The Dynamics of Discrimination: Theory and Evidence*

J. Aislinn Bohren† Alex Imas‡ Michael Rosenberg§

July 2018

We model the dynamics of discrimination and show how its evolution can identify the underlying source. We test these theoretical predictions in a field experiment on a large online platform where users post content that is evaluated by other users on the platform. We assign posts to accounts that exogenously vary by gender and evaluation histories. With no prior evaluations, women face significant discrimination. However, following a sequence of positive evaluations, the direction of discrimination reverses: women’s posts are favored over men’s. Interpreting these results through the lens of our model, this dynamic reversal implies discrimination driven by biased beliefs.

KEYWORDS: Discrimination, Dynamic Behavior, Field Experiment
JEL: J16, D83, D9

*We thank Nageeb Ali, Linda Babcock, Michael Callen, Hanming Fang, Uri Gneezy, Polina Imas, Nicola Gennaioli, Gregor Jarosch, Emir Kamenica, Gene Kucher, George Loewenstein, Kristof Madarasz, Craig McIntosh, Margaret Meyer, Siqi Pan, Sally Sadoff, Lise Vesterlund, Leeat Yariv, and seminar and conference participants at the AEA Winter Meetings, Bocconi University, Carnegie Mellon, Drexel, ESSET Gerzensee, Harvard, SJDM Annual Meeting, NYU, Northwestern, Penn State, Princeton, Stanford SITE, Temple University, University of Chicago, University of Pennsylvania, UCLA, UCSD and University of Pittsburgh for helpful comments. We thank Mustafa Dogan, Daniel Hauser, Conrad Kosowski, Catherine Lillis, Suneil Parimoo, Jaesung Son, and Lucia Zhang for excellent research assistance. Finally, we would like to thank the team at Stack Overflow for helpful and illuminating discussions, and for providing us with the data for our analyses. The project received IRB approval at Carnegie Mellon and University of Pennsylvania. The experiment was pre-registered in the AEA RCT Registry (#AEARCTR-0000950).
†Carnegie Mellon University and University of Pennsylvania; corresponding author: abohren@sas.upenn.edu
‡Carnegie Mellon University
§Wayfair Inc.
1 Introduction

A rich literature has documented discrimination in a wide range of contexts (Bertrand and Duflo 2016). These empirical studies have mostly focused on static settings: individuals are evaluated based on the quality of a single piece of output or a single interaction, with no information on prior evaluations from similar contexts. As prior work has noted, it is difficult to identify the underlying source of discrimination from such static settings, as different sources generate the same patterns of observable behavior (Fang and Moro 2011). In this paper, we develop a theoretical framework to show how the dynamics of discrimination can be used to identify its underlying source, and test these predictions in a field experiment on a large online platform.

Suppose individuals repeatedly perform tasks that generate output, and in the process, produce an observable history of evaluations on these tasks. For example, a man and a woman are employed at a firm and are promoted based on how managers evaluate their output. The number of promotions or positive performance evaluations corresponds to the history of evaluations. Alternatively, a male and female worker contribute to crowdsourcing projects on a platform such as GitHub, and each has an observable reputation based on prior evaluations of his or her contributions. When the workers are starting out and lack evaluations of prior performance, initial discrimination occurs if the woman’s output is less likely to earn a promotion or receive a positive evaluation than the man’s, despite the appearance of similar quality. Now suppose the workers continue producing output, and receive similar sequences of evaluations. Does discrimination persist in this dynamic setting, is it mitigated, or does it even reverse?

We demonstrate that the answer to this question depends critically on the underlying source of discrimination. If the source is belief-based – for example, the quality of output is imperfectly observed and evaluators believe that on average, men have higher abilities than women – then observing prior evaluations will reduce discrimination against women, relative to men with similar evaluations. This dynamic effect operates through two channels. First, prior evaluations provide signals of a worker’s ability, which reduces the impact of perceived group statistics (e.g. beliefs about average ability) on how the worker’s subsequent output is evaluated.1 As a result, observing

1This is the channel typically considered in the literature on statistical discrimination, i.e. belief-based discrimination with correct beliefs (e.g. Altonji and Pierret (2001)). The discrimination literature in social psychology also discusses the role of individual-specific information in reducing reliance on
prior evaluations will mitigate discrimination against a woman’s output, relative to a man who has similar prior evaluations.

Second, and novel to our theoretical framework, the informational content of these signals is endogenously determined by the equilibrium behavior of prior evaluators. When initial beliefs favor men, a woman needs to produce higher quality output in order to overcome the initial disparity in beliefs and receive a similar evaluation as a man – for example, to be promoted or have her output accepted. This speeds up the mitigation of discrimination for evaluators who are aware that a woman had to meet a higher standard to receive a given evaluation. These evaluators may even come to believe that the woman is of higher ability than a man with a similar evaluation history – favoring her future output over the man’s and reversing the direction of discrimination in later periods. In fact, observing a reversal can help disentangle whether evaluators’ models are correct or misspecified. We show theoretically that a reversal provides evidence for bias. In contrast to belief-based sources, if discrimination is caused by a taste or preference against rewarding or interacting with women (Becker 1957), then a woman who receives a similar sequence of evaluations to a man will continue to face discrimination in future periods.

Our theoretical framework formalizes the relationship between the dynamic pattern of discrimination, which is based on observable evaluations, and the underlying sources of discrimination, which are unobservable and depend on the primitives of preferences and beliefs. We define discrimination as the difference between the evaluations of output for men and women, conditional on having similar evaluation histories and current signals of quality. We focus on three potential sources of discrimination: preference-based, belief-based with correct beliefs, and belief-based with misspecified, or biased beliefs. The theoretical literature on belief-based sources has largely focused on the correctly specified case (Fang and Moro 2011; Phelps 1972), where evaluators are partial towards men based on correct beliefs about the underlying distributions. Theoretically-motivated empirical work has largely followed suit (Altonji and Pierret 2001; Knowles, Persico, and Todd 2001). However, discrimination can also be driven by misspecified, biased beliefs. Recent research has shown that systematic biases in judgment can lead to incorrect stereotypes against a particular group (Bordalo, Coffman, Gennaioli, and Shleifer 2016b; Fryer and Jackson 2008; Schwartzstein 2014). As using group statistics for judgment (see Fiske (1998) for review).
we later discuss, distinguishing between these underlying sources has significant implications for both policy and welfare.

We demonstrate that while preference and belief-based sources make the same predictions in static settings, they make contrasting predictions across periods: depending on its source, discrimination against a particular group can persist, mitigate, or reverse in response to observing prior evaluations of output. We derive an impossibility result: if discrimination is statistical – based on common knowledge of correct beliefs – then observing women and men with similar evaluations will mitigate discrimination, but will never lead to a reversal. This result implies that observing a dynamic reversal provides evidence for belief-based discrimination with bias, since it also rules out standard preference-based sources. We then present a possibility result, illustrating how one particular form of bias – where some evaluators hold misspecified stereotypes against a group and other evaluators are aware of them – can lead to a dynamic reversal of discrimination. Our theoretical framework also formalizes how manipulating the level of subjectivity in judgment (Fiske, Bersoff, Borgida, Deaux, and Heilman 1991) – modeled as the precision in signals of quality – can provide further evidence for the source of discrimination. Specifically, decreasing subjectivity in judgment will mitigate belief-based discrimination, as beliefs about group statistics play a smaller role in assessing quality when there is less uncertainty, but will not affect preference-based discrimination, which will persist even if quality is perfectly observable.

We illustrate how these theoretical predictions can be tested using a field experiment on a large online Q&A forum. The forum is a prominent resource for students and researchers in STEM fields – it has nearly 350,000 users, and belongs to a family of Q&A forums that has over 3 million questions asked and 4 million answers posted per year – which makes documenting the existence and source of gender discrimination in this setting particularly important. In our experimental setting, users post mathematics questions or answers. These posts are evaluated – voted up or down – by other users on the site. A user’s reputation provides a summary statistic of prior evaluations of his or her past posts: higher reputation corresponds to more positive votes and fewer negative votes on past content. Importantly, reputation is publicly observable and highly visible. Both the username and the level of reputation are prominently displayed adjacent to any post. Since reputation is generated by evaluations of previous posts, this setting mirrors the social learning in our theoretical framework. Reputation is also valuable –
it can be used as currency to pay other users for providing answers and promotes users to higher ranks on the forum, with each rank corresponding to a new set of privileges. This includes privileges to “supervise” other users – for example, to edit, flag and close other users’ posts. Similar to promotion decisions within a firm, evaluations on the forum are consequential because reputation gives users greater influence over the evaluators. Therefore, the link between evaluations and advancement on the forum mirrors many labor market settings.

In our experiment, we posted original mathematics questions on created accounts that exogenously vary in the gender of the username and the reputation of the user. Our setting is well-suited for exploring the dynamics of discrimination because we are able to exogenously vary the evaluation histories of the users, as captured by their publicly observable reputations. To exogenously vary reputation, half of the questions were posted to novice accounts that did not have prior evaluations. We manually built the reputations of the other half of the accounts by posting content until their reputations reached the top 25th percentile on the forum. After the account reached a high reputation, we randomly reassigned the gender of the username to avoid endogeneity issues and ensure that the underlying informational content of reputation is the same for both genders. We then posted the other half of the questions to these advanced accounts. To test the dynamic predictions of the different sources of discrimination, we compare discrimination on novice and advanced question posts.

We also posted answers to other users’ posts using another set of novice accounts that exogenously vary in the gender of the username. This allows us to test the comparative static on how the level of subjectivity involved in judging posts (precision of the signal) affects discrimination. While the forum’s guidelines for voting on questions are based on fairly subjective criteria – whether the question is interesting, useful, or well-researched – the guideline for voting on answers is clear-cut – whether the answer is correct or not. If discrimination is preference-based, this distinction should not matter: similar levels of initial discrimination should be observed for both question and answer posts. In contrast, if discrimination is belief-based, then reducing uncertainty over the standards by which a post is judged should mitigate it. To test this prediction, we compare discrimination on question and answer posts.

We measure discrimination as the difference in reputation earned or net votes on posts by accounts with male versus female usernames. We find no significant discrimi-
nation on answer posts: answers posted by females with no prior evaluations earned a similar amount of reputation and received a similar number of positive votes as answers posted by males with no evaluations. In contrast, we find that females face significant initial discrimination when the judgment of quality is more subjective: questions posted to female accounts with no prior evaluations are evaluated less favorably – earning less reputation and fewer positive votes – than questions posted to similar male accounts. Directly comparing questions and answers produces a significant interaction, indicating greater discrimination against females when judgments of quality are more subjective. This is consistent with belief-based but not preference-based discrimination.

We then explore the dynamics of discrimination. We also find significant discrimination on questions posted to advanced accounts, but the direction of discrimination reverses: questions posted to advanced female accounts earn more reputation than those posted by similarly advanced males. This produces a significant interaction effect between the user’s rank in the hierarchy of the forum (Novice or Advanced) and their gender. Interpreting these results through the lens of our model implies that initial discrimination is belief-based, with bias playing a role in the evaluation process.

In addition to our experimental results, we exploit two additional data sources. We obtained a proprietary dataset from the forum that contains additional information about the users who evaluate the content posted in our experiment. We also obtained a large observational dataset from the forum, and ran an algorithm to infer gender from usernames. These data allowed us to run additional robustness tests, as well as to explore gender differences in attrition and the variance of ability. We find no significant evidence of male and female users with similar initial evaluations leaving the forum at different rates, or of males and females having different variances in proxies for their abilities. To complement the experimental results, we compare discrimination by type of post and reputation in the observational data. We find patterns of discrimination that are analogous to the experiment, including both the dynamic reversal for questions and a lack of discrimination for answers.²

The findings presented here highlight the importance of studying discrimination in dynamic settings, as discrimination in favor of a certain group – or a lack thereof – at any given stage can either be a function of or precursor to discrimination against that

²In Appendix C, we used the observational data to explore how one form of biased beliefs – misspecified ‘stereotypes’ driven by representativeness Bordalo et al. (2016b) – can generate the observed results.
same group at a different stage. Both in academic and popular discourse, a common argument used to illustrate the lack of discrimination against a group is to point to individuals from that group who have made it to positions of prominence. Our theoretical framework and empirical evidence highlight the flaw of this argument: if individuals are aware that members of a group face discrimination at an earlier stage, there may be Bayesian foundations for favoring members of that group at later stages. For example, in a much-discussed paper, Williams and Ceci (2015) find that accomplished female academics in STEM fields are favored over male academics. The authors state that ‘these results suggest it is a propitious time for women launching careers in academic science.’ In contrast, other work has found significant discrimination against female students in STEM (Moss-Racusin, Dovidio, Brescoll, Graham, and Handelsman 2012; Reuben, Sapienza, and Zingales 2014). While these sets of findings appear contradictory, our results suggest that discrimination in favor of accomplished female professors may actually be a function of discrimination against women earlier in the pipeline.

Our results are also useful for assessing the welfare consequences of discrimination. While the welfare implications of discrimination driven by preferences or correct beliefs are unclear, the welfare implication of discrimination caused by biased beliefs is straightforward – it is inefficient. Even if a discrimination reversal occurs, so that women eventually receive higher evaluations than men with similar evaluation histories, these women are still receiving lower evaluations than men with similar signal histories. Therefore, the reversal does not offset initial discrimination. A woman who is favored over a man with similar prior evaluations should receive an even higher evaluation than she does, given unbiased beliefs about her expected ability. Perhaps even more importantly, women may inefficiently be selected out of the process at earlier stages than men with similar abilities due to initial discrimination. That is, women and men with similar signal histories will not achieve the same level of success – the women will be systematically underrated compared to men who generate similar output.

Finally, these dynamic insights are important to keep in mind when evaluating potential interventions to reduce discrimination, particularly when it comes to beliefs about these interventions. For example, perceived lower standards for target groups to advance will impact the future assessments of members of these groups. Evaluators’ beliefs – either correct or incorrect – about how these thresholds differ by group can result in greater subsequent discrimination against. In fact, evidence suggests that
individuals systematically overestimate the prevalence of affirmative action policies and extent to which they lower evaluation standards (Kravitz and Platania 1993). This highlights the importance of ensuring that the population who evaluates members of a target group have correct beliefs about the group they are evaluating and the informational content of their past accomplishments.

Related Literature. Discrimination has been documented in a wide range of settings, including hiring (Bartos, Bauer, Chytilova, and Matejka 2016; Riach and Rich 2006), housing (Ewens, Tomlin, and Wang 2014), and service markets (Gneezy, List, and Price 2012), and against groups based on race (Bertrand and Mullainathan 2004; Parsons, Sulaeman, Yates, and Hamermesh 2011), ethnicity (Fershtman and Gneezy 2001; Milkman, Akinola, and Chugh 2012) and gender (Goldin and Rouse 2000; Moss-Racusin et al. 2012). The few studies that use observational data to attempt to identify the source of discrimination typically compare the evaluations of a state (for example, whether output is accepted or rejected) to the true underlying value of that state (i.e. whether the output was actually high or low quality). For example, Knowles et al. (2001) compare decisions of law enforcement to search a motor vehicle to the success rate of the search; similarities in success rates across races led the authors to conclude that higher search rates for African-American drivers are due to statistical rather than preference-based discrimination (see Anwar and Fang (2006); Arnold, Dobbie, and Yang (2017) for similar tests). In recent work, Sarsons (2017) uses an event study approach for matched samples of surgeons to explore belief-based gender discrimination in physician referrals. She concludes that the observed pattern of gender discrimination is not consistent with Bayesian learning with respect to accurate beliefs about the distribution of surgeon ability. However, in many observational settings, it is difficult or impossible to construct matched samples or to observe the true value of the underlying state at an individual level. Further, observational data often faces endogeneity issues that preclude the causal identification of discrimination.

Due to endogeneity issues, many researchers have employed field experiments to study discrimination. Field experiments have been successful in causally identifying the incidence of discrimination, but most cannot identify the source of this discrimination (Bertrand and Duflo 2016). One notable exception is List (2004), who documents that minorities receive inferior initial and final offers when bargaining in a market for sports cards. He supplements these data with a series of artefactual and framed field
experiments to identify the source of this discrimination. Data from dictator games, market and auction experiments provide support for belief-based discrimination, and rule out preference-based sources. This method demonstrates how eliciting the true value of the underlying state for different groups (e.g. the distribution of reservation prices across races) can identify the source of discrimination in a static setting. We provide a complementary approach that illustrates how dynamic data and variation in the subjectivity of judgement can be used to achieve the same goal.

Our findings shed light on the mechanism behind previously documented discrimination reversals. In labor market settings, Booth, Francesconi, and Frank (1999); Groot and van den Brink (1996); Lewis (1986); Petersen and Saporta (2004) find discrimination against women at the initial hiring stage for promotable jobs, but conditional on being hired, they find that women are more likely to be promoted. Rosette and Tost (2010) document a female leadership premium, showing that in contrast to women at lower levels within an organization, women in high positions are seen as more effective than men at similar positions.\footnote{Leslie, Manchester, and Dahm (2017) argue that this leadership premium extends to perceived potential as well. In their paper, women who are perceived to be able to rise through the ranks are judged to add more value to the company than men with similarly high potential; in contrast, low potential women are judged to add less value than low potential men. Importantly, substantially fewer women are judged as being able to rise through the ranks than men. See also Beaman, Chattopadhyay, Duflo, Pande, and Topalova (2009) for the effect of exposure to female leaders on perceived effectiveness.} In a field experiment, Ayalew, Manian, and Sheth (2018) show that workers are more likely to follow a man’s advice than a woman’s; however, this result reverses when they are informed that the woman or man has achieved a high level position in a job outside of the experiment. In the art market, Bocart, Gertsberg, and Pownall (2018) document that while female artists are less likely to transition from primary to secondary art markets, those who do command a 4.4% premium on artworks sold. In academia, Mengel, Sauermann, and Zolitz (2017) find that junior female instructors systematically receive lower teaching evaluations compared to male instructors for similar courses, but at the senior level, female instructors receive higher evaluations than male instructors. While these results could be driven by institutional factors, our theoretical and empirical findings suggest that the reversals may be driven by belief-based discrimination with bias (for example, biased priors or stereotypes). Consistent with this mechanism, Mengel et al. (2017) find that initial discrimination against females is higher in courses with math-related content, where distorted gender stereotypes are more likely to play a role (Coffman 2014).
The paper proceeds as follows. Section 2 presents the theoretical model, Section 3 presents the experiment and analysis of observational data, while Section 4 discusses the implications for policy and concludes. All proofs are in Appendix A.1.

2 A Dynamic Model of Discrimination

We develop a dynamic model of discrimination in which evaluators learn about a worker’s ability from his or her group identity and past performance, and use this information to evaluate the quality of the worker’s output. We have chosen for convenience to use gender as the group identity and study discrimination against Females compared to Males in our model, since we study gender discrimination in the experiment.

2.1 Model

Worker. Consider a worker who has observable group identity $g \in \{F, M\}$ and unobservable ability $a \sim N(\mu_g, 1/\tau_a)$, with mean $\mu_g \in \mathbb{R}$ and precision $\tau_a > 0$. The worker completes a sequence of tasks $t = 1, 2, \ldots$. Each task has hidden quality $q_t = a + \varepsilon_t$, where $\varepsilon_t \sim N(0, 1/\tau_\varepsilon)$ is an independent random shock with precision $\tau_\varepsilon > 1$. Ability is fixed across time, and higher ability generates higher expected quality.

Evaluators. A set of evaluators evaluate the worker’s performance. For simplicity, assume that there is one evaluator per task, who reports evaluation $v_t \in \mathbb{R}$. Before evaluating task t, the evaluator observes the worker’s gender g and publicly observable evaluations on past tasks, where $h_1 = \emptyset$ and $h_t = (v_1, \ldots, v_{t-1})$ for $t > 1$. The evaluator observes signal $s_t = q_t + \eta_t$ of the quality of the current task, where $\eta_t \sim N(0, 1/\tau_\eta)$ is an independent random shock with precision $\tau_\eta > 0$. Lower precision allows for greater uncertainty in the underlying quality, conditional on the signal. The level of precision can be interpreted as the amount of subjectivity in judgement involved in the evaluation of quality, with lower precision implying greater subjectivity. We motivate and discuss this interpretation in further detail in Section 2.2.

An evaluator’s type $\theta_i \in \Theta$ determines her preferences and model of inference, where Θ is a finite set of evaluator types. The evaluator receives payoff $-(v - (q - c^i_g))^2$ from reporting evaluation v on a task of quality q from a worker of gender g, where c^i_g is a taste parameter. Normalize $c^i_M = 0$. A model of inference includes the evaluator’s subjective belief about the relationship between gender and ability and her
subjective belief about other evaluators’ types. The evaluator has subjective prior belief $\hat{\mu}_g$ about the average ability of a worker of gender g. We allow for the possibility that the evaluator has a misspecified model of the relationship between gender and ability, in that the evaluator’s subjective belief may differ from the true population average ability, $\hat{\mu}_g \neq \mu_g$. Finally, the evaluator’s model of other evaluators is captured by her subjective distribution over types, $\hat{\pi}_i \in \Delta(\Theta)$. Let $\pi \in \Delta(\Theta)$ denote the true distribution over types. A misspecified model of how others evaluate workers is captured by a subjective belief about the type distribution that differs from the true distribution, $\hat{\pi}_i \neq \pi$. We discuss the settings this framework can capture in further detail in Section 2.2.

An evaluator is partial towards men if she favors male workers, either through her subjective belief about the distribution of ability by gender, which we refer to as belief-based partiality, or through preferences, which we refer to as preference-based partiality. In the first case, an evaluator’s subjective belief about the average ability of male workers is higher than her subjective belief about the average ability of female workers. This subjective belief can be biased or unbiased, based on whether it coincides with the true population average for each gender.

Definition 1 (Belief-Based Partiality). An evaluator of type θ_i has belief-based partiality towards men if $\hat{\mu}_M^i > \hat{\mu}_F^i$. This partiality is unbiased if $\hat{\mu}_M^i = \mu_M$ and $\hat{\mu}_F^i = \mu_F$, and otherwise is biased.

In the second case, an evaluator has a ‘taste’ for male workers, meaning that she has a disamenity value associated with tasks produced by female workers.

Definition 2 (Preference-Based Partiality). An evaluator of type θ_i has a preference-based partiality towards men if $c_i^F > 0$.

It is straightforward to define aggregate analogues. There is aggregate belief-based partiality towards men if $E_{\pi}[\hat{\mu}_M^i] > E_{\pi}[\hat{\mu}_F^i]$ and aggregate preference-based partiality towards men if $E_{\pi}[c_i^F] > 0$, where the expectation is taken with respect to the true distribution over types. Aggregate belief-based partiality is unbiased if $E_{\pi}[\hat{\mu}_M^i] = \mu_M$ and $E_{\pi}[\hat{\mu}_F^i] = \mu_F$, and otherwise is biased. It is possible for individual types to exhibit partiality or bias, but for aggregate preferences and beliefs to be impartial or unbiased.\(^4\)

\(^4\)For example, suppose each type’s initial belief about mean ability is the true mean plus an idiosyn-
The evaluator uses the evaluation history, which is based on the assessments of other evaluators, to learn about the worker’s ability, then combines this information about ability with the signal to learn about the quality of the current task. Her subjective posterior belief about quality is derived using Bayes rule, given her model of inference. The evaluator chooses the evaluation that maximizes her expected payoff with respect to this posterior. Let \(v_i(h, s, g) \) denote an evaluator of type \(\theta_i \)'s optimal evaluation when she observes gender \(g \), history \(h \) and signal \(s \).

Discrimination. Discrimination is the disparate evaluation of workers based on the group to which the worker belongs, i.e. gender, rather than on individual attributes, i.e. signal and history. In contrast to partiality, which is a property of the primitives of the model (preferences, beliefs), discrimination is a property of behavior. Let

\[
D_i(h, s) \equiv v_i(h, s, M) - v_i(h, s, F)
\]

denote the difference between a male’s and female’s evaluations from type \(\theta_i \) at evaluation history \(h \) and current signal \(s \), and \(D(h, s) \equiv E_{\pi}[D_i(h, s)] \) denote the expected difference in evaluations across all types. In our framework, gender discrimination occurs when a male and female worker with the same evaluation history and current signal receive different evaluations.

Definition 3 (Discrimination). A woman faces discrimination from type \(\theta_i \) at \((h, s)\) if \(D_i(h, s) > 0 \), and faces aggregate discrimination if \(D(h, s) > 0 \). A man faces (aggregate) discrimination if \(D_i(h, s) < 0 \) (\(D(h, s) < 0 \)).

We say discrimination decreases (i.e. between histories or across parameters) if the absolute value of the discrimination measure, \(|D(h, s)| \), decreases. A discrimination reversal occurs if there exist histories \(h \subset h' \) and signal \(s \) such that women face discrimination at \((h, s)\) and men face discrimination at \((h', s)\).

In the following sections, we explore how the different forms of partiality impact discrimination. We use these insights to illustrate how observable behavior (i.e. evaluations) can be used to identify the *source* of discrimination (i.e. preferences, beliefs).
2.2 Discussion of Model

Here, we discuss several features of the model and the types of settings it can capture.

Misspecified Models of Inference. The set-up for the evaluator’s model of inference builds on the framework of social learning with model misspecification developed in Bohren and Hauser (2018). This framework can capture broad classes of model misspecification, including an incorrect model of the relationship between ability and gender and an incorrect model about other evaluators’ beliefs or preferences. For example, the setting where all evaluators have common knowledge that they share the same preferences and beliefs is captured by a single type θ_1, $\pi(\theta_1) = 1$, who correctly believes that all other evaluators are this type, $\hat{\pi}_1(\theta_1) = 1$. This type’s subjective belief about average ability by gender may or may not be correct.

Alternatively, there may be heterogeneity in evaluators. For example, some evaluators may use a heuristic to form beliefs about the relationship between ability and gender, while other evaluators have a correct belief about average ability by gender. Evaluators who use a heuristic are likely not aware of their bias – otherwise, they would correct for it – and believe that other evaluators form beliefs in a similar manner (the bias blindspot (Pronin, Lin, and Ross 2002) or the false consensus effect (Ross, Greene, and House 1977)). Our framework can model this setting using a type θ_1 that has an incorrect subjective belief about average ability by gender, and an incorrect subjective belief that other evaluators are the same type, $\hat{\pi}_1(\theta_1) = 1$. The other type θ_2 has a correct subjective belief about the ability distribution for males and females, and can either accurately anticipate the presence of the biased type, $\hat{\pi}_2(\theta_1) = \pi(\theta_1)$, be unaware of the biased type, $\hat{\pi}_2(\theta_1) = 0$, or under- or overestimate its frequency, $0 < \hat{\pi}_2(\theta_1) < \pi(\theta_1)$ or $\hat{\pi}_2(\theta_1) > \pi(\theta_1)$. This type could also be aware that some evaluators are biased, but not understand the exact extent of the bias. Importantly, when there is heterogeneity in evaluators’ subjective beliefs about the relationship between gender and ability, then at least one type has a misspecified model of inference.

Belief-Based Discrimination. Theories of belief-based discrimination have typically focused on rational, or statistical, discrimination, where evaluators hold correct beliefs about aggregate group differences. These models fall into two broad categories that differ primarily in how group differences in beliefs arise – whether (i) group differences are exogenous and discrimination is due to imperfect information (Phelps 1972),
or (ii) group differences are “self-fulfilling” and discrimination is an equilibrium effect (Arrow 1973). In the first class of models, evaluators hold prior beliefs about workers’ abilities that differ by group identity, and use these group statistics to infer individual ability (Aigner and Cain 1977; Altonji and Pierret 2001; Lundberg and Startz 1983). Our model with correctly specified evaluators falls into this class. In the second class of models, ex-ante identical workers decide whether to engage in costly and unobservable skill acquisition. Discrimination arises when workers from different groups coordinate on equilibria with different levels of skill acquisition (Coate and Loury 1993; Fryer 2007). In contrast to the first class of models, there are also always equilibria in which both men and women acquire the same level of skill, and evaluators treat them identically.

Belief-based discrimination can also arise from systematically incorrect, or biased, beliefs, where evaluators hold misspecified models of group differences in the distributions of ability. Several models provide microfoundations for how such biased beliefs about group differences can arise and persist. Evaluators may form biased stereotypes of ability as a result of using the representative heuristic that exaggerate empirical reality (Bordalo et al. 2016b), due to selective attention that discounts how, for example, context affects behavior (Schwartzstein 2014), or because of course categorization of experiences with a particular group (Fryer and Jackson 2008). In our setting, such stereotyping corresponds to distortions in the subjective belief about average ability, \(\hat{\mu}_g \). As also noted in Schwartzstein (2014), the discrimination literature has tended to classify discrimination driven by distorted stereotypes as taste-based. However, we demonstrate that biased beliefs lead to patterns of discrimination that substantially differ from those that arise in taste-based models in which evaluators have animus towards a particular group (i.e. preference-based partiality). This is one reason we clearly distinguish between discrimination due to incorrect beliefs and discrimination due to preferences.

5 See Fang and Moro (2011) for a more thorough review of this literature.
6 For example, Price and Wolters (2010) suggest that their findings of own-race partiality of basketball referees are not driven by a preference against members of a particular group, but rather by implicit associations between race and the likelihood of violence. Such discrimination is classified as taste-based, because beliefs about these associations influence behavior subconsciously (Bertrand, Chugh, and Mullainathan 2005; G. Greenwald, E. McGhee, and L. K. Schwartz 1998).
Subjectivity of Judgment. Uncertainty over the assessment criteria – which we refer to as subjectivity in judgment – increases the variance of potential evaluations for a given level of an attribute (Olson, Ellis, and Zanna 1983) and reduces the expected consensus between evaluators (Kelley 1973). The social psychology literature argues that such subjectivity is “quite vulnerable to stereotypic biases” (Fiske et al. 1991) and increases the scope for discrimination (Biernat, Manis, and Nelson 1991; Danilov and Saccardo 2017; Snyder, Kleck, Strenta, and Mentzer 1979). Indeed, researchers have documented greater reliance on beliefs about group statistics when judgment is more subjective (see Fiske and Taylor 1991, for review). As judgement becomes more objective, the available information provides more precise signals about the underlying attribute. This decreases the reliance on group statistic in forming assessments, and therefore, reduces the potential for belief-based discrimination. Target groups anticipate greater scope for discrimination when judgment is more subjective, and in response, generate output with more objective assessment criteria (Parsons et al. 2011).

We model the level of subjectivity in judgment as the precision of the signal of quality, \(\tau_q \). Factors that increase subjectivity, such as uncertainty over the evaluation criteria and noisier information sources, decrease the precision of the signal. Our theoretical results match the empirical findings on subjective judgment: we will show that a decrease in signal precision leads to greater reliance on beliefs about group statistics to assess quality, and therefore, greater scope for belief-based discrimination.

2.3 Initial Discrimination

We first compare how belief-based and preference-based partiality impact initial evaluations. We show that a comparative static on how initial discrimination varies with the subjectivity of judgement (i.e. the precision of the signal) can distinguish between these two sources.

Consider the evaluation of the initial task from a worker of gender \(g \) by an evaluator who has subjective prior beliefs \(\hat{\mu}_F \) and \(\hat{\mu}_M \) about average ability by gender and preference parameter \(c_F \). Then the evaluator believes that quality is normally distributed, \(q_1 \sim N(\hat{\mu}_g, 1/\tau_q) \), where \(\tau_q \equiv \tau_a \tau_e / (\tau_a + \tau_e) \). The evaluator combines the subjective distribution of quality with the observed signal \(s_1 \), which has distribution \(s_1|q_1 \sim N(q_1, 1/\tau_q) \), and uses Bayes rule to form the posterior belief about quality.
The evaluator maximizes her expected payoff by choosing

\[v(h_1, s_1, g) = E[q_1 | h_1, s_1, g] - c_g = \frac{\tau_q \hat{\mu}_g + \tau_\eta s_1}{\tau_q + \tau_\eta} - c_g. \]

(1)

The evaluation \(v(h_1, s_1, g) \) is strictly increasing in \(s_1 \) and \(\hat{\mu}_g \) – higher signals and higher expected ability result in higher evaluations.

Initial discrimination depends on the evaluator’s preferences and prior beliefs about ability. From (1), initial discrimination is independent of the signal and equal to

\[D(h_1, s_1) = \left(\frac{\tau_q}{\tau_q + \tau_\eta} \right) (\hat{\mu}_M - \hat{\mu}_F) + c_F. \]

(2)

There is initial discrimination against females, i.e. \(D(h_1, s_1) > 0 \), if and only if the evaluator has belief-based or preference-based partiality, \(\hat{\mu}_F < \hat{\mu}_M \) or \(c_F > 0 \). Therefore, discrimination on the first task solely stems from an evaluator’s own partiality, rather than her beliefs about the partiality of other evaluators. It is not possible to identify the source of discrimination from a single round of evaluations – for any level of preference-based partiality, there exist prior beliefs about ability that lead to equivalent evaluations for each gender and an equivalent level of discrimination.\(^7\) Therefore, in order to identify the source of discrimination, we need to observe a richer cross-section of evaluations.

We show that varying the level of subjectivity in judgement can identify whether discrimination is due to preference-based or belief-based partiality.

Proposition 1 (Subjectivity of Judgement). *If the evaluator has belief-based partiality, initial discrimination is decreasing in the precision of the signal \(\tau_\eta \). If the evaluator does not have belief-based partiality, initial discrimination is constant in \(\tau_\eta \). As the signal becomes perfectly objective \((\tau_\eta \to \infty) \), there is initial discrimination if and only if the evaluator has preference-based partiality.*

As the signal provides more precise information about quality, the evaluator’s belief about the worker’s underlying ability plays a smaller role in the evaluation. There-

\(^7\)For any evaluator with belief-based partiality \(\hat{\mu}_M > \hat{\mu}_F \) and no preference-based partiality, \(c_F = 0 \), an evaluator with preference-based partiality \(c'_F = \frac{\tau_q (\hat{\mu}_M - \hat{\mu}_F)}{\tau_q + \tau_\eta} \) and no belief-based partiality, \(\hat{\mu}_F = \hat{\mu}'_M = \hat{\mu}_M \) chooses equivalent evaluations and exhibits an equivalent level of discrimination. This follows immediately from (1) and (2).
fore, belief-based partiality has a smaller impact on evaluations and there is less discrimination. In the limit, when quality is perfectly observable, differences in beliefs about ability do not translate into discriminatory evaluations. Although an evaluator with belief-based partiality expects lower quality from women ex-ante, men and women who generate the same signal receive identical evaluations. In contrast, when the evaluator has preference-based partiality, a more precise signal of quality does not mitigate the animus towards women. Even if judgment is perfectly objective – signals are very precise – the female workers will still face discriminatory evaluations. This comparative static with respect to the signal precision can distinguish between belief-based and preference-based partiality. When evaluators are heterogeneous, an analogue to Proposition 1 immediately follows, where aggregate discrimination is equal to

\[D(h_1, s_1) = \left(\frac{\tau_q}{\tau_q + \tau_g} \right) E_\pi [\hat{\mu}_M - \hat{\mu}_F] + E_\pi [c_F]. \]

2.4 Dynamics of Discrimination

We now turn to belief-based partiality and study how discrimination evolves across a sequence of evaluations. We show that a discrimination reversal between the initial period and a subsequent period can distinguish between belief-based partiality with correct versus misspecified models of inference. Throughout this section, assume \(c_F = c_M = 0 \) for all evaluators.

After the initial period, evaluations from prior rounds provide information about the worker’s ability. A prior evaluation reflects both a signal of the quality of the prior task and the prior evaluators’ subjective belief about the distribution of ability for the worker. Therefore, interpreting prior evaluations requires a model of other evaluators’ subjective beliefs. We focus on two cases. In the first case, all evaluators share a common belief about the distribution of ability by gender, and this is common knowledge. Second, we consider a setting with heterogeneous evaluators, where some evaluators have belief-based partiality towards men and believe that all evaluators share the same beliefs, while other evaluators have no belief-based partiality but are aware that some evaluators do. Since there is only one correct distribution of ability by gender, when there is heterogeneity in evaluators’ subjective beliefs, then at least one type’s model of inference is misspecified.

These two cases make different dynamic predictions about the pattern of discrimination. Specifically, we show that a discrimination reversal does not arise in the first case.
which nests the correctly specified model – but is possible in the second. Therefore, observing a discrimination reversal suggests that some evaluators have misspecified models of inference.

Impossibility of Reversal in Correctly-Specified Model. Suppose that all evaluators have the same prior beliefs about the distributions of ability, a correct model of the beliefs of other evaluators, and belief-based partiality. That is, there is a single type \(\theta \) with subjective beliefs \(\hat{\mu}_F < \hat{\mu}_M \) and a correctly specified type distribution, \(\hat{\pi}(\theta) = \pi(\theta) = 1 \). This corresponds to the first case outlined above. The correctly specified model, in which all evaluators have correct beliefs about the distribution of ability by gender and a correct model of other evaluators, is a special case of this setting.

In the first period, a female is subjected to stricter standards than a male. In order to receive the same evaluation as a male, she must produce a higher signal to offset the lower belief about her ability. From (1), let

\[
s_{g,1}(v_1) \equiv \left(\frac{\tau_q + \tau_\eta}{\tau_\eta} \right) v_1 - \left(\frac{\tau_q}{\tau_\eta} \right) \hat{\mu}_g
\]

(3)

denote the signal required by gender \(g \) to receive evaluation \(v_1 \). Then \(s_{F,1}(v_1) > s_{M,1}(v_1) \), i.e. a given evaluation is indicative of a higher signal of a female’s ability than a male’s. This moves the posterior distribution of the female’s ability closer to that of a male who receives the same evaluation, reducing discrimination in the next period. However, the higher prior belief about average ability for the male still maps into a higher posterior belief about average ability, despite the more informative signal from the female. Although discrimination is mitigated, the beliefs about average ability do not reverse, and hence, discrimination does not reverse. The analysis in subsequent periods is analogous: the subjective belief about the average ability of men and women continues to move closer together following similar evaluation histories, but does not reverse. Therefore, discrimination continues to decrease but does not reverse. This brings us to our next result.

Proposition 2 (Impossibility of Reversal). Suppose there is a single type of evaluator with belief-based partiality and \(c_F = c_M = 0 \). Then following the same evaluation history, discrimination decreases across periods but never reverses.

An immediate implication of Proposition 2 is the impossibility of a reversal in the
correctly specified model. Therefore, observing a reversal is indicative of some form of misspecification – either in the subjective belief about average ability, the model of other evaluators, or both.

To establish Proposition 2, we show that when the subjective prior distribution of ability satisfies the monotone likelihood ratio property (MLRP) in \(\hat{\mu} \) (which holds for the normal distribution), then the subjective posterior distribution of ability also satisfies the MLRP in \(\hat{\mu} \). Therefore, the posterior mean is increasing in the prior mean \(\hat{\mu} \) and if males have a higher prior mean than females, then they also have a higher posterior mean. If the informational content of evaluations were exogenous – for example, if signals were perfectly precise, so that any worker who produced a signal \(s \) received the same evaluation, regardless of the belief about his or her ability – then the result would follow almost immediately: for a fixed signal \(s \), the MLRP is preserved under Bayesian updating. But a key feature of social learning settings – which includes our setting – is that the informational content of evaluations is endogenously determined by equilibrium behavior. In particular, the signal required to receive a given evaluation depends on the prior mean \(\hat{\mu} \). As shown in (3), evaluation \(v_1 \) maps into a signal \(s_{g,1}(v_1) \) that is decreasing in \(\hat{\mu} \). Therefore, \(\hat{\mu} \) impacts the posterior mean through two channels that move in opposite directions: (i) the prior distribution of ability is MLRP increasing in \(\hat{\mu} \); and (ii) the informational content of an evaluation is MLRP decreasing in \(\hat{\mu} \). The proof of Proposition 2 lies in establishing that the first effect dominates, and therefore, the posterior distribution of ability is also MLRP increasing in \(\hat{\mu} \).

Possibility of Reversal in Misspecified Model. Next, we present one form of misspecification that leads to a reversal. This is a possibility result, in the sense that it demonstrates that there exists a form of misspecification that leads to a discrimination reversal. Other forms of misspecification can also lead to reversals – theoretically and empirically distinguishing between different forms of misspecification is beyond the scope of this paper.

Suppose there are two types of evaluators. The first type \(\theta_1 \) uses a heuristic to form beliefs about the relationship between ability and gender, which leads to belief-based partiality that favors men, \(\hat{\mu}_F^{1} < \hat{\mu}_M^{1} \). This type is not aware of its bias, and believes that other evaluators have the same beliefs, \(\hat{\pi}_1(\theta_1) = 1 \), such as in the case of the bias blind spot (Pronin et al. 2002) or false consensus effect (Ross et al. 1977). With
probability $p \in (0, 1)$, an evaluator is type θ_1. We refer to this type as the \textit{heuristic} type. The second type θ_2 has no belief-based partiality, $\hat{\mu}_F^2 = \hat{\mu}_M^2$, but is aware that some evaluators have belief-based partiality – it has a correctly specified model of the type distribution, $\hat{\pi}_2(\theta_1) = p$. We refer to this type as the \textit{impartial} type. To close the model, assume $\hat{\mu}_M^1 = \hat{\mu}_M^2$, and let $\hat{\mu}_M$ denote this belief. Importantly, this heterogeneity in subjective belief about the average ability of females implies that at least one type has incorrect beliefs.

In the first round, a heuristic evaluator discriminates against females, while an impartial evaluator assesses females and males in exactly the same manner. Aggregate initial discrimination is a weighted average of these two type’s evaluations,

$$D(h_1, s_1) = p \left(\frac{\tau_q}{\tau_q + \tau_\eta} \right) (\hat{\mu}_M - \hat{\mu}_F^1) > 0. \quad (4)$$

Following evaluation v_1, let $\hat{\mu}_F^i(v_1)$ denote an evaluator of type θ_i’s posterior belief about the average ability of a female worker, and $\hat{\mu}_M(v_1)$ denote the posterior belief about the average ability of a male worker (which is the same for both types). A heuristic evaluator’s posterior belief about ability evolves in the same manner as the posterior belief of an evaluator in the single-type model with beliefs $\hat{\mu}_F^1$ and $\hat{\mu}_M$, since this type believes that all evaluators share the same beliefs. Therefore, $\hat{\mu}_F^1(v_1) < \hat{\mu}_M(v_1)$, and the heuristic type’s discrimination against females decreases in the second period, but does not reverse. In contrast, an impartial evaluator is aware that with some probability, a female was evaluated by a heuristic type in the first period and faced discrimination. Therefore, this type’s posterior belief about average ability immediately favor females, $\hat{\mu}_F^2(v_1) > \hat{\mu}_M(v_1)$, and it discriminates against males in the second period. As in the first period, aggregate discrimination in the second period is a weighted average of these two type’s evaluations. Whether an aggregate discrimination reversal occurs depends on whether the impartial type’s posterior belief about average ability

8In Appendix C, we use observational data to provide a foundation for this type in our experimental setting. We show that using the ‘representativeness’ heuristic will magnify small performance differences in the observational data, leading to biased belief-based partiality.

9The literature on heuristics and biases provides a foundation for such a model. Type θ_1 models evaluators who use the ‘representativeness’ heuristic to form beliefs about the population distribution of ability, i.e. stereotyping as in the framework of (Bordalo et al. 2016b), and is not aware of this cognitive bias. Type θ_2 models evaluators who have accurate beliefs about the population distribution of ability, and are aware that a subset of evaluators stereotype.
favors females enough that it reverses the aggregate posterior belief about average quality. Proposition 3 establishes that indeed, given any initial evaluation or any second period signal, aggregate discrimination reversals are possible in this setting.

Proposition 3 (Possibility of Reversal). Suppose evaluators are type θ_1 with probability $p \in (0, 1)$ and type θ_2 with probability $1-p$, where θ_1 has beliefs $\hat{\mu}_F^1 < \hat{\mu}_M$ and $\hat{\pi}_1(\theta_1) = 1$ and type θ_2 has beliefs $\hat{\mu}_F^2 = \hat{\mu}_M$, $\hat{\pi}_2(\theta_1) = p$ and $\hat{\pi}_2(\theta_2) = 1 - p$.

1. For any initial evaluation v_1, there exists a $\bar{p} \in (0, 1)$ and $\bar{s} \in \mathbb{R}$ such that for $p \in (0, \bar{p})$ and period two signal $s_2 > \bar{s}$, aggregate discrimination reverses in period two, $D(v_1, s_2) < 0$.

2. For any second period signal s_2, there exists a $\bar{p}' \in (0, 1)$ and $\bar{s} \in \mathbb{R}$ such that for $p \in (0, \bar{p}')$ and initial evaluations $v_1 < \bar{v}$, aggregate discrimination reverses in period two, $D(v_1, s_2) < 0$.

Increasing the prevalence of heuristic evaluators impacts second period discrimination through two channels. First, it increases the difference in the impartial type’s second period beliefs about the average ability of a male and a female. A larger share of heuristic evaluators means that it is more likely that the female faced initial discrimination. Therefore, it is more likely that she received the higher signal that would be required to receive a given evaluation from the heuristic type, rather than the lower signal that would be required to receive this evaluation from the impartial type. Second, it increases the probability that the second period evaluator is a heuristic type with belief-based partiality. Since the heuristic type still discriminates against females in the second period, it is more likely that a female will continue to face discrimination. The first effect dominates for low p, while the latter effect dominates for high p. This leads to a non-monotonicity in how second period discrimination changes with respect to p. Further, discrimination is always zero at $p = 0$, as no evaluators have belief-based partiality, and is always positive as p approaches one, as this set-up approaches the set-up with common knowledge of a single type of evaluator considered in Proposition 2. Figure 1 illustrates this reversal.

Proposition 3 does not rely on the assumption that the impartial evaluators exactly understand the bias of the heuristic evaluators or their prevalence in the population. It is straightforward to derive a similar result when the impartial evaluators under- or
overestimate the bias of heuristic evaluators or their frequency. The key features of the
set-up that drive the reversal are (i) the existence of a type with belief-based partiality
(to generate initial discrimination) and (ii) the existence of evaluators who believe that
some evaluators have more extreme belief-based partiality than they do (to generate
the reversal).

2.5 Discussion of Results

In summary, our theoretical results show that (i) it is not possible to identify the
source of discrimination from a single round of evaluations with a fixed level of inform-
ation; (ii) varying the subjectivity of judgment can identify whether the source of
discrimination is preference-based or belief-based; (iii) a reversal of discrimination is
not possible in a correctly-specified model of belief-based partiality; and (iv) a reversal
of discrimination points to belief-based partiality with misspecification. Before moving
to the empirical section, we briefly discuss the robustness of our theoretical framework
to other specifications and several alternative models.

2.5.1 Robustness

Alternative Distributions of Ability. We combine a partial analytical derivation
with numerical analysis to illustrate that the impossibility of a reversal in the correctly
specified model (Proposition 2) is robust to other distributions of ability, including
the beta distribution, exponential distribution, gamma distribution and a setting with binary ability and quality.\footnote{Analytical results are possible for the normal distribution, as a normal ability distribution is the conjugate prior for a normal signal distribution. This means that the posterior distribution of ability is also normally distributed, which allows for a recursive representation of the belief-updating process and a closed-form characterization of the evolution of beliefs. A combination of analytical and numerical analysis is necessary once we lose the conjugate prior property, as is the case for the other distributions we consider.} We present this analysis in Appendix A.2. The key feature that drives the impossibility of reversal is that the ability distribution satisfies the MLRP with respect to the parameter that varies by gender. The MLRP is commonly assumed in information economics (Milgrom 1981) and holds for many other families of distributions. Propositions 1 and 3 are also robust to alternative distributional assumptions. It is straightforward to extend Proposition 1 analytically, and by similar intuition to Proposition 3, it is possible to generate reversals in misspecified models with other ability distributions.

Coarse Evaluations. We assume that the space of possible evaluations is isomorphic to the space of beliefs about expected quality. In reality, the space of possible evaluations may be coarser than the evaluator’s belief about expected quality, and it may not be possible to perfectly infer the signal she observed from the reported evaluation. For example, the evaluator may only be able to accept or reject a task, or rate it on a scale of one to five. When this is the case, information will be lost, in the sense that each observed evaluation will map back into an interval of possible signals. In Appendix A.3, we show that an analogue of Proposition 2 holds for coarse evaluations. In particular, a discrimination reversal does not occur between the first and second period when evaluators have common knowledge of the same beliefs about ability for men and women.

Shifting Standards. Another relevant feature for our setting is how the standard of evaluation may change with respect to reputation. Higher reputation often leads to increased responsibilities and privileges, which require greater ability to manage effectively. As such, individuals may be subject to increasingly higher benchmarks as their level of seniority increases to avoid erroneously granting responsibility to someone who is unprepared. Our framework can easily be adapted to capture shifting standards (Biernat, Vescio, and Manis 1998) with respect to reputation. We say a worker faces shifting standards if, conditional on receiving a positive initial evaluation, the worker
faces a stricter standard in the second period – a higher signal is required to receive any
evaluation, relative to the signal required for the same evaluation in the first period.
We explore this extension in Appendix A.4.

2.5.2 Alternative Models

Attrition. Suppose that workers exit the worker pool with positive probability after
completing each task, and lower ability workers exit at a higher rate than higher ability
workers. In this case, the content and the length of the worker’s evaluation history
provide information about ability. If male workers exit at a lower rate than female
workers, conditional on sharing similar evaluation histories, then the length of the
evaluation history has different informational content for male and female workers.
If evaluators’ subjective prior beliefs about ability favor males, then this differential
attrition will shrink these initial differences. It can even lead to a reversal when low
ability women exit at a fast enough rate that distributions following longer histories
favor women. In contrast to Proposition 3, such a reversal can occur even when all
evaluators have correctly specified models.

In Section 3.4 we demonstrate how one can empirically test for differential attrition
by gender. We use observational data from the forum to show that males and females
with similar evaluation histories leave the market at similar rates. Therefore, there
is no evidence for differential attrition in our experimental setting. Evaluators may
incorrectly believe that attrition differs by gender – but in this case, they have a
misspecified model. Differential attrition may drive discrimination reversals in other
labor market settings. It is therefore important to empirically measure attrition in
order to rule out differential attrition as a potential driver of the reversal. Our empirical
analysis demonstrates how one could measure attrition based on observable data from
the setting of interest, and test whether it differs by gender.

Gender Differences in Variance of Ability. If the variance of ability differs for
females and males, then discrimination may be non-monotonic in the signal of quality.
It is straightforward to show that this can lead to a discrimination reversal when the
signal of quality is imprecise. Regardless of the precision of the signal, this model also
predicts higher variance in the evaluations of the group with higher variance in ability,
relative to the group with lower variance in ability. In Section 3.4 we demonstrate how
one can empirically test for differences in the variance of evaluations by gender. We
use observational data from the forum to show that males and females have similar variances in evaluations for tasks with precise signals. Therefore, in our experimental setting, we find no evidence for gender differences in the variance of ability. Differential variance may drive discrimination reversals in other labor market settings. Our empirical analysis demonstrates how one could use variance in evaluations – which is based on observable data – to proxy for variance in ability – which is unobservable – and test whether it differs by gender.

Heterogeneous Preference-Based Partiality. Suppose that all evaluators have correct beliefs about the ability distributions for male and female workers, but vary in their preference-based partiality against females. We will show that there is no distribution over types that can simultaneously capture the following two predictions: (i) initial discrimination against females when judgement is subjective, \(\tau_\eta > 0 \), and (ii) no initial discrimination against females when judgement is objective, \(\tau_\eta \approx 0 \). Consider a type space \(\Theta \) where each type \(\theta_i \in \Theta \) has preference parameter \(c^i_F \) and correct beliefs, \(\hat{\mu}^i_F = \mu_F \) and \(\hat{\mu}^i_M = \mu_M \). From (2), when there are multiple types, initial discrimination is equal to \(D(h_1, s_1) = E_\pi[c^1_F] \). Prediction (i) requires \(E_\pi[c^1_F] > 0 \). But \(D(h_1, s_1) \) is independent of \(\tau_\eta \). Therefore, when \(E_\pi[c^1_F] > 0 \), there will also be discrimination when judgement is objective and prediction (ii) is not possible. Therefore, observing evidence for predictions (i) and (ii) rules out discrimination that is caused by preference-based partiality with heterogeneous preference parameters. In Section 3.3, we demonstrate how to empirically test these two predictions in our experimental setting.

Self-Fulfilling Beliefs. As discussed in Section 2.2, self-fulfilling beliefs are another form of belief-based discrimination. Fryer (2007) explores how discrimination dynamically evolves when it is driven by self-fulfilling beliefs. He shows that discrimination can reverse in the second period if there exist equilibria in which one group coordinates on an equilibrium with higher initial standards and looser second period standards, while the other group coordinates on looser initial standards and more stringent second period standards.\(^{11}\) Thus, in Fryer (2007), the reversal depends on how coordination dynamically evolves, while in our model, the reversal stems from the endogenous in-

\(^{11}\)The existence of an equilibrium in which beliefs flip requires fairly strict conditions. In relation to our setting, the payoff to an evaluator for accurately evaluating a product must be substantially higher than the payoff to the worker for receiving a positive evaluation. This assumption is likely not satisfied in many settings of interest, including the experimental setting we consider in Section 3 and settings with competition.
formational content of prior evaluations. In Fryer’s setting, multiple equilibria always exist – there are also equilibria in which either group faces discrimination in both periods and equilibria in which all workers are treated equally. Therefore, almost all outcomes are possible, conditional on observables.

3 A Field Experiment

We conduct a field experiment on an online Q&A mathematics forum, Mathematics Stack Exchange. Mathematics Stack Exchange is part of a family of forums where, in 2017 alone, 3,517,799 questions were asked and 4,299,077 answers were provided. With over 10 million registered users, the forums are an important resource for students and researchers in STEM. We examine gender discrimination by posting content to the forum in the form of questions and answers. In addition to the experiment, we exploit two additional data sources to explore the predictions of the theoretical framework. First, we collect observational data from the forum to further study potential mechanisms, including estimating distributions from publicly available statistics. Second, we use a private dataset provided by the forum on the voting behavior of users to run additional robustness tests.

3.1 Description of Forum

Organizing terms with respect to the theoretical framework, users (workers) generate content in the form of posts (tasks), the quality of which are then assessed by other users on the forum (evaluators). There are two main types of tasks – questions and answers (in response to other users’ questions). See Appendix B.1 for examples of both types of posts. Users can choose to evaluate either type of post by assigning an upvote or downvote to it. Voting is anonymous – other users cannot observe any information about the identity of the user who cast a vote.

The forum offers written guidelines for evaluating posts, and these guidelines are actively discussed on the forum’s message boards. Voting is meant to serve a dual purpose: (i) upvoting is meant to highlight a quality post while downvoting is meant to discourage low quality posts, and (ii) upvoting rewards the user for a high quality

12 The experiment was pre-registered in the AEA RCT Registry, AEARCTR-0000950
13 The anonymous setting ensured that the decisions of users interacting with our posts were not subject to experimenter demand effects.
post while downvoting punishes him or her for a low quality post. The second point stems from the fact that users earn publicly observable reputation points from the votes they receive for their posts. An upvote earns five reputation points on questions and ten reputation points on answers, while a downvote deducts two reputation points for both questions and answers. Reputation unlocks privileges, such as the ability to edit and comment on others’ posts or tag questions as duplicates. It can also be used as a currency through the assignment of “bounties” – users can spend their reputation points to post a question with a bounty that will be awarded to the highest quality answer, as determined by the question poster, to increase the quality of answers.

The theoretical set-up in Section 2 maps onto the key features of the experimental environment. Each post on the forum is accompanied by clearly visible information summarizing its evaluation by the community – the associated net number of votes (upvotes minus downvotes) – and information about the poster – his or her username and current reputation. In judging the quality of a post, the evaluator can read the content of the post (a signal), as well as draw inference from the gender of the username (population beliefs) and the reputation (evaluation history). The number of reputation points serves as a summary statistic of past quality – greater reputation corresponds to the evaluators observing a higher sequence of signals on prior posts – while clicking on the user’s profile reveals the full history of upvotes and downvotes by post. The informational content of reputation and prior evaluations endogenously depends on the voting behavior of other users on the forum. Therefore, interpreting these evaluations requires a model of how past voting behavior depends on the prior evaluators’ beliefs and preferences. For example, an evaluator who is aware that female users face more exacting initial standards may take this into account when assessing a question from a high-reputation female.

Additionally, higher reputations earn users greater privileges on the forum. Reputation allows users to advance through the ranks, with each rank corresponding to a new set of privileges. This includes privileges to “supervise” other users – for example, to edit, comment on, flag, downvote and close other users’ posts. In turn, the evaluation process mirrors promotion decisions in labor market contexts: the higher a user’s reputation, the more influence he or she has over other users on the forum.

\(^{14}\)It is not possible for a user’s reputation to fall below one.
3.2 Experimental Design

The ability to exogenously vary the gender and reputation associated with a user makes this an ideal setting for testing the dynamic predictions of different sources of discrimination. Comparing evaluations of question and answer posts allow us to test the predictions of how discrimination varies with the level of subjectivity in judgment.

Posting Questions. We generated a series of original mathematics questions and posted them under male and female usernames on accounts with low and high reputations. We opened 280 new accounts, with 140 male usernames and 140 female usernames. Each account was associated with its own email address, username and password. Of these accounts, 140 (70 with female usernames and 70 with male usernames) were left as new accounts; these comprised the Novice accounts. For the other 140 accounts (70 male and 70 female), we manually built-up the reputation to the top 25th percentile of reputation on the forum – at the time of the experiment, this corresponded to a reputation of at least 100. Research assistants earned reputation on each account by posting content until the accumulated reputation reached 100. Once an account reached at least 100, the research assistant stopped posting content. Because reputation was accumulated through the actions (votes) of other users on the forum, we could not control the exact number of reputation points associated with each account – the mean reputation on these accounts was $M = 155.23$. These accounts comprised the Advanced accounts.

Critically, upon achieving a high reputation, we re-randomized the gender of the username on the Advanced accounts: 35 accounts that were built-up under male usernames were switched to female, and 35 female accounts were switched to male; the remaining 70 accounts received a new username of the same gender. Importantly, when a username is switched, all past and future activity on the account became associated with the new username. That is, all previous posts now reflect the new username, and no public record of the name change is available. Re-randomizing the gender of the usernames avoids issues of endogeneity associated with, for example, female accounts requiring different quality posts to achieve the same level of reputation as male accounts. After reassigning usernames, the new female and male accounts had similar

15Names were taken from the “Top names of the 2000s” list created by the Social Security Administration, https://www.ssa.gov/oact/babynames/decades/names2000s.html.
reputation levels ($M = 155.89$ vs. $M = 154.57$, respectively, $p = .82$).

Our goal was to write high quality questions that would be well-received on the forum. Content on the forum ranges from high school arithmetic to upper-level graduate mathematics. Questions are tagged by topic, e.g. real analysis, combinatorics. Users are discouraged from posting questions directly from textbooks or duplicating content that is already posted; such posts are flagged and routinely closed by moderators. In order to minimize the chance that our content was flagged, we wrote 280 novel mathematics questions ranging in level of difficulty from upper-level undergraduate to early graduate. These questions were randomly assigned to one of the four conditions: male novice, female novice, male advanced or female advanced.

We posted questions on a pre-determined schedule to avoid altering the usual activity on the forum, i.e. flooding the forum with content. Research assistants posted one question at least twenty minutes apart between 5-10PM, Monday through Thursday. Data on the community response to the questions, e.g. upvotes, downvotes, number of answers, was collected seven days after posting for each question, both in numerical form and as screenshots. A total of 7 of the 280 questions were dropped from our analysis due to forum moderators prematurely closing the questions before the end of the seven day window or due to errors in the posting of the questions (i.e. two questions posted to the same account).

We measure discrimination as either the average change in reputation points per post (ΔRep) or the average number of upvotes net of downvotes per post (Net Votes). The dynamic pattern of discrimination provides a test of the theoretical predictions outlined in Section 2. Conditional on observing discrimination between male and female Novice accounts, a mitigation in its intensity for Advanced accounts is consistent with belief-based partiality, including the case of statistical discrimination where beliefs are correct, while a reversal of discrimination for Advanced accounts is evidence for biased belief-based partiality.

We do not make a prediction on how evaluations vary by reputation within a given gender or pooled across genders, due to the potential for shifting standards (Section 2.5). Higher reputation is indicative of higher ability, which leads to a higher assessment of quality on a given post. But as previously discussed, reputation serves both the purpose of highlighting a quality post and rewarding the poster. Therefore, posts by high reputation users may be held to higher standards of quality, since reputation
determines which users rise through the rungs to become moderators and receive other privileges. For example, a novice user may be rewarded with an upvote for a low-level calculus question, but an advanced user may not be. In our experiment, randomization ensures that the average quality of questions posted to novice accounts is approximately the same as that of questions posted to advanced accounts. Since the two effects point in opposite directions, the overall directional prediction regarding the effect of reputation on upvotes per question is ambiguous.

Posting Answers. We generated original answers to mathematics questions posted by other users on the forum, and posted them under male and female usernames. To examine how the subjectivity of judgment affects discrimination, we compared the evaluations of these answers to the evaluations of questions. The guidelines for determining whether a post merits an upvote or downvote are different for questions and answers. The standard of quality for answers is clear: determine whether or not the answer is correct. In contrast, there are multiple standards for judging the quality of a question, including whether it is interesting, novel, or important for the accumulation of knowledge on the forum. According to our definition of subjectivity outlined in Section 2, this difference in standards of quality should make judgment of questions more subjective than judgment of answers.

The difference in subjectivity is echoed in the meta-forums for the site. A popular post asks why the site’s users upvote questions. The poster writes that for answers: “it’s easy to determine what to upvote. Is it correct?” For questions, this objective criteria does not apply. What criteria do others use? This post has dozens of responses, including: is the question well-written, non-trivial or insightful, am I curious about the same question, has the poster made me curious about what they are asking, do I think it is important and should be visible to others, does it show research effort, the combination of topic with the reputation of the poster. One response highlights potential issues with the subjectivity in judgment for questions, noting that voting on questions may be affected by disliking the topic in general or viewing it as unimportant (this response had one of the highest number of upvotes on the forum.)

To post answers, we created a second set of 140 Novice accounts with no prior posts, split between 70 male usernames and 70 female usernames. We needed to post answers in real time, as questions on the forum are answered fairly quickly and late answers generally receive little attention. To do so, research assistants worked in pairs.
One member of the pair, the ‘answerer’, would find a newly posted question that had not been answered yet and write an answer for it. The ‘answerer’ would then send the answer and a link to the question to the other research assistant, the ‘poster’, who would assign the answer to one of our accounts and post it. The order of accounts that the answer would be posted to was pre-determined – known to the ‘poster’ but not the ‘answerer’. As such, the research assistant writing the answer did not know the gender of the account that the answer would be posted to, and therefore, could not be subconsciously influenced by whether the answer would be posted to a male or female account. As with the questions, answers were posted between 5-10PM, Monday through Thursday. Data was collected seven days after posting the answer, both in numerical form and as a screenshot. A total of 5 of the 140 answers were dropped due to errors, e.g. the question was closed before the seven day window concluded.

The theory in Section 2 predicts that subjectivity in judgment, modeled as the precision of the signal of quality, will affect discrimination differentially depending on its source. Conditional on observing discrimination on questions, which involve more subjectivity in judgment, a mitigation of discrimination on answers is indicative of belief-based partiality. In contrast, a similar level of discrimination for both questions and answers suggests preference-based partiality.

Site Activity. We continuously scraped the forum for activity to capture relevant metrics for the experiment and ensure that activity on the forum remained relatively similar for the duration of the experiment. The turnover in unique active users was high: the average daily turnover was 85% and the weekly turnover was 92%.

3.3 Experimental Results

We first present results comparing the evaluations of answers versus questions by gender. Examining how subjectivity of judgment affects discrimination in our setting enables us to distinguish between preference and belief-based partiality. We then present results comparing the evaluations of novice versus advanced questions by gender. This allows us to study the dynamics of discrimination and helps to distinguish between biased and unbiased belief-based partiality.

Subjectivity of Judgment. We first examine the change in reputation (ΔRep) for answers posted to male versus female accounts (i.e. the reputation points earned on the
Table 1, Column (1) shows that regressing ΔRep per answer on gender reveals no significant difference in the evaluation of answers at conventional levels. This result is illustrated in Figure 2(a), which shows the average ΔRep by gender, and 2(b), which plots the distributions of ΔRep by gender. Table 1, Column (2) repeats the analysis using net votes per post as the dependent variable. Together, these results suggest that there is little evidence for gender discrimination on answers.

Looking at the evaluation of questions posted to novice accounts reveals a substantially different pattern. We find significant initial discrimination against females: regressing ΔRep or net votes per question on the gender of the poster reveals that questions posted to accounts with female usernames accumulated significantly fewer reputation points (Table 1, Column (3)) and received significantly fewer net votes (Table 1, Column (4)) than questions posted to accounts with male usernames. These differences correspond to roughly 0.4 standard deviations of the average change in reputation and average number of votes. This result is illustrated in Figure 3(a), which shows the average ΔRep by gender, and Figure 4(a), which plots the distributions of ΔRep by gender. Together, these results suggest that there is significant evidence for gender discrimination on questions.

Next, we directly compare responses to answer versus question posts by gender. We first test the difference in the estimated coefficients of the male gender dummy between

16Downvotes were very rare in our sample. We obtain similar results when we use only upvotes as the dependent variable (Appendix B.2).
Table 1. Subjectivity: Effect of Gender on Evaluation of Novice Answers and Questions

<table>
<thead>
<tr>
<th></th>
<th>Answers Only</th>
<th>Questions Only</th>
<th>Answers & Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔRep</td>
<td>Net Votes</td>
<td>ΔRep</td>
</tr>
<tr>
<td>Male</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Male</td>
<td>-1.38</td>
<td>-0.31</td>
<td>2.86</td>
</tr>
<tr>
<td>Male*Question</td>
<td>0.08</td>
<td>0.09</td>
<td>4.24</td>
</tr>
<tr>
<td>Female</td>
<td>0.08</td>
<td>0.09</td>
<td>4.24</td>
</tr>
<tr>
<td>Male</td>
<td>(1.32)</td>
<td>(.27)</td>
<td>(1.16)</td>
</tr>
<tr>
<td>Male*Question</td>
<td>(1.64)</td>
<td>(.32)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>(1.64)</td>
<td>(.32)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.60</td>
<td>0.79</td>
<td>4.60</td>
</tr>
<tr>
<td>Constant</td>
<td>(.69)</td>
<td>(.12)</td>
<td>(.93)</td>
</tr>
<tr>
<td>Male</td>
<td>(.69)</td>
<td>(.12)</td>
<td>(.93)</td>
</tr>
<tr>
<td>Male*Question</td>
<td>(.69)</td>
<td>(.12)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>(.69)</td>
<td>(.12)</td>
<td></td>
</tr>
<tr>
<td># Obs</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise; Question=1 if question post, 0 if answer; Novice accounts only.

the question and answer regressions and find that this difference is significant for both ΔRep (χ²(1) = 6.34; p = .01) and net votes (χ²(1) = 7.87; p = .005). We then present regression results for question and answer posts within the same model. We regress ΔRep and net votes on dummies corresponding to gender, type of post (question or answer) and the interaction of gender and type of post (Table 1, Columns (5) and (6)). There is a significant mitigation of discrimination against female accounts for answers, relative to questions: the interaction effect between gender and type of post is positive and significant in both specifications. This implies that the male advantage is significantly larger for questions, compared to answers.

Taken together, these results are inconsistent with discrimination due to preference-based partiality. Rather, they support the theoretical prediction on how subjectivity affects discrimination when evaluators have belief-based partiality.

Dynamics of Discrimination. Next, we examine the dynamics of discrimination by comparing discrimination towards novice and advanced users. As shown in Figure 3(b), questions posted to advanced female accounts accumulated more reputation points, ΔRep, than those posted to advanced male accounts. This contrasts with questions posted on novice female accounts, which accumulated fewer reputation points than those posted to novice male accounts (Figure 3(a)). In other words, we observe a
dynamic reversal of discrimination between novice and advanced accounts – questions from male users are favored at low reputations, while questions from female users are favored at high reputations. Figure 4 illustrates this reversal in the distributions of ∆Rep: panel (a) shows the distribution of ∆Rep on questions posted to novice accounts, while panel (b) shows the distribution of ∆Rep for advanced accounts.

For advanced accounts, regressing ∆Rep or net votes per question on the gender of the poster reveals that questions posted to female accounts accumulated significantly
Table 2. Dynamics: Effect of Gender on Evaluation Questions, Novice and Advanced

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th></th>
<th>Novice & Advanced</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∆Rep</td>
<td>Net Votes</td>
<td>∆Rep</td>
<td>Net Votes</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Male</td>
<td>-3.16</td>
<td>-0.62</td>
<td>2.86</td>
<td>0.58</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(1.37)</td>
<td>(.28)</td>
<td>(1.36)</td>
<td>(.27)</td>
<td>(.08)</td>
</tr>
<tr>
<td>Advanced</td>
<td>2.33</td>
<td>0.49</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.35)</td>
<td>(.27)</td>
<td>(0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male*Advanced</td>
<td>-6.02</td>
<td>-1.20</td>
<td>-0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.91)</td>
<td>(.38)</td>
<td>(.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>7.01</td>
<td>1.38</td>
<td>4.68</td>
<td>0.88</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(0.97)</td>
<td>(.20)</td>
<td>(.96)</td>
<td>(0.19)</td>
<td>(.56)</td>
</tr>
<tr>
<td># Obs</td>
<td>138</td>
<td>138</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise; Advanced=1 if Advanced account, 0 otherwise.

more reputation points and net votes than questions posted to male accounts (Table 2, Columns 1 and 2, respectively). These differences in evaluation correspond to roughly 0.6 standard deviations for both ∆Rep and net votes. This contrasts with the significantly lower evaluation of questions posted to novice female accounts relative to novice male accounts, as reported in Table 1. Testing the difference in the estimated coefficients of the male gender dummy between the Novice and Advanced regressions reveals a significant difference for both ∆Rep ($\chi^2(1) = 9.67; p = .002$) and net votes ($\chi^2(1) = 9.88; p = .002$).

Table 2 Columns (3) and (4) present regression results for Novice and Advanced accounts within the same model. In Column (3), we regress ∆Rep on dummies corresponding to the gender of the poster, the reputation level of the poster (novice or advanced), and their interaction. The interaction between gender and reputation level is negative and significant, confirming the reversal of discrimination between the Novice and Advanced accounts. The same pattern of results holds for the net votes earned per question (Column 4). To ensure that these results are not driven by outliers or subsequent voters herding on the first upvote, we replicate the analysis using a binary variable that is equal to one if the question receives at least one upvote, and zero otherwise. As shown in Column (5), the results are robust to this binary spec-
ification.17 Consistent with shifting standards, the average change in reputation and average number of net votes, pooled across both genders, does not significantly differ between Novice and Advanced accounts.

In summary, we find that in our setting, not only is initial discrimination against females mitigated by reputation, but the direction of discrimination \textit{reverses} – females are \textit{favored} at higher reputations. Interpreting these findings through the lens of the theoretical framework, our results suggest that initial discrimination is driven by belief-based partiality with bias.

\textbf{Robustness Checks.} The forum provided us with a proprietary dataset that contains additional information about the evaluators in our experiment. The dataset uniquely identifies the users who evaluated our content (i.e. voted on question and answer posts in our experiment), and provides their historical activity on the forum. This data allows us to conduct further robustness checks and to explore the typical voting behavior of evaluators who interacted with our posts to determine whether the population of users who evaluated our posts is similar across groups.

We first use this data to test whether our results are robust to excluding repeat votes from evaluators who interacted with our posts more than once. We restricted the voting data to the first vote from each evaluator on a post in our experiment, and re-ran the analyses from Tables 1 and 2. Our findings are robust to excluding these repeat votes. The results are presented in Appendix B.2.

We also explored whether the users who evaluated questions in our experiment are similar to the users who evaluated answers. To determine whether users specialize in the type of content they evaluate by either evaluating mostly questions or mostly answers, or whether most users evaluate both, we tabulated each user’s total number of votes by content type, and calculated the proportion of a given user’s votes that were cast on questions versus answers. The proportions are very similar: on average, 48\% of a user’s votes were cast on questions and 52\% were cast on answers, with a standard deviation of .21. This suggests that most users evaluated questions and answers in fairly equal proportions. We also examined whether the users who evaluated our content differed in their reputation levels and inferred genders, depending on the type of post.18 Summary statistics are presented in Appendix B.3; we found no significant differences in the

17Results are also robust to winsorizing the dependent variable at 5\% or 10\%.

18Section 3.4 outlines the process of inferring gender from a username.
characteristics of voters evaluating different types of posts.

3.4 Observational Data

Next, we analyze an observational dataset from the forum to estimate relevant population statistics that are publicly available to users and summarize the posting and evaluation behavior of users.

Description of Data. The observational dataset is compiled and made publicly available by Mathematics Stack Exchange. It contains information on the attributes (e.g. reputations, usernames, location) and posting behavior (e.g. number of question and answer posts) of 315,792 users from July 2010 to March 2017. We excluded all content posted as part of our experiment. To code gender, we ran an algorithm developed by Vasilescu, Capiluppi, and Serebrenik (2014) to classify the gender of the usernames (see Appendix B.4 for a description of this algorithm). Each username is classified as ‘male,’ ‘female,’ or ‘x’ (when gender cannot be inferred). In our sample, the gender was resolved for 55% of accounts, which we used in the analyses. Of these accounts, 19% were classified as ‘female’ and the remaining 81% were classified as ‘male.’ Of accounts that had less than 100 reputation points, 21% were classified as ‘female’; of accounts that had between 100 and 240 reputation points – the Advanced range used in our experiment – 13% were classified as female.

Attrition. We studied posting behavior of users to determine whether there is differential attrition based on gender. The dataset records both the types of posts and their timing for each user. If a user exits the forum, they will no longer generate new posts. Differential attrition following an initial post will lead to gender differences in the likelihood of observing a second post conditional on receiving a similar evaluation on the first post. We find no significant gender differences in the propensity to generate a second post. Controlling for first post characteristics (type, evaluation, timing), inferred gender (Male = 1) did not have a significant effect on the likelihood of observing a second post ($\beta = -0.004, p = 0.69$). See Table 8 in Appendix B.4 for the results.

Variance. The observational data also allows us to examine whether there are differences in variances of the ability distributions by gender. Since we did not find evidence for discrimination on answers, we use the evaluations of answers posted to new accounts to proxy for underlying ability. We then examine whether there are differences in the
variance of these evaluations by gender. Running Levene’s test of equal variances on the distributions of reputation points per first answer post (ΔRep) reveals no significant differences by gender ($p = .41$ using the mean, $p = .48$ using the median, $p = .46$ using the 10% trimmed mean).

Analysis of Discrimination in Evaluations. We can also use the observational data to examine how evaluations of posts vary with reputation, inferred gender of the user and type of post. As in our experiment, we focus on the evaluation of questions posted to novice and advanced accounts, and the evaluation of answers posted to novice accounts. We define posting to novice and advanced accounts similar to the experiment (see Appendix B.4 for details).

This analysis comes with several important caveats. First, there is the obvious endogeneity problem that stems from not being able to control for the quality of question posts. Second, there may be gender-based selection between the novice and advanced accounts. Although the above analysis suggests there is little evidence of differential attrition conditional on receiving similar evaluations on prior posts, male and female users may still face different evaluation thresholds early on. In fact, our experimental results show this to be likely. Finally, the number of posts that generated a user’s reputation is relevant for inferring ability, as different numbers of posts can result in similar reputations. We attempt to address these caveats by running different specifications of the regression model, e.g. controlling for number of posts required to attain advanced status.

Keeping these caveats in mind, we run regression analogous to Tables 1 and 2 using the reputation points earned per post (ΔRep) as the dependent variable. These results are presented in Appendix B.4. The evaluation patterns by gender across the different types of posts are similar to those documented in the experiment, although the effect sizes vary depending on the specification. We document three main findings: (i) no significant evidence of gender discrimination on answers, (ii) questions posted by novice accounts with female usernames tend to earn fewer reputation points than those posted by novice accounts with male usernames, and (iii) questions posted to advanced accounts with female usernames tend to earn more reputation points than those posted to advanced accounts with male usernames.

Finally, we use the observational data to explore how the ‘representativeness’ heuristic
can lead to biased stereotypes in our setting. We examine the distribution of users’ evaluations per answer post, and show how even mild belief distortions due to ‘representativeness’ significantly magnify small underlying performance differences between males and females. See Appendix C for details.

4 Discussion and Conclusion

In this paper, we propose a method for identifying the source of discrimination based on (i) how it evolves dynamically, and (ii) how it responds to the degree of subjectivity in judgment. We develop a theoretical model in which evaluators learn about a worker’s ability through other evaluators’ assessments of previous tasks. We show that the observable patterns of discrimination along these two dimensions depend critically on the underlying source – which we term partiality. The theoretical analysis yields an impossibility result: discrimination does not dynamically reverse if it is driven by correctly-specified belief-based partiality. In contrast, we show that a reversal can occur if some evaluators hold biased stereotypes, while others are aware of the bias and account for it when learning from prior evaluations. We also show that discrimination driven by preference-based partiality remains constant with respect to the level of subjectivity in judgment, while discrimination driven by belief-based partiality decreases as judgment criteria becomes more objective.

We present results from a field experiment exploring discrimination along these two dimensions. We post questions and answers on an online forum (Mathematics Stack Exchange) to accounts we created that exogenously vary in the gender of the usernames and the reputation on the forum. We document three main results: (i) significant gender discrimination exists at the initial stage, in the form of less reputation earned per post and fewer votes per post on questions posted by low reputation female accounts relative to questions posted by low reputation male accounts; (ii) significantly less gender discrimination at the initial stage for answers, where judgment of quality is less subjective relative to questions; and (iii) discrimination reverses for questions at more advanced stages, in that more reputation is earned and more votes are received on questions posted to high reputation female accounts relative to high reputation male accounts. We complement the experimental results with an analysis of observational data from the forum. We use an algorithm to infer gender from username and run a parallel analysis of how discrimination varies with type of post and user reputation.
This provides additional evidence to support the main findings outlined above. Taken together, our empirical results are consistent with discrimination driven by belief-based partiality with some form of misspecification.

How discrimination dynamically evolves and varies with subjectivity of judgment has significant implications for policy. Suppose a policymaker cares about both efficiency and ‘fairness’, defined as equal treatment for equal quality of output. If discrimination is driven by belief-based partiality with misspecification, the welfare criterion is clear: incorrect beliefs are inefficient, so campaigns that aim to correct beliefs will improve outcomes on both the efficiency and fairness dimensions. Making evaluations more objective will also improve both dimensions.

The findings on dynamics also highlight the pernicious effects of incorrect beliefs about group-based differences in initial evaluation standards. Kravitz and Platania (1993) conducted a survey on beliefs about affirmative action policies. The authors found that the majority held incorrect beliefs. Respondents viewed affirmative action policies as being much more widespread (required of all organizations) and as lowering evaluation standards to a much greater extent than is actually the case. Such incorrect beliefs can perpetuate inequality in outcomes, despite members of disadvantaged groups exceeding earlier standards and earning the relevant credentials. For example, prospective employers judging the education credentials of a minority candidate may discount them, relative to the same credentials from a non-minority candidate, if they believe that the minority candidate faced a lower standard to earn them. In this case, policies that remedy incorrect beliefs about initial evaluation standards will be particularly effective in mitigating discrimination down the road. Other policies, such as oversampling from discriminated groups at the initial stages, may also lead to more equal representation without exacerbating incorrect beliefs about evaluation standards.

References

40

A Analysis from Section 2

A.1 Proofs of Propositions 1, 2 and 3

Proof of Proposition 1. From (2), it is clear that \(|D(h_1, s_1)|\) is decreasing in \(\tau_\eta\) iff \(\hat{\mu}_M \neq \hat{\mu}_F\). From (1), if \(c_F > 0\) and \(\hat{\mu}_F = \hat{\mu}_M\), initial discrimination is equal to \(D(h_1, s_1) = c_F\) for all \(s_1 \in \mathbb{R}\), which is constant with respect to \(\tau_\eta\). In a model with both preference-based and taste-based partiality, initial discrimination is equal to

\[
D(h_1, s_1) = \frac{\tau_q}{\tau_q + \tau_\eta} (\hat{\mu}_M - \hat{\mu}_F) + c_F.
\]

Taking the limit, \(\lim_{\tau_\eta \to \infty} D(h_1, s_1) = c_F\), which is nonzero iff \(c_F \neq 0\). \(\square\)

The following lemma is used in the proofs of Propositions 2 and 3.

Lemma 1. Suppose an evaluator has subjective belief \(\hat{\mu}\) and taste parameter \(c\), and believes that all other evaluators are also this type. Then following any history \(h_t\), the subjective posterior distribution of ability \(f_{\hat{\mu}}(a|h_t)\) is normally distributed with mean

\[
\hat{\mu}(h_t) = \frac{\tau_a\hat{\mu} + \tau_\eta \sum_{n=1}^{t-1} s_n}{\tau_a + (t-1)\tau_\eta}
\]

and precision \(\tau_a(t) = \tau_a + (t-1)\tau_\epsilon\eta\), where

\[
s_n = \left(\frac{\tau_q(n) + \tau_\eta}{\tau_\eta}\right) (v_n + c) - \left(\frac{\tau_q(n)}{\tau_\eta}\right) \hat{\mu}(h_n)
\]

for all \(n < t\).

Proof. Suppose \(f_{\hat{\mu}}(a|h_1) \sim N(\hat{\mu}, 1/\tau_a)\). From (1), conditional on observing signal \(s_1\), the first evaluation is

\[
v_1 = \frac{\tau_q\hat{\mu} + \tau_\eta s_1}{\tau_q + \tau_\eta} - c.
\]

It is possible to back out \(s_1\) from observing \(v_1\),

\[
s_1 = s(v_1, \hat{\mu}) \equiv \left(\frac{\tau_q + \tau_\eta}{\tau_\eta}\right) (v_1 + c) - \frac{\tau_q}{\tau_\eta} \hat{\mu}.
\]

Recall \(s_1 = a + \varepsilon_1 + \eta_1\). Therefore, the signal distribution, conditional on ability, is normally distributed and independent of \(\hat{\mu}\), \(f_s(s_1|a) \sim N(a, 1/\tau_\varepsilon\eta)\), where \(\tau_\varepsilon\eta \equiv \tau_\eta\tau_\varepsilon/(\tau_\eta + \tau_\varepsilon)\). Consider the posterior distribution of ability, following evaluation \(v_1\).
From Bayes rule,

\[f_\hat{\mu}(a|v_1, h_1) = \frac{P_\hat{\mu}(v_1|a, h_1) f_\hat{\mu}(a|h_1)}{\int P_\hat{\mu}(v_1|a', h_1) f_\hat{\mu}(a'|h_1) da'} = \frac{f_s(s(v_1, \hat{\mu})|a, h_1) f_\hat{\mu}(a|h_1)}{\int f_s(s(v_1, \hat{\mu})|a', h_1) f_\hat{\mu}(a'|h_1) da'}, \]

where the second equality follows from \(P_\hat{\mu}(v_1|a, h_1) = \left(\frac{\tau_a + \tau_a}{\tau_\eta} \right) f_s(s(v_1, \hat{\mu})|a) \). The normal distribution is conjugate to itself for a normal likelihood function. Since the prior belief about ability is normal, and the signal distribution conditional on ability is normal, the posterior belief about ability \(f_\hat{\mu}(a|v_1, h_1) \) is also normal,

\[f_\hat{\mu}(a|v_1, h_1) \sim N \left(\frac{\tau_a \hat{\mu} + \tau_\eta s(v_1, \hat{\mu})}{\tau_a + \tau_\eta}, \frac{1}{\tau_a + \tau_\eta} \right). \]

Given the normality of the posterior belief about ability, we can define the evaluation and belief-updating processes recursively. Let \(\hat{\mu}(h_t) \) and \(\tau_a(t) \) denote the mean and precision of the distribution of ability at the beginning of period \(t \), following history \(h_t \), i.e. \(f_\hat{\mu}(a|h_t) \sim N(\hat{\mu}(h_t), 1/\tau_a(t)) \). The evaluation process in period \(t > 1 \) is analogous to \(t = 1 \). The posterior distribution of quality \(q_t \), conditional on observing signal \(s_t \), is normal,

\[q_t|s_t, h_t \sim N \left(\frac{\tau_q(t) \hat{\mu}(h_t) + \tau_\eta s_t}{\tau_q(t) + \tau_\eta}, \frac{1}{\tau_q(t) + \tau_\eta} \right), \]

where \(\tau_q(t) = \tau_a(t) \tau_\varepsilon / (\tau_a(t) + \tau_\varepsilon) \). The evaluator maximizes her expected payoff by choosing

\[v_t = \frac{\tau_q(t) \hat{\mu}(h_t) + \tau_\eta s_t}{\tau_q(t) + \tau_\eta} - c_g \tag{5} \]

Therefore, it is possible to back out \(s_t \) from \(v_t \),

\[s_t = s(v_t, \hat{\mu}(h_t), t) \equiv \left(\frac{\tau_q(t) + \tau_\eta}{\tau_\eta} \right) (v_t + c) - \left(\frac{\tau_q(t)}{\tau_\eta} \right) \hat{\mu}(h_t). \]

The posterior update is also analogous to \(t = 1 \). For \(t > 1 \), the posterior belief about ability, conditional on observing evaluation \(v_t \), is normally distributed with mean

\[\hat{\mu}(h_{t+1}) = \frac{\tau_a(t) \hat{\mu}(h_t) + \tau_\eta s(v_t, \hat{\mu}(h_t), t)}{\tau_a(t) + \tau_\eta} \]
and precision
\[\tau_a(t + 1) = \tau_a(t) + \tau_{x\eta}. \]

Initialize \(\hat{\mu}(h_1) = \hat{\mu} \) and \(\tau_a(1) = \tau_a \). Solving the recursive expressions for \(\hat{\mu}(h_t) \) and \(\tau_a(t) \) yields solution

\[
\hat{\mu}(h_t) = \frac{\tau_a \hat{\mu} + \tau_{x\eta} \sum_{n=1}^{t-1} s(v_n, \hat{\mu}(h_n), n)}{\tau_a + (t - 1) \tau_{x\eta}} \tag{6}
\]
\[
\tau_a(t) = \tau_a + (t - 1) \tau_{x\eta}. \tag{7}
\]

Therefore, when the prior belief about ability is normal, the posterior belief about ability \(f_{\hat{\mu}}(a|v_t, h_t) \) is also normal with mean \(\hat{\mu}(h_{t+1}) \) and precision \(\tau_a(t + 1) \) defined in (6) and (7).

\[\square \]

Proof of Proposition 2. We proceed by a series of lemmas.

Lemma 2. Suppose \(c_F = 0 \). If \(\hat{\mu}_F(h_t) < \hat{\mu}_M(h_t) \), then for all \(v_t \),

1. \(\hat{\mu}_F(h_{t+1}) < \hat{\mu}_M(h_{t+1}) \) i.e. there is no belief reversal between periods \(t \) and \(t + 1 \);

2. \(\hat{\mu}_M(h_{t+1}) - \hat{\mu}_F(h_{t+1}) < \hat{\mu}_M(h_t) - \hat{\mu}_F(h_t) \) i.e. the difference in means decreases between periods \(t \) and \(t + 1 \).

Proof. Suppose \(\hat{\mu}_F(h_t) < \hat{\mu}_M(h_t) \) and \(c_F = 0 \). Then

\[
\hat{\mu}_g(h_{t+1}) = \frac{\tau_a \hat{\mu}_g(h_t) + \tau_{x\eta} s_g(v_t, \hat{\mu}_g(h_t), t)}{\tau_a(t) + \tau_{x\eta}},
\]

where

\[s_g(v_t, \hat{\mu}_g(h_t), t) \equiv \left(\frac{\tau_q(t) + \tau_\eta}{\tau_\eta} \right) v_t - \left(\frac{\tau_q(t)}{\tau_\eta} \right) \hat{\mu}_g(h_t). \]

Following evaluation \(v_t \),

\[s_M(v_t, \hat{\mu}_M(h_t), t) - s_F(v_t, \hat{\mu}_F(h_t), t) = - \left(\frac{\tau_q(t)}{\tau_\eta} \right) (\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)) \]
Therefore,

\[\hat{\mu}_M(h_{t+1}) - \hat{\mu}_F(h_{t+1}) = \left(\frac{\tau_a(t)}{\tau_a(t) + \tau_{\epsilon\eta}} \right) (\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)) \]

\[+ \left(\frac{\tau_{\epsilon\eta}}{\tau_a(t) + \tau_{\epsilon\eta}} \right) (s_M(v_t, \hat{\mu}_M(h_t), t) - s_F(v_t, \hat{\mu}_F(h_t), t)) \]

\[= \left(\frac{\tau_a(t)}{\tau_a(t) + \tau_{\epsilon\eta}} - \frac{\tau_{\epsilon\eta} \tau_n(t)}{(\tau_a(t) + \tau_{\epsilon\eta}) \tau_n} \right) (\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)), \tag{8} \]

which is positive if

\[\frac{\tau_a(t)}{\tau_a(t) + \tau_{\epsilon\eta}} - \frac{\tau_{\epsilon\eta} \tau_n(t)}{(\tau_a(t) + \tau_{\epsilon\eta}) \tau_n} > 0 \]

\[\Leftrightarrow \frac{\tau_n(t) \tau_{\epsilon\eta} - \frac{\tau_n(t) \tau_{\epsilon\eta}}{\tau_a(t) + \tau_{\epsilon\eta}} \tau_n(t)}{(\tau_a(t) + \tau_{\epsilon\eta}) \tau_n} > 0. \tag{9} \]

This will be the case if the numerator of (9) is positive,

\[\tau_a(t) \tau_{\epsilon\eta} - \frac{\tau_n(t) \tau_{\epsilon\eta}}{\tau_a(t) + \tau_{\epsilon\eta}} \tau_n(t) \times \frac{\tau_a(t) \tau_{\epsilon\eta}}{\tau_a(t) + \tau_{\epsilon\eta}} > 0 \]

\[\Leftrightarrow (\tau_{\epsilon\eta} + \tau_{\epsilon\eta})(\tau_a(t) + \tau_{\epsilon\eta}) > \tau_{\epsilon\eta}^2 \]

\[\Leftrightarrow \tau_{\epsilon\eta}^2 + \tau_{\epsilon\eta} \tau_{\epsilon\eta} + \tau_a(t)(\tau_{\epsilon\eta} + \tau_{\epsilon\eta}) > \tau_{\epsilon\eta}^2 \]

\[\Leftrightarrow \tau_{\epsilon\eta} \tau_{\epsilon\eta} + \tau_a(t)(\tau_{\epsilon\eta} + \tau_{\epsilon\eta}) > 0, \]

which always holds since all precisions are positive. Therefore, \(\hat{\mu}_M(h_{t+1}) > \hat{\mu}_F(h_{t+1}) \).

From (8), \(\hat{\mu}_M(h_{t+1}) - \hat{\mu}_F(h_{t+1}) < \hat{\mu}_M(h_t) - \hat{\mu}_F(h_t) \) iff (9) is less than one, which always holds since

\[\frac{\tau_a(t) \tau_{\epsilon\eta} - \frac{\tau_n(t) \tau_{\epsilon\eta}}{\tau_a(t) + \tau_{\epsilon\eta}} \tau_n(t)}{(\tau_a(t) + \tau_{\epsilon\eta}) \tau_n} = \frac{\tau_a(t) \tau_{\epsilon\eta} - \frac{\tau_n(t) \tau_{\epsilon\eta}}{\tau_a(t) + \tau_{\epsilon\eta}} \tau_n(t)}{(\tau_a(t) + \tau_{\epsilon\eta}) \tau_n} \]

where the first term on the right hand side is less than one, and the second term is negative. \(\square \)

Lemma 3. Suppose \(c_F = 0 \). A discrimination reversal occurs between periods \(t \) and \(t + 1 \) iff there is a belief reversal between periods \(t \) and \(t + 1 \).
Proof. Suppose \(c_F = 0 \). From (5), discrimination in period \(t \) is equal to
\[
D(h_t, s_t) = \frac{\tau_q(t)}{\tau_q(t) + \tau_\eta}(\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)).
\] (10)

Therefore, discrimination reverses between periods \(t \) and \(t + 1 \) if and only if \(\hat{\mu}_M(h_t) > \hat{\mu}_F(h_t) \) and \(\hat{\mu}_M(h_{t+1}) < \hat{\mu}_F(h_{t+1}) \), or vice versa. \(\square \)

We can now complete the proof of Proposition 2.

Proof. Suppose \(\hat{\mu}_F < \hat{\mu}_M \) and \(c_F = 0 \). From Lemma 2, for all \(v_1 \), \(\hat{\mu}_F(h_2) < \hat{\mu}_M(h_2) \) and \(\hat{\mu}_M(h_2) - \hat{\mu}_F(h_2) < \hat{\mu}_M - \hat{\mu}_F \). By induction, \(\hat{\mu}_F(h_t) < \hat{\mu}_M(h_t) \) and
\[
\hat{\mu}_M(h_{t+1}) - \hat{\mu}_F(h_{t+1}) < \hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)
\]
for all \(t \) and \(h_{t+1} \). From Lemma 3, there is no discrimination reversal between any periods \(t \) and \(t + 1 \), since \(\hat{\mu}_F(h_t) < \hat{\mu}_M(h_t) \) for all \(t \) and \(h_t \).

It remains to show that discrimination decreases. Discrimination in period \(t \) is equal to
\[
D(h_t, s_t) = \frac{\tau_q(t)}{\tau_q(t) + \tau_\eta}(\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)),
\]
and in period \(t + 1 \) is equal to
\[
D(h_{t+1}, s_t) = \frac{\tau_q(t+1)}{\tau_q(t+1) + \tau_\eta}(\hat{\mu}_M(h_{t+1}) - \hat{\mu}_F(h_{t+1}))
\]
\[
= \left(\frac{\tau_q(t+1)}{\tau_q(t+1) + \tau_\eta} \right) \left(\frac{\tau_a(t)\tau_\eta - \tau_\epsilon \tau_q(t)}{\tau_a(t) + \tau_\epsilon \tau_\eta} \right) \left(\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t) \right).
\]
\(\square \)

Proof of Proposition 3. Type \(\theta_1 \)'s belief about male and female ability evolve as in Lemma 1, since this type believes that all other evaluators have the same beliefs as it. Type \(\theta_2 \)'s belief about male ability also evolve as in Lemma 1, since both types have the same prior belief about male ability. Thus, the novelty stems from characterizing how type \(\theta_2 \)'s belief about female ability evolves.

When type \(\theta_2 \) observes evaluation \(v_1 \), she believes that with probability \(p \), it is from a heuristic type who observed signal \(s_1^1(v_1) = \left(\frac{\tau_a + \tau_\eta}{\tau_\eta} \right) v_1 - \left(\frac{\tau_\eta}{\tau_\eta} \right) \hat{\mu}_F \), and with probability \(1 - p \), it is from an impartial type who observed signal \(s_1^2(v_1) = \left(\frac{\tau_a + \tau_\eta}{\tau_\eta} \right) v_1 - \left(\frac{\tau_\eta}{\tau_\eta} \right) \hat{\mu}_M \).
Note $s_1^1(v_1) > s_1^2(v_1)$. Therefore, the likelihood function for evaluation v_1 is a mixture of two normal distributions,

$$f_v(v_1|a) = (pf_s(s_1^1(v_1)|a) + (1 - p)f_s(s_1^2(v_1)|a)) \left(\frac{\tau_q + \tau_\eta}{\tau_\eta}\right).$$

Since the prior belief $f_a(a) \sim N(\hat{\mu}_F^2, 1/\tau_a)$ is normal, the posterior belief will be a mixture of two normal distributions,

$$f_a(a|v_1) = pf_1(a|v_1)\frac{C_1}{C} + (1 - p)f_2(a|v_1)\frac{C_2}{C},$$

where

$$f_1(a|v_1) \sim N\left(\frac{\tau_a\hat{\mu}_F + \tau_\epsilon\eta s_1^1(v_1)}{\tau_a + \tau_\epsilon\eta}, \frac{1}{\tau_a + \tau_\epsilon\eta}\right)$$

$$f_2(a|v_1) \sim N\left(\frac{\tau_a\hat{\mu}_F + \tau_\epsilon\eta s_1^2(v_1)}{\tau_a + \tau_\epsilon\eta}, \frac{1}{\tau_a + \tau_\epsilon\eta}\right)$$

are the posterior distributions of ability, conditional on observing signals $s_1^1(v_1)$ and $s_1^2(v_1)$, respectively, and

$$C_1 = \int f_s(s_1^1(v_1)|a)f_a(a)da$$
$$= \frac{1}{\sqrt{2\pi}}\sqrt{\frac{\tau_a\tau_\epsilon\eta}{\tau_a + \tau_\epsilon\eta}}\exp\left(-0.5(\tau_a(\hat{\mu}_F)^2 + s_1^1(v_1)^2\tau_\epsilon\eta - (\tau_a + \tau_\epsilon\eta)\hat{\mu}_1(v_1)^2)\right)$$

$$C_2 = \int f_s(s_1^2(v_1)|a)f_a(a)da$$
$$= \frac{1}{\sqrt{2\pi}}\sqrt{\frac{\tau_a\tau_\epsilon\eta}{\tau_a + \tau_\epsilon\eta}}\exp\left(-0.5(\tau_a(\hat{\mu}_F)^2 + s_1^2(v_1)^2\tau_\epsilon\eta - (\tau_a + \tau_\epsilon\eta)\hat{\mu}_2(v_1)^2)\right)$$

$$C = pC_1 + (1 - p)C_2$$

are the normalization coefficients. The convolution of a normal distribution with a mixture of two normal distributions is a mixture of two normal distributions. Therefore, the prior belief about quality in the second period, $g(q_2|v_1)$, is a mixture of two normal distributions. Therefore, the posterior belief about quality in the second period, conditional on observing signal s_2, $g(q_2|v_1, s_2)$, is also a mixture of two normal
In the second period, the impartial type gives females evaluation \(g_1(q_2|s_2, v_1) \) and, given \(\hat{\mu}_1(v_1) \) and \(\hat{\mu}_2(v_1) \) are the means of \(f_1(a|v_1) \) and \(f_2(a|v_2) \), respectively, and
\[
\tau_{q,2} \equiv \frac{(\tau_{a} + \tau_{q})\tau_{q}}{\tau_{a} + \tau_{q} + \tau_{e}},
\]
\[
g_1(q_2|s_2, v_1) \sim N \left(\frac{\tau_{q,2} \hat{\mu}_1(v_1) + \tau_{q} s_2}{\tau_{q,2} + \tau_{q}}, \frac{1}{\tau_{q,2} + \tau_{q}} \right)
\]
\[
g_2(q_2|s_2, v_1) \sim N \left(\frac{\tau_{q,2} \hat{\mu}_2(v_1) + \tau_{q} s_2}{\tau_{q,2} + \tau_{q}}, \frac{1}{\tau_{q,2} + \tau_{q}} \right)
\]
and, given \(\hat{\mu}_1(v_1, s_2) \) and \(\hat{\mu}_2(v_1, s_2) \) are the means of \(g_1 \) and \(g_2 \), respectively,
\[
\begin{align*}
D_1 &= \frac{1}{\sqrt{2\pi}} \frac{\tau_{q,2} \tau_{q}}{\tau_{q,2} + \tau_{q}} \exp \left(-0.5 (\tau_{q,2} \hat{\mu}_1(v_1))^2 + s_2^2 \tau_{q} - (\tau_{q,2} + \tau_{q}) \hat{\mu}_1(v_1, s_2)^2 \right) \\
D_2 &= \frac{1}{\sqrt{2\pi}} \frac{\tau_{q,2} \tau_{q}}{\tau_{q,2} + \tau_{q}} \exp \left(-0.5 (\tau_{q,2} \hat{\mu}_2(v_1))^2 + s_2^2 \tau_{q} - (\tau_{q,2} + \tau_{q}) \hat{\mu}_2(v_1, s_2)^2 \right) \\
D &= p \frac{C_1}{C} D_1 + (1-p) \frac{C_2}{C} D_2
\end{align*}
\]
are the normalizing coefficients. Define \(\gamma(v_1, s_2) \equiv \frac{p C_1 D_1}{C D} \hat{\mu}_1(v_1) + \frac{(1-p) C_2 D_2}{C D} \hat{\mu}_2(v_1) \). Then in the second period, the impartial type gives females evaluation
\[
v_F^2(s_2, v_1) = \left(\frac{\tau_{q}}{\tau_{q,2} + \tau_{q}} \right) s_2 + \left(\frac{\tau_{q,2}}{\tau_{q,2} + \tau_{q}} \right) \gamma(v_1, s_2).
\]
In the second period, following initial evaluation \(v_1 \) and signal \(s_2 \), the heuristic type gives females evaluation
\[
v_F^1(s_2, v_1) = \left(\frac{\tau_{q}}{\tau_{q,2} + \tau_{q}} \right) s_2 + \left(\frac{\tau_{q,2}}{\tau_{q,2} + \tau_{q}} \right) \hat{\mu}_F^1(v_1),
\]
where from Lemma 1, \(\hat{\mu}_F^1(v_1) = \frac{\tau_{a} \hat{\mu}_F^1(v_1)}{\tau_{a} + \tau_{e}} \), and both types give males evaluation
\[
v_M(s_2, v_1) = \left(\frac{\tau_{q}}{\tau_{q,2} + \tau_{q}} \right) s_2 + \left(\frac{\tau_{q,2}}{\tau_{q,2} + \tau_{q}} \right) \hat{\mu}_M(v_1),
\]
where from Lemma 1, \(\hat{\mu}_M(v_1) = \frac{\tau_{a} \hat{\mu}_M + \tau_{q} s_2^2}{\tau_{a} + \tau_{q}} \). Therefore, aggregate discrimination in
the second period is equal to

\[D(v_1, s_2) = v_M(s_2, v_1) - pv_F^1(s_2, v_1) - (1 - p)v_F^2(s_2, v_1) \]

\[= \left(\frac{\tau q, 2}{\tau q, 2 + \tau \eta} \right) (\hat{\mu}_M(v_1) - p\hat{\mu}_F^1(v_1) - (1 - p)\gamma(v_1, s_2)). \]

Aggregate discrimination reverses at \((v_1, s_2)\) if \(D(v_1, s_2) < 0\). We know that at \(p = 0\), \(D(v_1, s_2) = 0\), as this is the case with no partiality, and at \(p = 1\), \(D(v_1, s_2) > 0\), as this is the case with a single type of evaluator with belief-based partiality from Proposition 2. Therefore, if the derivative of \(D(v_1, s_2)\) with respect to \(p\) is negative at \(p = 0\), discrimination will become negative for an interval \((0, p)\) before becoming positive. This derivative simplifies to showing that

\[1 < \left(\frac{\tau q, 2}{\tau q, 2 + \tau \eta} \right) \left(1 + \frac{C_1D_1}{C_2D_2} \right). \]

From the expressions above,

\[\frac{C_1D_1}{C_2D_2} = \exp(-0.5\tau q, 2(s_1^1(v_1)^2 - s_1^2(v_1)^2) + 0.5(\tau a + \tau q, 2 - \tau q, 2)(\hat{\mu}_1(v_1)^2 - \hat{\mu}_2(v_1)^2) + 0.5(\tau q, 2 + \tau \eta(\hat{\mu}_1(v_1, s_2)^2 - \hat{\mu}_2(v_1, s_2)^2)), \]

which is increasing in \(v_1\) and decreasing in \(s_2\), and becomes arbitrarily large as \(v_1\) approaches negative infinity or \(s_2\) approaches infinity. Therefore, for any prior beliefs about ability for each type, it is possible for discrimination to reverse in the second period. \(\square\)

A.2 Robustness to Alternative Ability Distributions

In this section, we consider alternative continuous ability distributions and a model with binary ability and quality. We show numerically that a belief reversal does not occur in the correctly specified model.

A.2.1 Continuous Ability Distributions

Suppose a worker has ability distributed according to \(a \sim f_\mu(a)\) with parameter \(\mu\), and assume that the family of distributions \(\{f_\mu(a)\}_{\mu \in \mathbb{R}}\) satisfies the monotone likelihood ratio property in \(\mu\). We will show that if there is a single type of evaluator with prior belief that males have a higher parameter \(\mu\) than females, i.e. \(\hat{\mu}_M > \hat{\mu}_F\) and it is
common knowledge that all evaluators share these prior beliefs, then both the first and the second period evaluations are higher for males and no discrimination reversal occurs.

Each task has hidden quality $q_t = a + \varepsilon_t$, where $\varepsilon_t \sim N(0, 1/\tau \varepsilon)$. As before, evaluator t observes the evaluations on past tasks and signal $s_t = q_t + \eta_t$ of the quality of the current task, where $\eta_t \sim N(0, 1/\tau \eta)$, then reports evaluation $v_t = E_\mu[q_t|s_t, h_t]$.

Consider the first period. The prior distribution about quality

$$f_\mu(q_1) = \int_A f(q_1|a)f_\mu(a)da$$

is the convolution of the prior distribution about ability and a normally distributed error term. The MLRP is preserved under convolution with a log-concave density and the normal distribution is log-concave. Therefore, the prior distribution of quality also satisfies the MLRP in μ. Suppose that the evaluator observes signal s_1. Then the posterior belief about quality conditional on s_1 is

$$f_\mu(q_1|s_1) = \frac{f(s_1|q_1)f_\mu(q_1)}{\int_Q f(s_1|q_1)f_\mu(q_1)dq_1}.$$

The MLRP is preserved under Bayesian updating when the likelihood function is independent of μ. Therefore, since $f(s_1|q_1)$ is independent of μ, the posterior $f_\mu(q_1|s_1)$ satisfies the MLRP in μ. By FOSD, $E_\mu[q_1|s_1]$ is increasing in μ. After observing s_1, the evaluator reports initial evaluation

$$v(s_1, \mu) = E_\mu[q_1|s_1]$$

$$= \int_Q q_1 f(q_1|s_1)dq$$

$$= \frac{\int_Q \int_A q_1 f(s_1|q_1)f(q_1|a)f_\mu(a)dadq_1}{\int_Q f(s_1|q_1)f_\mu(q_1)dq_1}. \quad (11)$$

The initial evaluation is strictly increasing in s_1, and therefore, each signal s_1 maps to a unique evaluation $v(s_1, \mu)$. Let $s(v_1, \mu)$ be the signal required to receive initial evaluation v_1, i.e. the solution to

$$v_1 = \frac{\int_Q \int_A q_1 f(s(v_1, \mu)|q_1)f(q_1|a)f_\mu(a)dadq_1}{\int_Q f(s(v_1, \mu)|q_1)f_\mu(q_1)dq_1}. \quad (12)$$
After observing evaluation \(v_1 \), the posterior public belief about ability is

\[
f_\mu(a|v_1) = \frac{f(s(v_1, \mu)|a) f_\mu(a)}{f_\mu(s(v_1, \mu))}.
\] (13)

Suppose that the posterior distribution of ability \(f_\mu(a|v_1) \) satisfies the MLRP in \(\mu \). Then by the same reasoning as above, \(f(q_2|v_1, s_2) \) satisfies the MLRP in \(\mu \) and \(E_\mu[q_2|v_1, s_2] \) is increasing in \(\mu \). For any \(v_1 \) and \(s_2 \), the second period evaluation \(v_2(s_2, v_1, \mu) \) is also increasing in \(\mu \). Therefore, if all evaluators believe that males have a higher parameter \(\mu \) than females, i.e. \(\hat{\mu}_M > \hat{\mu}_F \), both the first and the second period evaluation is higher for males, \(v_1(s_1, \hat{\mu}_M) > v_1(s_1, \hat{\mu}_F) \) and \(v_2(s_2, v_1, \hat{\mu}_M) > v_2(s_2, v_1, \hat{\mu}_F) \), and no discrimination reversal occurs.

Therefore, establishing that \(f_\mu(a|v_1) \) satisfies the MLRP in \(\mu \) is sufficient to rule out a reversal between the first and second period. This is equivalent to showing \(\frac{\partial^2}{\partial \mu \partial a} \log f_\mu(a|v_1) > 0 \) for all \(a, \mu, v_1 \). Given that the denominator \(f_\mu(s(v_1, \mu)) \) is independent of \(a \), this is equivalent to

\[
\frac{\partial^2}{\partial \mu \partial a} (\log f(s(v_1, \mu)|a) + \log f_\mu(a)) > 0
\]

i.e.

\[
\frac{\partial^2}{\partial \mu \partial a} \left(\frac{\tau_\varepsilon \tau_\eta}{2(\tau_\varepsilon + \tau_\eta)} ((s(v_1, \mu) - a)^2 + \log f_\mu(a)) \right) > 0
\]

i.e.

\[
\frac{\tau_\varepsilon \tau_\eta}{\tau_\varepsilon + \tau_\eta} \frac{\partial s(v_1, \mu)}{\partial \mu} + \frac{\partial^2}{\partial \mu \partial a} \log f_\mu(a) > 0
\] (14)

where the second line follows from the signal distribution \(s|a \sim N(a, \frac{\tau_\varepsilon + \tau_\eta}{\tau_\varepsilon \tau_\eta}) \). The first term \(\frac{\partial s(v_1, \mu)}{\partial \mu} \) is negative, since when \(\mu \) is higher, a lower signal is required to receive a given evaluation. The second term \(\frac{\partial^2}{\partial \mu \partial a} \log f_\mu(a) \) is positive, since by assumption \(f_\mu(a) \) satisfies the MLRP.

We numerically show that (14) holds for several classes of distributions by (i) numerically solving (12) for \(s(v_1, \mu) \), and (ii) numerically calculating \(\frac{\partial s(v_1, \mu)}{\partial \mu} \).

Exponential Distribution. The exponential distribution has density \(f_\mu(a) = \frac{1}{\mu} e^{-a/\mu} \), where \(a \in [0, \infty) \) and \(E[a] = \mu \). Therefore, \(\frac{\partial^2}{\partial \mu \partial a} \log f_\mu(a) = 1/\mu^2 > 0 \) and the prior distribution satisfies the MLRP in \(\mu \). We show that (14) holds numerically for all parameters \(\mu \in \{0.01, 0.02, ..., 2.99, 3\} \) and \(v \in \{-2, -1.99, ..., 5.99, 6\} \). Given that \(\frac{\partial^2}{\partial \mu \partial a} \log f_\mu(a) \) is independent of \(a \), (14) is also independent of \(a \) and the simulation holds for all \(a \in [0, \infty] \). This numerically rules out a reversal when the prior distrib-
bution of ability follows the exponential distribution. See the Supplemental Appendix for the Matlab code to generate this simulation.

Beta Distribution. The beta distribution has density
\[f_{\alpha,\beta}(a) = \frac{1}{B(\alpha, \beta)} a^{\alpha-1}(1-a)^{\beta-1}, \]
where \(a \in [0, 1] \) and \(E[a] = \alpha/\beta \). Therefore, \(\frac{\partial^2}{\partial a \partial a} \log f_{\alpha,\beta}(a) = 1/a > 0 \) and the prior distribution satisfies the MLRP in \(\alpha \). Letting \(\mu \) correspond to \(\alpha \), note that for any \(\beta \), the expected ability is increasing in \(\alpha \). We show that (14) holds numerically for all parameters \(\alpha \in \{1, 1.05, ..., 2.95, 3\} \), \(\beta \in \{1.5, 2, 2.5\} \), \(a \in \{0.02, 0.04, ..., 0.96, 0.98\} \) and \(v \in \{-2, -1.98, ..., 2.98, 3\} \). This numerically rules out a reversal when the prior distribution of ability follows the beta distribution. See the Supplemental Appendix for the Matlab code to generate this simulation.

Gamma Distribution. The gamma distribution has density
\[f_{k,\theta}(a) = \frac{1}{\Gamma(k)\theta^k} a^{k-1}e^{-a/\theta}, \]
where \(a \in (0, \infty) \) and \(E[a] = k\theta \). Therefore, \(\frac{\partial^2}{\partial a \partial a} \log f_{k,\theta}(a) = 1/a > 0 \) and the prior distribution satisfies the MLRP in \(k \). Letting \(\mu \) correspond to \(k \), note that for any \(\theta \), the expected ability is increasing in \(k \). This case is slightly different, as (14) does not hold for all \(a, k, \theta \) and \(v \). Since (14) is sufficient, but not necessary, for a reversal, we can also show that \(E_k[a|v_1] \) is increasing in \(k \), i.e. the posterior average ability is increasing in the parameter of interest \(k \). We show that this holds numerically for all parameters \(k \in \{1.1, 1.2, ..., 2.9, 3\} \), \(\theta = 1 \), \(a \in \{0.1, 0.2, ..., 5.9, 6\} \) and \(v \in \{-2, -1.9, ..., 7.9, 8\} \). This numerically rules out a reversal when the prior distribution of ability follows the gamma distribution. See the Supplemental Appendix for the Matlab code to generate this simulation.

A.2.2 Binary Ability and Quality

In this section we consider a model in which ability and quality are binary. Suppose a worker has ability \(a \in \{L, H\} \) with \(p_0 = Pr(H) \). Each task has hidden quality \(q_t \in \{l, h\} \), where \(p_a = Pr(h|a) \) and \(\rho_H > \rho_L \). Let \(\phi(p) \equiv Pr(h) = \rho_{HP} + \rho_L(1-p) \) denote the probability of high quality, given belief \(p \) about ability. As before, evaluator \(t \) observes the evaluations on past tasks and signal \(s_t \) of the quality of the current task. Assume \(s_t \sim N(\mu, 1) \) when the quality is \(h \) and \(s_t \sim N(0,1) \) when the quality is \(l \), where the latter mean is a normalization. Assume \(\mu > 0 \). The evaluator reports the probability that the quality is high, \(v_t = Pr(q_t = h|s_t, h_t) \).

Given belief \(p \) that the worker has high ability, after observing signal \(s \), the evaluator
reports evaluation \(v(s, p)\), where

\[
\frac{v(s, p)}{1 - v(s, p)} = \frac{f^h(s)}{f^l(s)} \ast \frac{\phi(p)}{1 - \phi(p)}.
\]

(15)

The probability of high quality \(\phi(p)\) is strictly increasing in \(p\), and therefore, the evaluation \(v(s, p)\) is strictly increasing in \(p\). Therefore, for a given signal, a higher belief about ability leads to a higher evaluation. The evaluation \(v(s, p)\) is also strictly increasing in \(s\). Therefore, each signal \(s\) maps to a unique evaluation \(v(s, p)\). Let \(s(v, p)\) be the signal required to receive evaluation \(v\), given belief \(p\) that the worker is high ability. Given \(v(s(v, p), p) = v\) and

\[
\log f^h(s) = \frac{s^2}{2} - (s - \mu)^2/2 = \mu s - \mu^2/2,
\]

from (15),

\[
\log \frac{v}{1 - v} = \log \frac{f^h(s(v, p))}{f^l(s(v, p))} + \log \frac{\phi(p)}{1 - \phi(p)} = \mu s(v, p) - \mu^2/2 + \log \frac{\phi(p)}{1 - \phi(p)}.
\]

Solving for \(s(v, p)\) yields

\[
s(v, p) = \frac{1}{\mu} \log \frac{v}{1 - v} - \frac{1}{\mu} \log \frac{\phi(p)}{1 - \phi(p)} + \mu/2.
\]

After observing evaluation \(v\), the distribution of ability updates to

\[
\frac{B(v, p)}{1 - B(v, p)} = \frac{f^h(s(v, p))\rho_H + f^l(s(v, p))(1 - \rho_H)}{f^h(s(v, p))\rho_L + f^l(s(v, p))(1 - \rho_L)} \ast \frac{p}{1 - p}.
\]

(16)

By this reasoning, the initial evaluation \(v(s, p_0)\) is increasing in \(p_0\). Given posterior \(p_1 = B(v, p_0)\), the next period evaluation \(v(s, p_1)\) is increasing in \(p_1\). Suppose that \(B(v, p)\) is increasing in \(p\), i.e. \(\frac{dp}{dp} B(v, p) > 0\). Then the next period evaluation \(v(s, B(v, p_0))\) is also increasing in \(p_0\). Therefore, both the initial evaluation and the second period evaluation are increasing in \(p_0\). This rules out the possibility of a reversal: if \(p_0^M > p_0^F\) for males and females, then following the same evaluation, \(B(v, p_0^M) > B(v, p_0^F)\). Therefore, \(v(s, p_0^M) > v(s, p_0^F)\) and \(v(s, B(v, p_0^M)) > v(s, B(v, p_0^F))\). By recursive reasoning, this implies that there is no evaluation reversal between any periods \(t\) and \(t + 1\).
Therefore, to rule out reversals, it is sufficient to show that \(\frac{dB(v, p)}{dp} > 0 \). This is equivalent to showing that \(\frac{d}{dp} \log \frac{B(v, p)}{1-B(v, p)} > 0 \), which from (16) is equivalent to

\[
\frac{d}{dp} \left[\log P_r(v | H) - \log P_r(v | L) + \log p + \log(1-p) \right] > 0
\]

(17)

where

\[P_r(v | a) = f^h(s(v, p)) \rho_a + f^l(s(v, p))(1 - \rho_a). \]

This is equivalent to showing

\[
\frac{d}{dp} P_r(v | H) \frac{Pr(v | H)}{Pr(v | L)} - \frac{d}{dp} P_r(v | L) \frac{Pr(v | L)}{Pr(v | H)} + \frac{1}{p} + \frac{1}{1-p} > 0,
\]

(18)

where, given \(\frac{df^h}{ds} = f^h(s)(\mu - s) \) and \(\frac{df^l}{ds} = -f^l(s)s \),

\[
\frac{d}{dp} P_r(v | a) = \frac{ds(v, p)}{dp} \left[\frac{df^h(s(v, p))}{ds} \rho_a + \frac{df^l(s(v, p))}{ds}(1 - \rho_a) \right]
\]

\[
= \frac{ds(v, p)}{dp} \left[f^h(s(v, p))(\mu - s(v, p)) \rho_a - f^l(s(v, p))s(v, p)(1 - \rho_a) \right]
\]

and

\[
\frac{ds(v, p)}{dp} = -\frac{\rho_H - \rho_L}{\mu \phi(p)(1 - \phi(p))}.
\]

We show that (18) holds numerically for all parameters \(\rho_L \in \{.02, .04, ..., .96\} \), \(\rho_H \in \{\rho_L + .02, ..., .98\} \), \(\mu \in \{0.5, 0.55, ..., 2.5\} \), \(p \in \{.01, .02, ..., .99\} \) and \(v \in \{.01, .02, ..., .99\} \). This numerically rules out reversals in the binary model. See the Supplemental Appendix for the Matlab code to generate this simulation.

A.3 Coarse Evaluations

Set-up. Suppose that the setup is identical to Section 2.1, except that evaluations are binary – the evaluator chooses to either upvote or downvote a post, \(v_t \in \{0, 1\} \). The evaluator receives a payoff of \(q - c_g \) from upvoting a task from a worker of gender \(g \) and quality \(q \), where, as before, \(c_g \) is a taste parameter with \(c_M = 0 \) and \(c_F \geq 0 \), and receives a payoff of 0 from downvoting a task.

The definitions of preference-based and belief-based partiality remain the same. We slightly adjust the definition of discrimination to account for the binary action space. A voting strategy specifies the set of signals that map into each type of vote. We say
discrimination occurs at history h if there exists a set of signals on which females and males receive different votes. As before, define

$$D(h, s) \equiv v(h, s, M) - v(h, s, F).$$

Definition 4 (Discrimination). A female (male) faces discrimination at history h if $D(h, s) \geq 0$ ($D(h, s) \leq 0$) for all s, with a strict inequality for a positive measure of signals.

Decision Rule. The evaluator maximizes her expected payoff by choosing $v_t = 1$ iff

$$E[q_t|h_t, s_t, g] \geq c_g,$$

where the expectation is taken with respect to the posterior distribution of quality, conditional on (h_t, s_t, g). Note that $E[q_t|h_t, s_t, g]$ is strictly increasing in s_t, since $f_{s|g}$ satisfies the MLRP with respect to q. Therefore, the optimal evaluation strategy can be represented as a cut-off rule on the signal. A task gets an upvote if the signal $s_t \geq \bar{s}(h_t, g)$ for some cut-off $\bar{s}(h_t, g)$. Discrimination can be represented in terms of the signal cut-off: a female faces discrimination at history h_t if $\bar{s}(h_t, F) > \bar{s}(h_t, M)$, with an analogous definition for males. The set of signals on which discrimination occurs is an interval with measure $\bar{s}(h_t, F) - \bar{s}(h_t, M)$.

Initial Discrimination. As in Section 2, the posterior belief about quality after observing signal s_1 is normal,

$$q_1|s_1 \sim N\left(\frac{\tau q \hat{\mu}_g + \tau q s_1 \tau q}{\tau q \tau q + \tau q \tau q}, \frac{1}{\tau q \tau q + \tau q \tau q}\right).$$

The evaluator chooses $v_1 = 1$ if

$$\frac{\hat{\mu}_g \tau q + s_1 \tau q}{\tau q + \tau q} \geq c_g,$$

or

$$s_1 \geq \bar{s}(\hat{\mu}_g, c_g) \equiv c_g \left(\frac{\tau q + \tau q}{\tau q}\right) - \hat{\mu}_g \left(\frac{\tau q}{\tau q}\right).$$

The cut-off is increasing in c_g and decreasing in $\hat{\mu}_g$. All of the initial discrimination results easily extend to the coarse evaluation setting. In particular, initial discrimination occurs if and only if $c_F > 0$ or $\hat{\mu}_M > \hat{\mu}_F$. As $\tau q \rightarrow \infty$, $\bar{s}(h_1, g) \rightarrow c_g$. Therefore,
initial discrimination persists as evaluations become perfectly objective if and only if evaluators have preference-based partiality, \(c_F > 0 \).

Impossibility of Reversal. For simplicity, we focus on how workers are evaluated in period \(t = 2 \), conditional on receiving an accept vote in period \(t = 1 \). We first consider a setting in which all evaluators have identical preferences and prior beliefs about ability, and have accurate beliefs about the preferences and prior beliefs of other evaluators. In the second period, the evaluator chooses \(v_2 = 1 \) if

\[
E[q_2|v_1 = 1, s_2, g] \geq c_g.
\]

Computing \(E[q_2|v_1 = 1, s_2, g] \) is more challenging than in the first period, as the posterior belief about ability is no longer normally distributed, and therefore, neither is the posterior belief about quality \(q_2 \). By Lemma 4, we know that the belief about ability conditional on an upvote in the first period, \(\{f_\hat{\mu}(a|v_1 = 1)\}_{\hat{\mu} \in \mathbb{R}} \), satisfies the MLRP in the prior \(\hat{\mu} \). By Lemma 5, the MLRP is preserved under convolution with a normal error term, and hence, \(E_{\hat{\mu}}[q_2|v_1 = 1, s_2, g] \) is increasing in \(\hat{\mu} \). Therefore, when evaluators have belief-based partiality and a worker receives an upvote in the first period, there is no belief reversal in ability or expected quality in the second period, and hence, no discrimination reversal.

Proposition 4. Suppose all evaluators have the same prior beliefs about the distributions of ability, a correct model of the beliefs and preferences of other evaluators, and belief-based partiality. Then there is no discrimination reversal in the second period, following an upvote in the first period.

Therefore, the impossibility of a reversal also holds when evaluations are coarse.

Proof of Proposition 4. Suppose a worker has prior expected average ability \(\hat{\mu}_g = \mu \). Let \(f_\mu(a) \) denote the prior distribution of ability for this worker, and let \(f_\mu(a|v_1 = 1) \) denote the posterior distribution, conditional on observing an upvote on the first post, \(v_1 = 1 \). By assumption, \(f_\mu(a) \) is the normal distribution with mean \(\mu \) and precision \(\tau_a \).

After observing \(v_1 = 1 \), the public belief about ability is updated to

\[
f_\mu(a|v_1 = 1) = \frac{P_\mu(v_1 = 1|a)f_\mu(a)}{\int_\infty P_\mu(v_1 = 1|a)f_\mu(a)da},
\]

where \(P_\mu(v_1 = 1|a) \) is the likelihood function that determines the informativeness of an upvote in the first period. This likelihood function is an equilibrium object that
depends on gender and prior beliefs.

Lemma 4. The family of posterior beliefs about ability following an upvote in the first period, \(\{f_\mu(a|v_1 = 1)\}_{\mu \in \mathbb{R}} \), satisfies the MLRP in \(\mu \).

Proof. Since the prior belief about ability is normal, \(f_\mu(a) = \sqrt{\tau_\varepsilon(a - \mu)} \), where \(\phi \) is the p.d.f. of the standard normal distribution. Therefore, \(\{f_\mu(a)\}_{\mu \in \mathbb{R}} \) is MLR ordered in \(\mu \), by property of the normal distribution. The likelihood function depends on the cut-off rule \(\bar{s} \),

\[
P_\mu(v_1 = 1|a) = P_\mu(s_1 \geq \bar{s}|a)
= P_\mu(a + \varepsilon_1 + \eta_1 \geq \bar{s}|a)
= P_\mu(\varepsilon_1 + \eta_1 \geq \bar{s} - a|a)
= P_\mu(\varepsilon_1 + \eta_1 \geq \bar{s} - a) \quad \text{since } \varepsilon_1, \eta_1 \perp a
= 1 - \Phi \left(\sqrt{\tau_{\varepsilon \eta}(\bar{s} - a)} \right) \quad \text{since } \varepsilon_1 + \eta_1 \sim N(0, 1/\tau_{\varepsilon \eta})
= \Phi \left(\sqrt{\tau_{\varepsilon \eta}(a - \bar{s})} \right) \quad \text{since } 1 - \Phi(x) = \Phi(-x)
\]

where \(\Phi \) is the c.d.f of the standard normal distribution, and \(\tau_{\varepsilon \eta} \equiv \frac{\tau_\varepsilon \tau_\eta}{\tau_\varepsilon + \tau_\eta} \). Therefore, for cut-off rule \(\bar{s}(\mu, c) \), the likelihood ratio of the posterior distribution of ability is

\[
\frac{f_\mu(a|v_1 = 1)}{f_\mu(a'|v_1 = 1)} = \frac{P_\mu(v_1 = 1|a)}{P_\mu(v_1 = 1|a')} \cdot \frac{f_\mu(a)}{f_\mu(a')}
= \frac{\Phi \left(\sqrt{\tau_{\varepsilon \eta}(a - \bar{s}(\mu, c))} \right)}{\Phi \left(\sqrt{\tau_{\varepsilon \eta}(a' - \bar{s}(\mu, c))} \right)} \cdot \frac{\phi(\sqrt{\tau_\varepsilon(a - \mu)})}{\phi(\sqrt{\tau_\varepsilon(a' - \mu)})}.
\tag{20}
\]

The goal is to show that (20) is increasing in \(\mu \) for \(a > a' \), i.e. the posterior belief satisfies the MLRP. The first term on the RHS is decreasing in \(\mu \), since an upvote is more informative for lower \(\mu \) (or higher \(c \)), and the second term on the RHS is increasing in \(\mu \), since the prior belief satisfies the MLRP in \(\mu \). The posterior belief will satisfy the MLRP iff for all \(a \) and \(\mu \),

\[
\frac{\partial^2}{\partial a \partial \mu} \log P_\mu(v_1 = 1|a) + \log f_\mu(a) \geq 0.
\tag{21}
\]
Recall \(\bar{s}(\mu, c) = c \left(\frac{\tau_\eta}{\tau_q} \right) - \mu \left(\frac{\tau_\eta}{\tau_q} \right) \). Computing the first term of (21),

\[
\frac{\partial^2}{\partial a \partial \mu} \log P_\mu(v_1 = 1|a) = \frac{\partial^2}{\partial a \partial \mu} \log \Phi \left(\sqrt{\tau_\eta}(a - \bar{s}(\mu, c)) \right) \\
= \frac{\partial}{\partial a} \frac{\partial}{\partial \mu} \Phi \left(\sqrt{\tau_\eta}(a - \bar{s}) \right) \times \left(\tau_\eta \right) \\
= - \phi(x) \phi(x) \frac{x - \phi(x)^2}{\Phi(x)^2} \times \left(\tau_\eta \right) \\
= - \left(\frac{\phi(x) x}{\Phi(x)} + \frac{\phi(x)^2}{\Phi(x)^2} \right) \left(\frac{\tau_q \tau_\eta}{\tau_\eta} \right),
\]

where \(x \equiv \sqrt{\tau_\eta}(a - \bar{s}(\mu, c)) \) and \(- \frac{\partial \bar{s}}{\partial \mu} = \tau_q / \tau_\eta \). Computing the second term of (21)

\[
\frac{\partial^2}{\partial a \partial \mu} \log f_\mu(a) = \frac{\partial^2}{\partial a \partial \mu} \log \phi(\sqrt{\tau_a}(a - \mu)) \\
= \frac{\partial}{\partial a} \frac{\partial}{\partial \mu} \phi(\sqrt{\tau_a}(a - \mu)) \\
= \frac{\partial}{\partial a} \tau_a(a - \mu) \\
= \tau_a.
\]

Therefore, need to show that for all \(x \),

\[
\tau_a - \left(\frac{\phi(x) x}{\Phi(x)} + \frac{\phi(x)^2}{\Phi(x)^2} \right) \left(\frac{\tau_q \tau_\eta}{\tau_\eta} \right) \geq 0 \\
\Leftrightarrow \tau_x = \left(\frac{\phi(x) x}{\Phi(x)} + \frac{\phi(x)^2}{\Phi(x)^2} \right) \geq 0,
\]

where \(\tau_x \equiv \frac{\tau_a \tau_q}{\tau_\eta \tau_\eta} \). From Stack Exchange\(^{19}\), we know that

\[
\left(\frac{\phi(x) x}{\Phi(x)} + \frac{\phi(x)^2}{\Phi(x)^2} \right) \leq 1.
\]

\(^{19}\)https://math.stackexchange.com/questions/2337419/property-of-standard-normal
From the definition of τ_x,
\[
\tau_x = \frac{\tau_a \tau_{\eta}}{\tau_{\eta} \tau_{\varepsilon}} = \left(\frac{\tau_a + \tau_\varepsilon}{\tau_\varepsilon}\right) \left(\frac{\tau_\eta + \tau_\varepsilon}{\tau_\varepsilon}\right) = \frac{\tau_a \tau_{\eta}}{\tau_\varepsilon} + \frac{\tau_\eta}{\tau_\varepsilon} + \frac{\tau_a}{\tau_\varepsilon} + 1 \geq 1.
\]

Therefore, (22) holds for all x. Therefore, for all $a > a'$, (20) is increasing in μ and \(\{f_\mu(a|v = 1)\}_{\mu \in \mathbb{R}} \) satisfies the MLRP.

Given Lemma 4, for $\mu > \mu'$, $f_\mu(a|v = 1)$ first-order stochastically dominates $f_{\mu'}(a|v = 1)$. Therefore, $E_\mu[a|v_1 = 1]$ is increasing in μ, and there is no belief reversal about ability in the second period. Lemma 5 establishes that the posterior distribution of quality following an upvote in the first period and signal s_2 in the second period, $g_\mu(q_2|v_1 = 1, s_2)$, also satisfies the MLRP in the prior belief μ.

Lemma 5. The posterior distribution of quality, following an upvote in the first period and signal s_2 in the second period, \(\{g_\mu(q_2|v_1 = 1, s_2)\}_{\mu \in \mathbb{R}} \), satisfies the MLRP in μ.

Proof. From Lemma 4, \(\{f_\mu(a|v_1 = 1)\}_{\mu \in \mathbb{R}} \) satisfies the MLRP. Since $q_2 = a + \varepsilon_2$, the prior distribution of second period quality, $g_\mu(q_2|v_1 = 1)$, is the convolution of $f_\mu(a|v_1 = 1)$ and $f_\varepsilon(\varepsilon)$, where f_ε denotes the density of ε. From Theorem 2.1(d) in Keilson and Sumita (1982), the MLRP is preserved when an independent random variable with a log-concave density function is added to a family of random variables that satisfy the MLRP. Since $a \perp \varepsilon$ and f_ε is a log-concave density (the normal distribution is log concave), the family of distributions $\{g_\mu(q_2|v_1 = 1)\}_{\mu \in \mathbb{R}}$ satisfies the MLRP. Therefore,
\[
\frac{\partial^2}{\partial q \partial \mu} \log g_\mu(q_2|v_1 = 1) > 0,
\]
which also means that
\[
\frac{\partial^2}{\partial q \partial \mu} \log g_\mu(q_2|v_1 = 1, s_2) > 0,
\]
since the likelihood function (the distribution of $s_2|q_2$) is independent of μ, and the denominator is independent of q_2. Therefore, for any signal s_2, the posterior belief about quality $\{g_\mu(q_2|v_1 = 1, s_2)\}_{\mu \in \mathbb{R}}$ also satisfies the MLRP. \qed
The MLRP implies FOSD, which implies that for any signal s_2, $E_{\mu}[q_2|v_1 = 1, s_2]$ is increasing in μ. Therefore, there is no belief reversal about quality in the second period. Hence, discrimination does not reverse between the first and second period.

A.4 Shifting Standards

Suppose that the evaluator’s payoff also depends on the seniority of the worker, as measured by the worker’s reputation $r(h_t) \equiv \sum_{n=1}^{t-1} v_n$, which is the sum of the worker’s past evaluations. She receives a payoff of $(v - (q - c(r) - c_g))^2$ from reporting evaluation v on a task of quality q from a worker of gender g and reputation r, where $c: \mathbb{R} \rightarrow \mathbb{R}_+$ is the benchmark of evaluation for a worker with reputation r and, as above, c_g is a taste parameter with $c_M = 0$. Assume that $c(r)$ is weakly increasing in r to capture the idea that as reputation increases, a worker receives additional privileges or promotions, and the benchmark to promote the worker increases with the worker’s seniority. Normalize the initial benchmark to $c(0) = 0$, and assume that $c(r) = 0$ for all $r < 0$, so that workers who produce negative quality do not receive a more lenient benchmark.

The optimal evaluation strategy is to report

$$v(h_t, s_t, g) = \frac{\tau_{q,t} \hat{\mu}_g(h_t) + \tau_s s_t}{\tau_{q,t} + \tau_s} - c(r(h_t)) - c_g,$$

where $\hat{\mu}_g(h_t)$ is the expected ability of the worker, conditional on history h_t. Fixing $\hat{\mu}_g(h_t)$ and s_t, as the worker’s reputation increases, he or she receives a lower evaluation for the same expected quality. Note that shifting standards will have no effect on discrimination, since the benchmark of evaluation term cancels between females and males, $D(h_t, s_t) = \left(\frac{\tau_{q,t}}{\tau_{q,t} + \tau_s}\right) (\hat{\mu}_M(h_t) - \hat{\mu}_F(h_t)) + c_F$.

A positive initial evaluation (i.e. above average, $v_1 > \hat{\mu}_g$) impacts the standard faced by a worker – the signal required to receive a given evaluation – in two ways: it increases the evaluator’s belief about the worker’s ability, and it increases the benchmark of evaluation. A positive evaluation is good news about ability: the distribution of ability following a positive evaluation first order stochastically dominates the prior distribution of ability. Since expected quality is equal to expected ability, and the signal required to earn a given evaluation is decreasing in expected quality, increasing the expected ability while holding reputation constant results in a lower standard. However, a positive evaluation also increases the worker’s reputation, and therefore, the benchmark of evaluation. Holding the belief about ability fixed, higher reputation workers face
stricter standards. Therefore, the overall effect of a positive evaluation on standards is ambiguous.

We say a worker faces shifting standards if, conditional on receiving a positive initial evaluation, the worker faces a stricter standard in period 2 – a higher signal is required to receive any evaluation, relative to the signal required for the same evaluation in period 1. Let \(s(v, h, g) \) denote the signal required for a worker with history \(h \) and gender \(g \) to receive evaluation \(v \).

Definition 5. A worker faces shifting standards following evaluation \(v_1 \) if the initial evaluation is positive, \(v_1 > \hat{\mu}_g \), but the worker subsequently faces a stricter standard, \(s(v, v_1, g) > s(v, \emptyset, g) \) for all \(v \in \mathbb{R} \).

Shifting standards implies that the positive evaluation’s negative impact on the benchmark of evaluation outweighs the positive impact on the belief about the worker’s expected quality. Note that the definition is required to hold at all evaluations \(v \in \mathbb{R} \), but this is not restrictive, as given \(h_2 \supset h_1 \), \(s(v, h_2, g) - s(v, h_1, g) \) is independent of \(v \). Therefore, the definition either holds at all evaluations or at no evaluations. For any positive initial evaluation \(v_1 \), it is straightforward to show that there exists a cut-off \(\bar{c} \) such that if the new benchmark of evaluation exceeds this cut-off, \(c(v_1) > \bar{c} \), a worker faces shifting standards.

Standards unambiguously rise after a negative initial evaluation, \(v_1 < \hat{\mu}_g \). A negative evaluation is bad news about the worker’s ability, and either raises or maintains the initial benchmark of evaluation.

B Additional Figures and Tables

B.1 Example Question and Answer Posts

The following screenshots of a randomly selected question and answer post illustrate how users create content on the forum. These posts are not part of our experiment.
Figure 5. Question Post

Figure 6. Answer Post

B.2 Robustness

Upvotes Only. The following tables present analogous regressions to Tables 1 and 2, using number of upvotes as the dependent variable.
Table 3. Subjectivity: Effect of Gender on Evaluation of Novice Answers and Questions (Upvotes Only)

<table>
<thead>
<tr>
<th></th>
<th>Answers</th>
<th>Questions</th>
<th>Answers & Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Male</td>
<td>-0.20</td>
<td>0.57</td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td>(.17)</td>
<td>(.27)</td>
<td>(.23)</td>
</tr>
<tr>
<td>Question</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male*Question</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.81</td>
<td>0.97</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>(.12)</td>
<td>(.19)</td>
<td>(.16)</td>
</tr>
<tr>
<td># Obs</td>
<td>135</td>
<td>135</td>
<td>270</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise; Question=1 if question post, 0 if answer; Novice accounts only.

Table 4. Dynamics: Effect of Gender on Evaluation Questions, Novice and Advanced (Upvotes Only)

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Advanced</th>
<th>Novice & Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Male</td>
<td>0.57</td>
<td>-0.64</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>(.27)</td>
<td>(.27)</td>
<td>(.27)</td>
</tr>
<tr>
<td>Advanced</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male*Advanced</td>
<td>-1.20</td>
<td></td>
<td>-1.20</td>
</tr>
<tr>
<td></td>
<td>(.38)</td>
<td></td>
<td>(.38)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.97</td>
<td>1.42</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>(.19)</td>
<td>(.19)</td>
<td>(.19)</td>
</tr>
<tr>
<td># Obs</td>
<td>135</td>
<td>138</td>
<td>273</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise; Advanced=1 if Advanced account, 0 otherwise.
First Vote Only. The following tables present parallel regressions to Tables 1 and 2, using only the first vote on a post in our experiment from each evaluator.

Table 5. Subjectivity: Effect of Gender on Evaluation of Novice Answers and Questions

<table>
<thead>
<tr>
<th></th>
<th>Answers Only</th>
<th>Questions Only</th>
<th>Answers & Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ Rep Net Votes</td>
<td>Δ Rep Net Votes</td>
<td>Δ Rep Net Votes</td>
</tr>
<tr>
<td>Male</td>
<td>-1.15 (.82)</td>
<td>-0.28 (.16)</td>
<td>2.17 (1.07)</td>
</tr>
<tr>
<td>Question</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male*Question</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.55 (.58)</td>
<td>0.70 (.12)</td>
<td>3.13 (.76)</td>
</tr>
<tr>
<td># Obs</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise; Question=1 if question post, 0 if answer; Novice accounts only.

Table 6. Dynamics: Effect of Gender on Evaluation Questions, Novice and Advanced

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>Novice & Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ Rep Net Votes</td>
<td>Δ Rep Net Votes Binary</td>
</tr>
<tr>
<td></td>
<td>(1) (2)</td>
<td>(3) (4) (5)</td>
</tr>
<tr>
<td>Male</td>
<td>-2.58 (1.14)</td>
<td>-0.51 (.23)</td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td>1.64 (1.11)</td>
</tr>
<tr>
<td>Male*Advanced</td>
<td></td>
<td>-4.75 (1.57)</td>
</tr>
<tr>
<td>Constant</td>
<td>4.77 (0.81)</td>
<td>0.93 (.16)</td>
</tr>
<tr>
<td># Obs</td>
<td>138</td>
<td>138</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise; Advanced=1 if Advanced account, 0 otherwise.
B.3 Voter Characteristics

Table 7. Voter Characteristics by Post Type

<table>
<thead>
<tr>
<th></th>
<th>Voter Reputation</th>
<th>Voter Gender: % Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Answers</td>
<td>16679</td>
<td>0.14 (.04)</td>
</tr>
<tr>
<td>Questions: All</td>
<td>18836</td>
<td>0.10 (.02)</td>
</tr>
<tr>
<td>Questions: Novice</td>
<td>17957</td>
<td>0.11 (.03)</td>
</tr>
<tr>
<td>Questions: Advanced</td>
<td>19839</td>
<td>0.09 (.03)</td>
</tr>
</tbody>
</table>

Note: Standard errors reported in parentheses; voter reputation winsorized at 90 percent.

B.4 Observational Data

Description of Algorithm to Code Gender. Vasilescu et al. (2014) developed the algorithm to code gender and validated its accuracy through secondary data collection on online Q&A forums. The algorithm uses look-up tables with the frequencies of first names by gender and country. For example, while John and Claire are common male and female names, respectively, across countries, Andrea is a common male name in Italy and a common female name in Germany. We preprocessed the data to obtain \((name, country)\) tuples for each user when such information is available. The preprocessed data is then fed into a Python tool that classifies the tuple as ‘male,’ ‘female,’ or ‘x’ (when gender cannot be inferred). The tool uses an iterative process that first employs country-specific look-up tables, and if that does not lead to a resolution, switches to common conventions for usernames (Bird, Gourley, Devanbu, Gertz, and Swaminathan 2006). Vasilescu et al. (2014) collected additional data from users on the forum to validate the tool, demonstrating a level of precision greater than 90%. The algorithm and associated data files are publicly available on GitHub at https://github.com/tue-mdse/genderComputer.

Attrition. In Table 8, we regress a dummy for whether a user generates a second post on the inferred gender of the username, the number of reputation points earned
for the first post \(\Delta \text{Rep} \), a dummy for whether the first post was an answer and the timing of the first post, measured as the log of the number of minutes between account activation and the first post.\(^{20}\)

Table 8. Likelihood of Generating a Second Post

<table>
<thead>
<tr>
<th></th>
<th>Second Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(.004)</td>
</tr>
<tr>
<td>(\Delta \text{Rep First Post})</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(.007)</td>
</tr>
<tr>
<td>First Post Answer</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(.005)</td>
</tr>
<tr>
<td>Timing of First Post</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.47</td>
</tr>
<tr>
<td></td>
<td>(.03)</td>
</tr>
<tr>
<td># Obs</td>
<td>83,814</td>
</tr>
</tbody>
</table>

Standard errors from probit regressions reported in parentheses; Second Post=1 if user posts a second time, 0 otherwise; Male=1 if male username, 0 otherwise; First Post Answer = 1 if first post was an answer, 0 otherwise.

Discrimination in Observational Data. Next, we examine discrimination using the observational dataset. As in our experiment, we focus on the evaluation of questions posted to novice and advanced accounts, and the evaluation of answers posted to novice accounts. We define posting to novice and advanced accounts similar to the experiment. A novice post corresponds to posting a question or answer to an account with no prior reputation or posts. An advanced post corresponds to posting a question to an account that has attained a reputation of at least 100 points but not more than 240 (the approximate range in our experiment); importantly, the question has to be the first post to the account once it reaches this reputation threshold.

\(^{20}\)The data on the number of minutes between account activation and first post is highly skewed: the median user takes 7.73 minutes before their first post, and the user in the 90th percentile takes 58,799 minutes. This skew motivates the log transformation.
This analysis comes with several important caveats. First, there is the obvious endogeneity problem that stems from not being able to control for the quality of question posts. Second, there may be gender-based selection between the novice and advanced accounts. Although the above analysis suggests there is little evidence of differential attrition conditional on receiving similar evaluations on prior posts, male and female users may still face different evaluation thresholds early on. In fact, our experimental results show this to be likely. Therefore, females with advanced reputation levels may indeed be of higher ability than males with similar reputation levels. Finally, the number of posts that generated a user’s reputation is relevant for inferring ability, as different numbers of posts can result in similar reputations. We control for this issue in our experiment through randomization; it is less straightforward to control for in the observational data.21

Keeping these caveats in mind, we run regressions analogous to Tables 1 and 2 using the reputation points earned per post (ΔRep) as the dependent variable. The evaluation patterns by gender across the different types of posts are similar to those documented in the experiment, although the effect sizes vary and are often smaller.

For the evaluation of answers (Table 9), we regress ΔRep for answer evaluations on gender. We run the analysis on answers posted to accounts with a reputation less than 240 (Column (1)), answers posted to novice accounts (Column (2)) and answers posted to novice accounts during the timeframe of the experimental study (Column (3)). Across these three specifications, we find no significant evidence of gender discrimination.

21We attempt to address the issue by running specifications where the advanced accounts required 20 or fewer posts to reach their respective reputation levels. A user earning the average number of upvotes per post would need to post approximately 20 questions to attain 100 reputation points. The results are robust to limiting the analysis to 10 or fewer posts, which is the number of answers an average user would need to post to attain 100 reputation points. Increasing or decreasing the number of posts, including the variable in the regression, or not controlling for it at all does not qualitatively change the results.
Table 9. Evaluation of Answers: ΔRep

<table>
<thead>
<tr>
<th>Reputation < 240</th>
<th>Novice</th>
<th>Novice - Experiment Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(.28)</td>
<td>(.33)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.44</td>
<td>7.94</td>
</tr>
<tr>
<td></td>
<td>(.26)</td>
<td>(.31)</td>
</tr>
<tr>
<td># Obs</td>
<td>19,983</td>
<td>10,760</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise.

For the evaluation of novice questions (Table 10), we regress ΔRep on gender for evaluations of questions posted by novice users. We run the analysis on questions posted to all novice accounts (Column (1)), questions posted to novice accounts during the timeframe of the experimental study (Column (2)) and questions posted to novice accounts for users who also posted after reaching at least 100 reputation points (Column (3)). Restricting attention to users who eventually earn at least 100 reputation points allows us to focus on users who are presumably posting higher quality content, given the reputation they eventually earn. Across all specifications, we find that questions posted by novice accounts with female usernames earn fewer reputation points than those posted by novice accounts with male usernames. The magnitude of this difference is larger for the specifications that restrict attention to the users who eventually reach 100 reputation points.
Lastly, we look at questions posted to advanced accounts (Table 11). We regress ΔRep on gender for questions posted to all advanced accounts (Column (1)), questions posted to advanced accounts that required 20 or fewer posts to reach their respective reputation levels (Column (2)), and questions posted to advanced accounts during the timeframe of the experimental study (Column (3)). Across all specifications we find that questions posted to advanced accounts with female usernames are favored over those posted to advanced accounts with male usernames.

Table 10. Evaluation of Questions Posted by Novice Users: ΔRep

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Experiment Window</th>
<th>Reach 100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Male</td>
<td>0.58</td>
<td>0.30</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td>(.11)</td>
<td>(.14)</td>
<td>(1.37)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.92</td>
<td>5.05</td>
<td>17.35</td>
</tr>
<tr>
<td></td>
<td>(.10)</td>
<td>(.12)</td>
<td>(1.20)</td>
</tr>
<tr>
<td># Obs</td>
<td>72,896</td>
<td>26,092</td>
<td>2,123</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise.

Table 11. Evaluation of Questions Posted by Advanced Users: ΔRep

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>< 20 Posts</th>
<th>Experiment Window</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Male</td>
<td>-0.88</td>
<td>-1.58</td>
<td>-1.63</td>
</tr>
<tr>
<td></td>
<td>(.55)</td>
<td>(.68)</td>
<td>(.88)</td>
</tr>
<tr>
<td>Constant</td>
<td>9.3</td>
<td>10.59</td>
<td>7.65</td>
</tr>
<tr>
<td></td>
<td>(.49)</td>
<td>(.61)</td>
<td>(.75)</td>
</tr>
<tr>
<td># Obs</td>
<td>2,123</td>
<td>1,599</td>
<td>531</td>
</tr>
</tbody>
</table>

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise.

C Stereotyping

In Section 2, we established that a dynamic reversal of discrimination can arise when some evaluators hold beliefs that females are of lower average ability than they actually
are, and other evaluators are aware of these incorrect beliefs. In this section, we use publicly available statistics from the observational dataset to explore one potential mechanism that could lead to such biased beliefs.

Bordalo et al. (2016b) develop a framework in which biased stereotypes arise and persist due to ‘representativeness’, a well-documented cognitive heuristic used to simplify complex probability judgments (Tversky and Kahneman 1983). When assessing the frequency of a type in a particular group, an individual who uses this heuristic focuses on the relative likelihood of that type with respect to a reference group, rather than assessing the absolute frequency of the type. The type that is most frequently found in one group relative to another, e.g. the frequency of Floridians over 65 relative to the frequency of people over 65 in the rest of the country, is representative of that group. The heuristic exaggerates the perceived frequency of the representative type in the respective group, and as a result, distorts beliefs about the associated type distribution. Specifically, a ‘kernel of truth’ in the relative frequency – that the proportion of seniors is higher amongst Floridians than in the rest of the US – may lead to a biased stereotype about absolute frequencies – that most Floridians are seniors.\footnote{This stereotype is incorrect – the overall age distribution of Floridians is quite similar to the rest of the country, and the majority of Floridians are under 65.}

Let t represent a user’s quintile in the ability distribution, $t \in T = \{1^{st}, ..., 5^{th}\}$. A type t is ‘representative’ of group g, in relation to the comparison group $-g$, if the likelihood ratio $\pi_{t,g}/\pi_{t,-g}$ is high, where $\pi_{t,g}$ is the probability that a worker from group g is in quantile t. The ‘representative’ type corresponds to the most salient difference between groups; it is the first type to come to mind when using the heuristic to form beliefs, and leads to overweighting of the perceived frequency of the type within the group. Specifically, Bordalo et al. (2016b) define the stereotyped belief as

$$\pi_{t,g}^{st} \equiv \pi_{t,g} \frac{\left(\frac{\pi_{t,g}}{\pi_{t,-g}}\right)^{\theta}}{\sum_{s \in T} \pi_{s,g} \left(\frac{\pi_{s,g}}{\pi_{s,-g}}\right)^{\theta}},$$

where $\theta \geq 0$ corresponds to the extent of the belief distortion. Incorrect stereotypes are most likely to form when there are group differences in the frequency of a particular type, but the overall type distributions are largely the same. This is consistent with recent empirical work that finds support for the model (Arnold et al. 2017; Bordalo, Coffman, Gennaioli, and Shleifer 2016a; Coffman 2014).

Here, we explore how ‘representativeness’ can lead to biased beliefs in our setting.
We examine the distribution of users’ reputation earned per answer post over the entire range of reputations at time of posting. Since we do not observe evidence for discrimination on answers posted to low reputation accounts in either the experiment or the observational data, we use the evaluation of answers as a proxy for ability. We divide the distribution of reputation earned per answer post into quintiles by gender. The distributions are fairly similar across male and female usernames: the median corresponds to the 3rd quintile for both male and female users, with the mean equal to 2.97 for males and 2.87 for females. The difference in means is fairly small, representing 6% of a standard deviation of the average quintile position, and is only marginally significant. However, using these means as estimates of the perceived means of ability (\(\hat{\mu}_F\) and \(\hat{\mu}_M\) from the theory model), we see that even mild belief distortions due to ‘representativeness’ quickly exacerbate this small underlying difference.

Figure 7 illustrates the difference between perceived means of males and females as a function of the degree of distortion \(\theta\) caused by the stereotype heuristic. While the perceived means are fairly similar when the distortion is minimal (\(\theta=0\)), under moderate levels of distortion (for example, \(\theta = 2.5\) estimated in prior studies (Arnold et al. 2017)), the difference in perceived means triples to nearly half a quintile. As shown in Section 2, if even a small proportion of individuals hold such distorted beliefs, this can lead to a dynamic reversal of discrimination.