transition from culture to qPCR
- Offered by AgResearch Wallaceville

Surveillance data

- JML surveillance database
- 3.7 million deer, >99% of production since 2006
- AssureQuality routine inspection/recording of JDSLN
- Johne’s disease suspect lesions
- Not confirmed as MAP
- Very low sensitivity, low specificity
- Low cost – built in to national JD control programme
- A useful component of an on-farm JD investigation

JD-like lesions
Review of science

- Several papers and projects on diagnostics for JD in deer.
- Each one an important part of the optimized testing puzzle
- Take a quick look at the contribution of each one and some of the strengths and weaknesses
- Good demonstration of the evolution of the thinking on this topic
- Converge to a practical understanding of test performance

Review: Griffin et al 2005

- Methods: positives: 102 suspected JD deer from >10 farms
 controls: 508 deer from 5 farms with no history of JD
 Analysed with on-line ROC curve programme
- Results: Se=85%, Sp=99.8% when PPDj and PPAg use in series at cut point of 50
- Case study (434 hind herd) using ELISA test-and-cull for 4 years, reactivity dropped from 40% to >3%, production increased and deaths reduced in young deer twice tested negative

In support -
- Shows the test can identify clinical JD
- Specificity appears high in control group
- Evidence for performance increase in test negative young deer

In critique -
- Tested population not representative of wider deer industry
- Nature of test population leads to exceptional performance of test
- No measures of variability around test performance estimates
- No measures of variability around animal performance estimates

Review: Stringer et al 2012

- Methods: cross sectional design, 38 herds NZ wide, 20 clinically normal yearling deer per herd, 757 samples, Bayesian absence of gold standard approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity (%)</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paralisa</td>
<td>19 (10 - 30)</td>
<td>94 (93 – 96)</td>
</tr>
<tr>
<td>Faecal culture</td>
<td>77 (61 - 92)</td>
<td>99 (99 - 100)</td>
</tr>
</tbody>
</table>

- Conclusion: limited application as a herd classification tool. FC Se high?
Review: Stringer et al 2012

- **In support** -
 - Valid, well defined approach
 - Reasonable estimates of performance in population of interest
 - Good counterpoint to paper 1

- **In critique** -
 - Herd classification scheme is unlikely to be implemented by Deer Industry
 - External sourcing of young replacement hinds is not that common
 - Se of FC is high suggesting ‘balance of results’ may be a little out

Review: Rendel et al 2012

- **Aim:** Develop a protocol for JD control in Landcorp’s ~60,000 hind deer herd
- **Methods:** DEERSelect and Paralisa data for 4 studs (hinds and stags)
 - ASREML model to quantify value of test and cull at a variety of test positive rates and JD influenced weaning rates, and growth rate depressions
- ~8,000 hind test results, ~3,500 stag test results
- Initial positive rates to Paralisa were high - most at least 15% and up to 37%
- Rates then tended to drop sharply in the following year or 2

Recommendations
- T&C where JD ↓ weaning rate by >6% & ↓ offspring growth rate
- Where positive rate >20%, T&C if
 - weaning rate ↓ 8% due to JD
 - weaning rate ↓ 6% and growth rates ↓ 30g/day due to JD
- Breeding values for JD heritability of limited value

Review: O’Brien et al 2013

- **Aim:** Define performance criteria for qPCR and Paralisa
- **Method:**
 - Compare qPCR against bovine proficiency panel samples from US National Vet Services Laboratory
 - Correlate qPCR and histopathological lesion score
 - Correlate Paralisa values with qPCR measured shedding levels
 - Estimate sensitivity and specificity of Paralisa against qPCR
- 72 proficiency panel samples
- 40 qPCR & histo matched samples
- 663 qPCR & paralisa matched samples
Review: O’Brien et al 2013

- Results
 - qPCR essentially equivalent to culture (correlation of 0.93)
 - qPCR and histopathology less correlated (0.73)
 - Paralisa sensitivity: 62 – 98% depending on shedding level identifies most deer shedding MAP, virtually all high shedders
 - Paralisa specificity: 70 – 58% depending on shedding level
 Pays to back up test suspicious results in high value animals with qPCR

- In support -
 - Valid, well defined approach
 - Performance stats in the population the test is usually used in
 - Good counterpoint to previous papers
 - Practical application informed by these results

- In critique -
 - Lacks confidence intervals
 - ‘True’ estimate of specificity under these conditions

qPCR & Johnin

- 663 bloods submitted for routine JD testing by Paralisa

qPCR & PPA

- 663 bloods submitted for routine JD testing by Paralisa
Aim:
Compare the ability of the Paralisa and Parachek 2 serum ELISA test to detect faecal shedding as measured by qPCR under conditions typical in typical venison production herds.

Materials and methods
- 8 herds identified by JML with potentially high rates of JD
- 883 (2013) and 1354 (2014) deer tested, virtually all R2 hinds
- Screened with Paralisa test, positives tested by Parachek2, qPCR & Paralisa
- Overall screen test prevalence of 8.6% (2013) and 7.8% (2014)
- Farm-level screen prevalence range 1.4% - 49.6%

Sensitivity results
- Paralisa consistently higher than Parachek2
- But difference was small and not statistically significant
- Range from ~40% at 10^2 to 100% at 10^4 and 78% at 10^6

Specificity results
- Paralisa usually slightly higher than Parachek2
- But difference was small and not statistically significant
- Range from ~79% at 10^2 to 66% at 10^4 and 69% at 10^6
JDRC study

- Conclusion
 - Function of the two blood tests under these conditions is similar
 - Both good at picking up highly infectious deer
 - Both have false positive rates that require consideration – Specifically, is the cost of culling those animals low?

JML database validation

- **Aim**
 - Quantify relationship between JDSLN, on-farm JD and farmer concern

- **Method**
 - Phone interview of 121 farmers
 - Full spectrum of JDSLN rates
 - Demographic and farm information
 - 1000minds data – multiple criteria decision analysis tool
 - Indirectly measures farmers value of JD relative to higher weaning rate and higher venison schedule
 - Economic estimate of impact of JD on-farm
JML database validation

- Results: respondents fell into three distinct groups –
 - Little or no concern about JD
 - Low JD-related death rates on-farm and low JD-suspect lesion rates
 - Critical concern about JD –
 - Highest JD-related death rates on-farm and highest JD-suspect lesion rates
 - Moderate, high or very high concern regarding JD –
 - Intermediate JD-related death rates on-farm and moderate JD-suspect lesion rates

- Conclusion:
 - Database can be used to identify high-risk farms
 - Focus on a JDSLN rate of 2% or higher will prioritise high risk farms
 - 77% of farmers felt the impact of JD in their deer was declining or already low
 - 64% of farmers felt parasites were an equal or larger issue than JD
 - The cost of JD per farm averaged $3,215, peaked at $53,015
 - Meat inspectors record ~ 70% of JDSLN (previous study)
Case study background

- Farm background
 - 500 hind breeding and finishing unit in south Canterbury
 - First noticed deaths in 2000
 - Deaths peaked in 2005 at 25/yr (5%)
 - Beatrix diagnosed JD with 5 post mortems in that same year
 - Lesion positive carcasses 8% lighter than those without
 - Loss of $14,000/yr or $7.31 per deer stock unit in 2005

Peak losses

- Losses to weaning
- Sub-clinical losses
- Clinical losses
- Cost of testing
- Total cost (1 year)

Intervention

- Implemented Paralisa testing of R2s in 2005
- No other significant initiatives to control JD
- Concurrent decline in clinical rate
- After 7 years deaths down to 1 or 2, loss of $1,000
- Cost of testing @$2,200/yr

Impact of blood testing

- Decline in Paralisa positive rate in R2s over 7 years
Annual cost after 7 years

- Cost-benefit? – how bad would disease have got?
- What cost for a culled positive animal?

Continued blood testing

- Decline in Paralisa positive rate in R2s over 10 years

Post peak test results

- Annual Paralisa positive rate post peak in disease
 Draw a trend line through this data

What have we seen?

- Has there been enough shedding to transmit infection?
- How many false positives would we expect?
- Depends on prevalence – as p↓ False positives ↑
- Expect deer infected during the peak to go clinical over some years
- Herd owner:
 “Clinical JD was worst in 2005. I’ve seen a downward trend since then with only one hiccup in 2012 (couple of clinical cases after a long wet spell of weather). As the test positives declined, so did the number of clinical cases”.
On-farm trends in JD

Nature vs intervention

- Characteristic epidemic outbreak to some degree
- Impact reduced by intervention
- Cost-effectiveness needs case-by-case analysis
- Heavily dependent on extent of initial outbreak
Practical application

- Informing about
 - The very first step...any lesions?
 - Ones and twos as surveillance
 - Diagnosing the cause of a tail end mob
 - Routine selection criteria for replacement hinds - intervention
 - Status of animals in trade
 - Whole herd testing
 - Stag testing prior to sale
 - Diagnosing a high non-specific Tb reactor rate
 - Industry level reporting

Scenario 1: surveillance

- Monitoring to ensure no issue emerging
 - On-going activity as part of animal health management
 - JDLSN rate
 - Offal pit side post-mortem inspections
 - Productive and reproductive performance of deer unit
 - No additional cost
 - Part of good farm management
 - Early detection hugely influential in overall outbreak severity
 - Sensitive and specific with combined vet and farmer input

Scenario 2: routine R2 testing

- Reduce chance of infected hinds entering breeding herd
 - Selection criteria for replacement hinds
 - Common activity as part of animal health management
 - After all other selection criteria have been met to minimize cost
 - Valuable for several years following an outbreak
 - Additional cost
 - Important to consider opportunity cost of false positives
 - Won’t detect all infected hinds
 - At what rate do we consider less frequent testing?
 - In combination with surveillance to ensure low prevalence remains

Scenario 3: pre-sale testing

- Blood testing to reduce between farm transmission
 - Moderately effective
 - Stock usually in good health – so low prev, low PPV
 - More value in trading stock from previously diseased farms
 - Quarantine/isolate and monitor following transport
 - Combine with other measures of JD risk – JML or other testing data
 - Response to a positive result
 - qPCR to quantify shedding
 - Only take negative animals (given other infected deer may well remain)
 - No sale or reduced price
Scenario 4: pre-sale stag testing

- Small numbers of high value young animals
 - Seeking maximum test performance - combine ELISA and qPCR (pooled?)
 - Price less of an issue
 - Stock usually in fine health with minimal stress
 - Young age means disease unlikely to have developed
 - May be more merit in testing them following their first rut
 - Combine with other measures of JD risk – JML or other testing data
 - Valuable supporting info from the history of existing on-farm JD control

Scenario 5: stock class level testing

- Blood testing to reduce impact of outbreak
 - Early diagnosis and intervention will minimize length and severity of outbreak
 - Focus on stock class and mobs with highest losses
 - Work outward from there comparing each subsequent lot of results
 - Plot pattern of the focus of infection in the herd
 - Accept removing some false negatives to minimize risk as far and fast as possible
 - Immediate removal from herd of test positive animals

Scenario 6: youngest stock

- Somewhat dependent on disease levels for farm in question
- 9 months old minimum age, recommended for major issue farms
 - Going into winter to minimize seasonal impact on clinical rate
- Post winter for farms with less issue – more time for disease and immune response to develop with winter
- Overall minimizing contamination
- Of course can qPCR at any time
- Case of a fawn in April shedding 2 million bugs/g (qPCR)

Scenario 7: Tb reactors

- Test non-specific Tb reactors for JD
- Good opportunity for surveillance
 - Likely reactors have been exposed to something – focused way to check for JD
- Potential selection criteria in some cases
Estimated cost model

<table>
<thead>
<tr>
<th>Class</th>
<th>Year</th>
<th>Prev</th>
<th>Test(s)</th>
<th>Cost ($400/deer)</th>
<th>Per High shedder</th>
<th>Cost ($100/shedder)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 hinds</td>
<td>1</td>
<td>5 → 1.1</td>
<td>Paralisa</td>
<td>$171,000</td>
<td>$4,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.1 → 0.2</td>
<td>Paralisa</td>
<td>$165,000</td>
<td>$5,700</td>
<td></td>
</tr>
<tr>
<td>1000 hinds</td>
<td>1</td>
<td>5 → 1.1</td>
<td>P & qPCR</td>
<td>$45,000</td>
<td>$1,165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.1 → 0.2</td>
<td>P & qPCR</td>
<td>$33,000</td>
<td>$3,807</td>
<td></td>
</tr>
<tr>
<td>200 R2s</td>
<td>1</td>
<td>5 → 1.1</td>
<td>Paralisa</td>
<td>$34,000</td>
<td>$4,390</td>
<td>$10,810</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5 → 0.6</td>
<td>Paralisa</td>
<td>$33,000</td>
<td>$7,800</td>
<td>$10,605</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 → 0.2</td>
<td>Paralisa</td>
<td>$33,000</td>
<td>$9,185</td>
<td>$10,482</td>
</tr>
<tr>
<td>200 R2s</td>
<td>1</td>
<td>5 → 1.1</td>
<td>P & qPCR</td>
<td>$9,000</td>
<td>$1,165</td>
<td>$6,748</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5 → 0.6</td>
<td>P & qPCR</td>
<td>$7,500</td>
<td>$1,873</td>
<td>$6,294</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 → 0.2</td>
<td>P & qPCR</td>
<td>$6,700</td>
<td>$3,330</td>
<td>$6,060</td>
</tr>
</tbody>
</table>

Working through examples

- Routine testing of R2s over 5 years
 - Condition of interest:?
 - How many deer tested
 - How many positives
 - How many false positives

- Stag pre-sale testing over 3 years
 - Condition of interest: minimal chance of developing disease
 - Sensitivity
 - Specificity
 - Likelihood removed genuinely

- A single whole herd test
 - Condition of interest: ?
 - Sensitivity and specificity
 - How many positive identified, how many false positive?

Conclusion

- All available tests are useful in the control of JD when used appropriately
- Get the mix of tests right for best cost-benefit ratio
- Use scenarios as a guideline, advice always available from JML and DRL
- For maximum benefit, integrate with wider herd health and farm management
- Booklet of suggested guidelines to follow