As a data collection service provided for large scale projects, Pathway Services Inc. utilizes a pavement skid friction test system to measure and report the average coefficient of all paved surfaces. Collection is conducted in accordance with ASTM E274 to measure the peak or incipient slip friction of a paved surface in accordance with ASTM E1337.

WHAT IS THIS?

Liable • Life Saving • Legal Support

As a data collection service provided for large scale projects, Pathway Services Inc. utilizes a pavement skid friction test system to measure and report the average coefficient of all paved surfaces. Collection is conducted in accordance with ASTM E274 to measure the peak or incipient slip friction of a paved surface in accordance with ASTM E1337.

WHO USES THIS?

- Traffic and Safety Groups
- Materials and Test Engineers
- Roadway Design Groups
- Pavement Management Groups

WHY DO I NEED THIS?

Repeatable • Responsible • Resourceful

Even the general public knows that roads can be more dangerous when they’re wet, but as public servants we also have a responsibility to address safety concerns and remedy them through maintenance before they become dangerous. Friction testing has been an important safety tool used by state and national governments for decades. As resources and manpower have become more and more depleted, many government entities have turned to private industry to provide this potentially life-saving statistic. Large-scale or network level friction analysis is a proven and cost-effective way to discover low texture surfaces before they become a dangerous problem.

“My experience with Pathway Services has been that your staff has been very knowledgeable, technically competent and responsive.”

-Susan Gresavage, NJ DOT
The system consists of a specially equipped tow-vehicle and a customized two-wheeled trailer. The skid trailer uses an ASTM standard ribbed and/or blank test tire. The trailer can be pulled over a paved surface by the truck at a constant velocity while a nozzle dispenses water in front of the tire to simulate wet conditions.

The test wheel of the trailer is coupled by a disc brake assembly to a calibrated force transducer, which measures the traction force and load on the wheel under braking. The electrical/mechanical devices in the trailer are controlled by the computer system electronics in the tow vehicle in combination with switches on an operator’s control console.

The friction testing equipment contains a water supply system for test operations, electrical equipment to supply the required DC and AC power to the test system, and a computer system to activate tests and record the measured data.