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Abstract

This dissertation presents a genéral framework for understanding, applying,
comparing, and creating techniques for constructing representational semantics. The
work begins with John Etchemendy’s positive account of how model-theoretic semantics
illuminates the consequence relation for specific languages. Etchemendy uses the term
‘““representational semantics’ to identify the approach to logical consequence he
advocates. We abstract away from the particulars of Etchemendy’s account, and
construct a general conceptual framework we call the ‘“‘representational schema.” The
representational schema gives a general form for techniques used to construct theories of
logical consequence implementing representational semantics.

We show how the representational schema is capable of subsuming not just
model-theoretic semantics, but also a class of techniques for constructing theories of
logical consequence whose central concept can be abstracted from a corollary to
Lindenbaum’s Lemma; a class we call order-consistency semantics. We use the schema
to describe a general methodology for applying representational techniques to construct
theories of logical consequence for particular interpreted languages. That methodology is
used to apply (or outline the application of) techniques subsumed by the
representational schema to propositional logic, feature logics (sentential languages with
feature structures as models), and languages in which feature structures are considered
as assertions in their own right. We show how the schema helps us to compare and
contrast differing techniques of representational semantics across a number of important
dimensions including the mode by which they explain the consequence relation; the
range of interpreted languages to which they are applicable; their degree of
epistemological commitment; and the ease with which they can be used in particular
applications. We show how the representational schema serves as a basis for various

vectors of extension, and use the schema to construct several new techniques of



representational semantics. One reduces the epistemological commitments of the specific
model-theoretic technique described by Etchemendy, another gives a model-theoretic
technique capable of handling partial models, and a third is an order-consistency
technique which does not require the assumption of Lindenbaum’s Lemma (and thus
does not require the assumption of maximal extensions). Applications and benefits of

these extensions are described.
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Part 1

Introduction






Chapter 1

Representational Semantics and

the Representational Schema

1.1 Introduction

““What is logic?”’ Any language, regardless of its expressive devices, gives rise to a
consequence relation, a relation that supports inferences from sentences in the language
to other sentences in the language. The study of this relation is the study of the logic

of that language” (Etchemendy 1999, 21).

A central aim of logic is the development of theoretical perspectives on the phenomenon
of consequence. Carrying out this project includes proposing an answer to the question
of what logical consequence is, and giving methods for constructing models of logical con-
sequence for specific languages. The methodology of model-theoretic semantics developed
by Alfred Tarski is the generally accepted technique for constructing mathematical models
of logical consequence. As argued by John Etchemendy, Tarski interpreted his construc-
tion of model-theoretic semantics as giving an analysis of the logical consequence relation,
reducing the concept of logical consequence to the simpler concepts of generalization and
satisfaction (Etchemendy 1990; Tarski 1956). Etchemendy emphatically praises the power,
importance and value of model-theoretic semantics. But at the same time, he demonstrates

that Tarski’s reductive interpretation of model-theoretic semantics is seriously flawed, failing



both conceptually and extensionally.

Etchemendy points us in the direction of a different way of thinking about the rela-
tionship of model-theoretic semantics to the concept of logical consequence and the task
of modelling consequence for specific languages. He shows us how to see model-theoretic
semantics as a technique for illuminating the consequence relation for specific languages of
assertion; provided that we begin by making certain basic assumptions about what con-
sequence is. On Etchemendy’s view, model-theoretic semantics does not reduce logical
consequence to more basic concepts. Instead, the model-theoretic approach relies on a prior
understanding of logical consequence in general as a way of enabling the construction of
models of logical consequence for particular languages. This insight and general approach

are at the core of the work in this dissertation.

Etchemendy uses the term “representational semantics” to identify the approach
to logical consequence he advocates. We are going to take Etchemendy’s account of how
the technique of model-theoretic semantics implements a representational semantics as the
starting point of our investigations. We will abstract away from the particulars of that
account, and construct a general conceptual framework we call the “representational
schema.” The representational schema gives a general form for techniques used to construct
theories of logical consequence implementing representational semantics. We use the term
“schema” in the sense of a patterned arrangement of constituents within a specified system.
In the course of this dissertation, we will use this schema to help us understand, apply,

compare, and create a variety of techniques for constructing representational semantics.

There are two natural tests for any proposed general schema. First, does it capture
additional instances beyond the one from which it was abstracted? In this case, additional
instances would be other techniques for constructing representational theories of conse-
quence beyond the specific model-theoretic approach described by Etchemendy. Secondly,
is it productive? That is to say, does the schema increase our understanding of existing

instances, and does it enable the development of new ones?

In the pages below, we will show how the representational schema is capable of sub-
suming not just model-theoretic semantics, but also a class of techniques for constructing

theories of logical consequence whose central concept can be abstracted from a corollary to
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Lindenbaum’s Lemma, a class we call order-consistency semantics. We will use the schema
to describe a general methodology for applying representational techniques to construct
theories of logical consequence for arbitrary (partially or fully) interpreted languages. That
methodology will be used to apply (or outline the application of) techniques subsumed by
the representational schema to a number of interpreted languages, including propositional
logic, feature logics (sentential languages with feature structures as models), and languages
in which feature structures are considered as assertions in their own right. We will show
how the schema helps us to compare and contrast differing techniques of representational
semantics across a number of important dimensions: including the mode by which they
explain the consequence relation; the range of interpreted languages to which they are ap-
plicable; their degree of epistemological commitment; and the ease with which they can be
used in particular applications. We will further see how the representational schema serves
as a base point for various vectors of extension, and use the schema to construct several
new techniques of representational semantics. One will reduce the epistemological com-
mitments of the specific model-theoretic technique described by Etchemendy, another will
give a model-theoretic technique capable of handling partial models, and a third will be an
order-consistency technique which does not require the assumption of Lindenbaum’s Lemma,
(and thus does not require the assumption of maximal extensions). Particular applications

and potential benefits of these extensions will be identified and described.

1.2 Overview

In the remainder of this chapter, we make an introductory overview of the central concepts
and results of the dissertation. We will start out by reviewing Etchemendy’s positive account
of model-theoretic semantics as a representational semantics. This discussion will enable us
to get a grip on what Etchemendy means by a “representational semantics” and his claims
as to what the goals of any specific representational semantics should be. We will also
be able to see how Etchemendy interprets the elements of a model-theoretic semantics as
achieving those goals. With this understanding in hand, we can then proceed to abstract

away from Etchemendy’s account, and formulate the representational schema, a general
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form for techniques used to construct theories of consequence which meet the goals of a
representational semantics. That schema is the central concept of the dissertation. The

remainder of the dissertation is engaged with elaborating and applying that concept.

Our next step in the overview will be to describe the general methodology of applying
an instance of the representational schema, using the specific model-theoretic technique de-
scribed by Etchemendy as an example. The meanings of the elements of the representational

schema should be clear by that point.

We will then move on to make the category of order-consistency semantic techniques
more tangible. We will present only the most central concepts as a part of the overview,
and delay a detailed presentation until Chapter 4. Once the high-level description of order-
consistency techniques is given, we will have presented the two main families of repre-
sentational semantic techniques under consideration: the model-theoretic family and the
order-consistency family. The reader should then have a sense of the scope of techniques

covered by the representational schema.

The landscape to be surveyed in hand, we will continue with a presentation of various
features of that landscape which are of interest, that is, the ways in which the varied specific
techniques of representational semantics can be compared with one another. These ways
have already been mentioned above, to wit, the mode by which they explain the consequence
relation; the range of interpreted languages to which they are applicable; their degree of
epistemological commitment; and the ease with which they can be applied in particular
cases. We will take the time to expand on what each of these dimensions of comparability

mean; and how we intend to carry out the comparisons.

The last material stage in the overview will highlight the various new representational
techniques which we have constructed, and their intended applications. We will conclude
the overview by giving the structure of the chapters in which all the topics identified above

will be discussed.



1.3 Etchemendy’s Account of the Relation of Model-Theoretic

Semantics to the Concept of Logical Consequence

1.3.1 Etchemendy’s presentation of two perspectives on logical conse-

quence

Etchemendy presents two contrasting perspectives on the concept of logical consequence:
one which he calls interpretational, and attributes to Tarski; the other which he calls repre-
sentational, and to which he is committed. Both perspectives can be understood as variants
on a common theme; that the relation of logical consequence can be described as follows:
A sentence ¢ is a logical consequence of a set of sentences ¥ just in case ¢ must be true
whenever all the sentences in ¥ are true. There are two significant concepts left unspeci-
fied in that schematic description: the modality which is indicated by “must” and the type
of interpretation via which sentences are interpreted as true or false in a particular situa-
tion. By specifying different definitions for these concepts we get the interpretational and
representational accounts of logical consequence.

The interpretational perspective depends upon a distinction among the terms of a lan-
guage between logical and non-logical (a distinction whose validity Etchemendy challenges).
On the interpretational perspective, interpretations assign objects or properties in the actual
world to non-logical terms. The truth value of a sentence is understood as being compo-
sitionally derived from these assignments. We can express the interpretational semantics

understanding of logical consequence as follows:

Given the way the world actually is, sentence ¢ is a consequence of a set of
sentences X just in case

for all the possible interpretations I of the non-logical terms of the language,
if all of the sentences in ¥ are true in the actual world when their non-logical

terms are interpreted via I,

then ¢ is true in the actual world when its non-logical terms are interpreted via

I

The representational perspective does not involve a distinction between logical and non-
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logical terms. On the representational perspective, interpretations apply to sentences as a
whole. For purposes of understanding the essence of the consequence relation, the role an
interpretation plays in determining truth is not analyzed further. There is an assumption
that the user of the language has some way by which they evaluate whether sentences are
true or false in a given situation, but how that way works is not essential to the representa-
tional account of the concept of logical consequence. That unanalyzed mode of evaluation
(which we will call a “practice for the categorization of possibility” and discuss in more
detail shortly) is what counts as an interpretation on the representational account. Given
this background, we can express the representational semantics understanding of logical

consequence as follows:

Given a fixed interpretation I of the sentences of the language, sentence ¢ is a
consequence of a set of sentences X just in case

for all the possible ways W that the world could be,

if all of the sentences in ¥ are true when interpreted with respect to W via I,

then ¢ is true when interpreted with respect to W via I.

We see that the key difference between the two approaches is that the interpretational
perspective fixes the world, and varies the interpretation of the non-logical terms in the
language; whereas the representational perspective fixes the interpretation of the sentences
of the language, and varies the possible ways in which the world could be. See Etchemendy
1990 (ch. 2,3,4) for a fuller discussion of the distinction between interpretational and rep-

resentational semantics.

Etchemendy’s detailed arguments show that the interpretational account is neither con-
ceptually nor extensionally adequate as a concept of logical consequence. For the remainder
of the dissertation, we shall consider only the representational view of logical consequence.
To understand Etchemendy’s positive account of how the technique of model-theoretic se-
mantics implements a representational semantics, we need to first look at the essential form

of that technique.



1.3.2 The essential form of the model-theoretic technique

At the core of the Etchemendy’s account is a presentation of the essential form of a model-
theoretic construction of consequence. In carrying out such a construction, we are given
a set of sentences for which we are to define a consequence relation. The given sentences
are formal sentences. They may either be a formalization of the sentences of a natural
language, or a formal language constructed for use “as is.” These sentences are assumed to
have particular interpretations in advance of the construction. The goal of our construction
will be a relation between sets of sentences (considered as premises) and single sentences
(considered as conclusions), with the idea that the relation holds just in case the conclusion
is a logical consequence of the premises. This relation is defined indirectly. We specify two
variable components (in addition to the sentences) and then the model-theoretic framework
defines the relation for us. One variable component we specify is a class of set-theoretic
structures known alternatively as models, structures, or interpretations. (In this paper we
will refer to them as “models.”) The other component is a relation between models and
sentences called “truth in a model” or “truth in a structure” and is usually written
m F o for model m and sentence o. The relation of truth-in-a-model is typically defined
using Tarski’s semantic techniques (key of which is the concept of satisfaction), though
those techniques are not a necessary part of the model-theoretic framework at this level of

generality.

Given a set of sentences, class of models, and specified relation of truth-in-a-model, the
model-theoretic framework defines a relation and a predicate for us. The framework-defined
relation (call it MC, for “Model-theoretic Consequence”) is defined on sets of sentences

¥ and single sentences ¢, such that MC(%, ¢) if and only if

for every model m  (if (for every sentence o € £, m F o) then m E ¢)

Note that we define the relation MC using the defined relation of truth-in-a-model (i.e. F),
a relation defined within the model-theoretic framework. That is to say, the relation MC

does not essentially involve anything beyond the sentences and the models. The framework-
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defined predicate (call it M T, for “Model-theoretic logical Truth”) is defined on single
sentences ¢, such that MT(yp) iff for every model m, m E . Note that MT(¢p) is equivalent
to MC(&, ).

[Terminological note: sometimes we will say that “pis true-in-a-model with respect to
m” for “m F ¢”. We may also simply say: “m is a model of ¢.” We will use the more
verbose style when we wish to emphasize the role of the relation of truth-in-a-model. We
will not use the common expression “pis true in model m,” as it could lead to confusion
between the concepts of truth and truth-in-a-model.]

A concept which can help unpack the definition of MC is the idea of “preservation.”
Preservation is a property we apply to arguments (a set of premises and a conclusion)
considered relative to an evaluative function (e.g. truth, or truth-in-a-model) and a context
of evaluation (e.g. a possibility or model). Some particular argument preserves truth in a
possibility if and only if some premise is false or the conclusion is true in that possibility.
Similarly, an argument preserves truth-in-a-model in a model m if and only if some premise
is not true-in-a-model with respect to m, or the conclusion is true-in-a-model with respect
tom. An argument (as a set of premises, conclusion pair) is in the relation M C if and only

if that argument preserves truth-in-a-model across all models.

1.3.3 The critical question

At this point in our presentation, the model-theoretic construction is just a mathematical
framework. We had a set of interpreted sentences, to which we added a class of models
and a specification of the relation of truth-in-a-model. Together, those three components
defined for us the relation MC' and the predicate MT. We would like to treat MC' as if
it were equivalent to the representational conception of logical consequence, and MT as if
it were equivalent to the representational conception of logical truth. But as it stands, we
have not made any claims about how the sentences and models relate to the possibilities
they represent. This raises the critical question: What assumptions can we make about
the sentences and models and their relations to the possibilities they represent, such that
if those assumptions held true, the defined relation MC would be equivalent to the rep-

resentational conception of logical consequence and the defined predicate MT would be
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equivalent to the representational conception of logical truth? Two notes. First, note that
Etchemendy considers this as a single question. We will see that we have cause to separate
these considerations, and look at the assumptions sufficient to ensure the equivalence of
MC and logical consequence independently from the assumptions sufficient to ensure the
equivalence of MT and logical truth. Second, notice that since the question is framed in
terms of sufficient conditions, there can be many possible responses. Different responses
(that is to say different sets of proposed assumptions) will be of varying value. This will
be clearer once we consider Etchemendy’s characterization of the model-theoretic response,
and see the ways in which we can frame its value. As the case of a set of assumptions with
least value, consider the assumption: MC' is equivalent to logical consequence and MT is

equivalent to logical truth. This assumption, while sufficient, is of no value at all!

1.3.4 Etchemendy’s characterization of the model-theoretic assumptions

Before we consider Etchemendy’s explicitly stated assumptions, we need to make his back-
ground assumptions clear. It is a basic assumption of Etchemendy’s representational char-
acterization of model-theoretic semantics that sentences bear propositional content, that
is, that they can be true or false in different circumstances. So a foundational assump-
tion is that of a space of possibility, canvassing the different ways which things could be.
The understanding is that sentences serve to categorize that space of possibility into those
possibilities in which the sentence is true, and those possibilities in which the sentence is
false. This is what we mean by saying that the sentences have interpretations in advance
of applying the model-theoretic construction.

We should note that the assumption of a space of possibility is a conceptual, not an
ontological assumption. The assumption does not require that the possibilities be assumed
to exist. The only real ontological commitment is to a practice of categorization of possi-
bility; that is, we assume a practice of categorizing possible circumstances as coming or not
coming under a certain description. We assume the existence of the practice, but do not
need to assume the existence of all the possible circumstances which could be categorized.
The practice of categorization constitutes the antecedent interpretation of the sentences.

Given this background, the representational perspective we have chosen gives us a char-
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acterization of logical consequence between a set of sentences (as premises) and a single
sentence (as conclusion). By taking the representational perspective, we have chosen to see
logical consequence as preservation of truth across all possibilities. That is, for each possi-
ble circumstance, if the premises are all true in that possibility (when they are interpreted
with respect to the assumed practice of categorization), then the conclusion is true in that
possibility (when it is interpreted with respect to the same practice). Further, by taking the
representational perspective, we have chosen to see the logical truth of a sentence as truth
in all possible circumstances (when it is interpreted with respect to the given practice). It is
important to stress that these views of logical consequence and logical truth are part of our
assumptions in applying the model-theoretic technique, and not results of it. Given that
we have chosen to see logical consequence and logical truth in this way, and given that the
other assumptions we describe in this section hold, then the relation MC will be equivalent

to logical consequence, and the predicate MT equivalent to logical truth.

By the assumptions we have described so far, we have identified what is we mean by
logical consequence between premises and conclusion, and what we mean by the logical
truth of a sentence. Now we add further assumptions so that the relation MC will be
equivalent to our assumed account of logical consequence, and the predicate MT will be

equivalent to our assumed account of logical truth.

The key to formulating these assumptions is Etchemendy’s proposal that we see models
as full-fledged representations, representative in the same way that sentences are. So we
further assume the existence of a practice of categorization of possible circumstances by
models, by which, given a possible circumstance and a model, the practice says whether or
not the model is an accurate description of that possibility. Given a model, the practice
divides possible circumstances into two categories: those for which the model is an accurate
description, and those for which the model is not so. Again, the only ontological commit-
ment is to the existence of a practice, not to the existence of all possible circumstances in

which the practice could be applied.

The following picture shows the different elements under consideration, and their rela-

tionships.
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Understanding models as representations sets the stage for two additional assumptions.
The first is that the models partition the space of relevant possibility. Etchemendy: “if we've
designed our semantics right, the models impose an exhaustive partition on the possible
circumstances that could influence the truth of our sentences” (Etchemendy 1999, 25).

This requirement breaks down into three subordinate requirements:

(Ela) “Any individual model represents a logically possible configuration of the

world.”

(E1b) “Any two (non-isomorphic) models are logically incompatible; at most

one can be accurate.”

(Elc) “Jointly, (the models) are meant to represent all of the possibilities rele-

vant to the truth values of sentences in the language.”

As a result of this compound assumption, the class of models has a very simple (the
simplest) form of logical structure. “No model is logically true or logically false, no model
follows logically from another, and so forth” (p. 33). Etchemendy describes the logical
structure of the class of models as “transparent” since there are no non-trivial consequence
relations between representations in the system. This property grounds what Etchemendy
takes to be the primary contribution of model-theoretic semantics to illuminating the rela-
tion of consequence between sentences (more on this below).

Etchemendy introduces a second assumption based on his view of models as represen-

tations.

(E2) “The relation of truth-in-a-model ... satisfies the following constraint: a
sentence o should be true-in-a-model (with respect to) m if and only if o would

be true if the world were as depicted by m, that is, if m were an accurate model”
(p. 25).
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One way of understanding this assumption is to see it as assuring that the defined
relation of truth-in-a-model correctly and completely captures the relation between the
categorization of possibility imposed by the sentences and the categorization of possibility
imposed by the models.

Given the assumptions described above, Etchemendy claims that “it is a trivial conse-
quence that sentences which are true(-in-a-model) in every model are logically true, and
arguments that preserve truth(-in-a-model) in every model are logically valid” (p. 25). In
the terms we have used, the assumptions are sufficient to show that MC' is equivalent to
logical consequence, and MT is equivalent to logical truth. We will see in the formalization
in Chapter 2 that while the proof of this result is not complicated, correct formulation of

the assumptions requires and repays careful consideration.

1.3.5 Summarizing Etchemendy’s account

Reviewing the discussion above, we can see what, on Etchemendy’s view, model theoretic
semantics does and does not do. On Etchemendy’s account, what model-theoretic seman-
tics does is explain the relation of consequence between sentences in terms of a logically
simpler form of representation: the models. This is the primary source of value of the set of
assumptions presented above. The assumptions ensure that the models are in fact logically
simple, and that they are capable of providing an explanatory ground for the consequence
relation between sentences.

Going beyond what Etchemendy says explicitly, but not beyond what is implicit in his
formulation, we can say that the explanation of consequence provided by a model-theoretic
semantics makes the consequence relation for a given language “intelligible.” What do we
mean by the intelligibility of consequence? Let us look into this further.

As we discussed above, the concept of possibility we are using to explicate our notion of
logical consequence does not require that possibilities be real in any way accessible to our
senses. If we are not able to look at a sentence and see its possibilities; nor compare those
possibilities with the possibilities of another sentence; then consequence, though assumed to
exist between our sentences, is inaccessible to our senses. We cannot perceive the relation

of consequence. On this understanding, model-theoretic semantics can be seen as playing
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a very important role: that of making the consequence relation accessible to our thought,
or in a word, intelligible. Model-theoretic semantics enables us to visualize consequence
in terms we can understand and survey: our sentences and our models, our definition of
truth-in-a-model, and the resulting relation of preservation of truth-in-a-model across all
models. Given that our assumptions about the relation of a model-theoretic construction
to the world hold true, the intelligible relation of preservation of truth-in-a-model across all
models is equivalent to the unintelligible (but assumed to exist) relation of consequence (i.e.
preservation of truth across all possibilities). This is what we mean by saying that the model-
theoretic semantic technique on the representational interpretation “makes consequence
intelligible.”

What a model-theoretic semantics does not do is explain what consequence is. An un-
derstanding of consequence is part of the assumptions made in order to interpret the relation
MC (preservation of truth-in-a-model across all models) as logical consequence. Similarly,
an understanding of logical truth is part of the assumptions made in order to interpret the
predicate MT (true-in-a-model for all models) as logical truth. On Etchemendy’s repre-
sentational view, if we are to take our model-theoretic semantics as giving us models of
logical consequence and logical truth for particular languages, then we have to have a prior

understanding of what we take logical consequence and logical truth in general to be.

1.3.6 Requirements for implementing a representational semantics

Reviewing the discussion presented above, we can see Etchemendy’s (implicit and explicit)
understanding of what it takes for a semantic technique to implement a representational
semantics. First, the technique must serve to make the representational conception of logical
consequence intelligible. But “making consequence intelligible” is not a sufficient condition
for the implementation of a representational semantics. The technique must also explain
the consequence relation. In the case of model-theoretic semantics, the technique explains
the logically complex relation of consequence between sets of sentences and single sentences
in terms of a form of representation which is logically simple.

The requirement of an explanation is important because the technique is supposed to

support the construction of theories of consequence. An essential property of a theory is
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that it somehow simplifies an account from a bare statement of facts observed or expected.
Yes, a theoretical account must get the facts right (and that is what intelligibility condition
ensures) but to be a theory, the account must also provide some kind of explanation. Part of
the reason for this is that the way in which a theory is explanatory supports how that theory
is used. We see this in the model-theoretic case. The explanation provided by a model-
theoretic account enables us to express the relation of logical consequence for a particular
language by a description of a set of models, and a definition of truth-in-a-model. The
constructed theory is easier to express than the relation itself, because of the explanatory

strategy of the model-theoretic semantic technique.

1.4 Abstracting from Etchemendy’s account: The represen-

tational schema

Now we are ready to abstract away from Etchemendy’s account of how model-theoretic
semantics implements a representational semantics. The result of the abstraction will be
the representational schema, a general form for techniques used to construct theories of
logical consequence implementing a representational semantics. We have seen in the last
section that there are two requirements for such techniques. First, the technique must make
the representationally understood relation of logical consequence intelligible, and second,
the results of the technique must be explanatory of that relation. Let’s address these

requirements one at a time.

1.4.1 Intelligibility of consequence

First, consider the requirement of intelligibility. We can describe the elements of the model-

theoretic technique contributing to the intelligibility of consequence in the following way.

1. The technique is grounded in a foundational characterization of the space of possibility
and practices of categorization relating sentences to possibilities; in terms of which
the assumed representational concept of logical consequence on arguments is defined.
Arguments are modelled as premise/conclusion pairs, where the premise is a set of

sentences, and the conclusion a single sentence.
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2. The technique supplements the set of sentences with additional mathematical struc-
ture: a set of models and a definition of the relation of truth-in-a-model. A practice

of categorization is described for the set of models.

3. The technique defines the relation MC (i.e. the relation of preservation of truth-in-
a-model across all models) on arguments (premise/conclusion pairs) in terms of the

mathematical structure described in (2).

4. There is a set of assumptions (Ela, EF1b, Elc, and E2), expressed in terms of the
structure given in (2) and the practices of categorization interpreting the sentences
and models. These assumptions, if true, are sufficient to show that the relation
MC specified in (3) is equivalent to the assumed relation of consequence between
premise/conclusion pairs that was characterized in (1). As a result, the relation MC

is able to serve as an intelligible proxy for the relation of consequence assumed in (1).

This way of describing how the model-theoretic technique makes the representational
concept of logical consequence intelligible for interpreted sentential languages demonstrates
the presence of a more abstract structure. We can see the “intelligibility-producing” as-
pects of the technique as consisting in four general components, corresponding to the four
elements outlined above. These four components comprise the “intelligibility” aspect of the
representational schema.

Before giving the four components, we introduce a further abstraction. The account of
model-theoretic semantics we have considered so far, has taken sentences as the basic unit
of expression whose consequence relation is to be explicated; and considered arguments as
having the form of a set of sentences as premises, and a single sentence as conclusion. We
would like to frame arguments more generally, for the following reasons. 1) We would like to
be able to consider propositional claims which are heterogeneous in form, such as diagrams,
charts, maps, etc. as well as sentences. 2) We would like to be able to model various ways
of combining expressions beyond simple conjunction. One of the things which differentiates
varying forms of making propositional claims are the different ways in which they permit
subordinate claims to be combined. 3) Further, we would like to be able to model some of

the assumptions which have been built into the standard presentation of argument form. In
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order to accommodate these desires, we will introduce the concept of an assertion type.
An assertion type is simply a type of propositional claim, assumed to categorize the space
of relevant possibility into those possibilities of which it is true, and those of which it is
false. Given the concept of an assertion type, we can then choose to model arguments as
having a single assertion type as premise, and a single assertion type as conclusion.

Now we can give the four general components which comprise the “intelligibility” aspect

of the representational schema.

1. A foundational characterization of the space of possibility and practices of cat-
egorization relating assertion types to possibilities; in terms of which the assumed
representational concept of logical consequence on arguments is defined. Arguments

are modelled as premise/conclusion pairs.

2. A mathematical structure supplementing and including the original set of assertion
types. We will call this structure the intelligible medium. Each set of represen-
tative elements included in the intelligible medium is assumed to have a practice of

categorization of possibility which interprets its members.

3. A relation defined on premise/conclusion pairs in terms of the structure of the intel-

ligible medium which we call the proxy for consequence relation.

4. A set of assumptions, expressed in terms of the intelligible medium and the practices
of categorization interpreting the representative elements of that structure. These
assumptions, if true, are sufficient to show that the proxy for consequence relation is
equivalent to the assumed relation of consequence between premise/conclusion pairs
that was characterized in the foundational characterization. We call these assump-
tions the technique-specific assumptions. Note that while the technique-specific
assumptions must be strong enough to imply the intelligibility of consequence, they
may include assumptions unrelated to intelligibility but relevant to the technique’s

explanatory strategy.
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To qualify as an instance of the representational schema, a technique for producing the-
ories of logical consequence must be describable in terms of these four components: founda-
tional characterization; intelligible medium; proxy for consequence relation, and technique-
specific assumptions. Given that it is capable of such description, the technique is capable
of making the representational conception of logical consequence intelligible for interpreted

languages satisfying the technique-specific assumptions.

1.4.2 Explanatory sufficiency

As we have stated before, but wish to emphasize again, the fact that an account makes the
representational conception of logical consequence intelligible is not a sufficient condition
for that account to implement a representational semantics. The account must further
be explanatory of the consequence relation. Only then will the account be considered a
representational theory of consequence.

We capture this requirement as part of the representational schema by adding the fol-
lowing condition. To qualify as an instance of the representational schema, a technique for
producing theories of logical consequence must produce accounts which are explanatory of
the consequence relation, in virtue of having been produced by the technique.

This “definition” is open in that we do not precisely characterize what we mean by
“explanatory.” We can provide some guidelines. First, to be considered explanatory, a
theory produced by a candidate technique should be simpler than the relation of logical
consequence being modelled. Secondly, to be considered explanatory, the way in which a
theory produced by a candidate technique is simpler should be a guide to applying the
technique in particular cases. But beyond this, we do not give a specification.

This openness is an advantage of the schema rather than a weakness. As we will see,
it is the source of much of the power of the schema. First, this openness shows us a path
to seek out additional forms for explanatory theories of consequence. The approach of
order-consistency semantics which we will consider shortly is just such a form. Secondly,
many interpreted languages will be capable of having their consequence relation modelled by
multiple techniques with different explanatory strategies. This will enable additional insight

into how the relation of consequence works for those languages. We will be able to see the
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relation of consequence for those languages from each of the explanatory perspectives.

1.4.3 Summary: The representational schema stated

We recapitulate the preceding section and express the representational schema. We can
think of the representational schema as a set of conditions to be applied to techniques
intended to produce theories of logical consequence.

Given a technique intended to produce theories of logical consequence,

e (1) if that technique is describable in terms of the four components: foundational
characterization; intelligible medium; proxy for consequence relation, and technique-
specific assumptions sufficient for the intelligibility of consequence (as described above);

and

e (2) if the theories generated by that technique are explanatory of the consequence
relations they model, in virtue of having been produced by the technique; where
explanatoriness is characterized by the produced theories being simpler than the con-
sequence relations they model, and by the explanatory strategy being a guide to

applications of the technique in constructing such theories;

then the technique is an instance of the representational schema.

Given that it is an instance of the representational schema, a technique is capable of
making the representational conception of logical consequence intelligible for interpreted
languages satisfying the technique’s technique-specific assumptions; and those theories will
be explanatory of the consequence relations they model.

As a shorthand, we will use the phrase “representational technique” for a technique
which is an instance of the representational schema. In this dissertation, we will discuss
two primary categories of representational technique. There will be model-theoretic rep-
resentational techniques (of which the technique described by John Etchemendy is an
example) and order-consistency representational techniques (which we will discuss
shortly).We will call the representational technique which Etchemendy describes, the Set

E model-theoretic representational technique. (This name comes from the name we
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will give the technique-specific assumptions used by the technique, that is, “Set £.”) Some-
times we will simply call this technique the Set F technique. We will use similar naming

conventions for other techniques introduced.

1.5 Applying the representational schema

1.5.1 A general mode of application

The first attribute of the representational schema we will consider is the way in which
the schema offers a standard approach to constructing a representational semantics for an

interpreted language.

In what do such applications consist?

We begin to answer this question by considering what will be the given in any application
of the representational schema. The answer: the given in any application of the represen-
tational schema will be some language assumed to have an antecedent interpretation. The
result of every application of a representational technique is a theory of consequence for
the language as interpreted.

In some cases, the given interpretation of the language under consideration will be
assumed complete. In other cases, and in particular, those involving conventional logi-
cal languages, the given interpretation will be partial. These latter languages are really
language-forms, in that in their general form they are only partially interpreted. For ex-
ample, in the case of the language of propositional logic, in advance of any particular use,
the sentential connectives are interpreted, but the sentence symbols are not. In the case
of a partially interpreted language, the given constrains the set of acceptable complete
interpretations.

To carry out an application of some representational technique we have to perform the
following tasks. Note, however, that the tasks need not be ordered in time, in the same
order that they are presented below. We could think of these three tasks as being carried

out simultaneously.
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1. Identify the set of assertion types used to model the propositional claims of the lan-

guage.

2. Form an intelligible medium of the type used by the technique, by supplementing the
set of assertion types with additional structure (and possibly additional representative

elements, like the models in model-theoretic semantics).

3. Characterize the set of acceptable complete interpretations for the representative el-
ements in the intelligible medium. This includes, but may not be limited to the

assertion types.

(a) The results of this activity can take the form of specifying a set of semantic
conventions for the representative elements in the medium (e.g. sentences,
models). These conventions define what count as acceptable interpretations of
those representative elements. For instance, in defining the semantic conventions
for the sentences of propositional logic, we would deem unacceptable any practice
of categorization counting both a sentence and its negation as true in the same

possibility.

An application is considered to have been carried out correctly if the characterizations
of the acceptable complete interpretations of the representative elements of the constructed
intelligible medium are sufficient to imply that given acceptable complete practices interpret-
ing the representative elements of that medium, that medium satisfies the technique-specific
assumptions with respect to those practices.

In that case, for any acceptable complete interpretations of its representative elements,
the proxy for consequence relation for the technique, when evaluated with respect to the
constructed intelligible medium, will be equivalent to the representational conception of
logical consequence for the assertion types of the language as interpreted.

Terminological note: When we say “interpreted set of assertion types” we are
referring to a set of assertion types together with a practice of categorization that interprets

them.
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1.5.2 A specific example

To make the abstract description above more concrete, let us sketch the application of
the representational schema to the language of propositional logic. We will carry out this

example in detail in Chapter 3.

For our application we use the Set E' model-theoretic representational technique (the

one informally defined by Etchemendy and described above).

Step 1: Identify a set of assertion types for the language. In this case, we could use the

powerset of the set of propositional sentences as the set of assertion types.

Step 2: The Set E technique involves supplementing the set of assertion types with a
set of models, and a relation of truth-in-a-model between sentences and models. We use the
set of total truth assignments as models, and the standard definition of truth-in-a-model
for the propositional language. Together the powerset of sentences, function characterizing
truth-in-a-model, and set of total truth assignments form the intelligible medium for the

application.

Step 3: We have two kinds of representative elements in the medium: sets of sentences
and models. We define semantic conventions defining acceptable interpretations for both

kinds of element. (We do this in the actual application in Chapter 3).

In the actual application, we prove that if a practice of categorization for sets of sentences
and a practice of categorization for models satisfy the semantic conventions described for
those kinds of practices in Step 3, then the intelligible medium we have constructed satisfies
the Set E technique-specific assumptions with respect to those practices. Given that proof,
we know that for every pair of acceptable interpretations for sets of sentences and models,
the proxy relation of preservation of truth-in-a-model across all models is equivalent to the
representational conception of logical consequence (preservation of truth across all possi-
bilities). Further, because of the technique used, we know that the theory so constructed
explains the consequence relation between sets of sentences in terms of the logically simple
form of representation given by the total truth assignments. That completes (in outline)

the application of the representational schema to the language of propositional logic.
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1.5.3 Specific applications we will consider

In addition to various simple examples to illustrate the basic properties of the techniques
under discussion, we will discuss three specific applications: propositional logic, feature
logics (sentential languages which use feature structures as models) and languages in which
feature structures are the assertion types. We will carry out complete applications of both
model-theoretic and order-consistency techniques to the language of propositional logic,
and outline the application of the representational schema to feature logics and languages

in which feature structures are the assertion types.

1.6 Order-consistency representational techniques

In this section, we will introduce the category of order-consistency representational tech-
niques. The purpose of this introduction is to give the category some substance, and in
so doing, give a sense of the scope of the representational techniques we are considering in
this dissertation. Note that we will postpone most of the development of order-consistency

representational techniques until Chapter 4.

1.6.1 The role of order-consistency representational techniques

Order-consistency representational techniques, like model-theoretic representational tech-
niques, make the representational conception of logical consequence intelligible, and provide
an explanation of that relation. Importantly, however, the explanatory strategy employed
by order-consistency representational techniques is different in kind than that provided by
model-theoretic representational techniques. Whereas a model-theoretic representational
technique explains the consequence relation among assertion types in terms of a logically
simpler form of representation (the models) and a relation of truth-in-a-model between the
assertion types and the models, an order-consistency representational technique explains
the consequence relation among assertion types in terms of the simpler concepts of ordering
and consistency:.

Recall that an interpreted set of assertion types is that set together with a practice of cat-

egorization of possibility that interprets its members. Given our foundational assumptions,
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every interpreted set of assertion types has an assumed representational relation of logical
consequence which we have characterized as preservation of truth across all possibilities.
We will see that for many interpreted sets of assertion types, this relation of consequence
is amenable to being made intelligible by both model-theoretic and order-consistency tech-
niques.

As we will see, order-consistency representational techniques provide important addi-
tional theoretical and practical perspectives on the concept of logical consequence. These
techniques extend our theoretical understanding by giving us additional sources of explana-
tion for why one assertion type is a consequence of another. Further, the relations between
the different techniques make it clearer what any one specific technique is doing, and help
us see the nature of these techniques in general. Order-consistency representational tech-
niques may also offer the practical advantage of enabling better ways to specify the relation

of consequence for certain interpreted languages.

1.6.2 Conceptual roots of order-consistency representational techniques

The fundamental intuition underlying order-consistency representational techniques can be
found in a corollary to Lindenbaum’s Lemma. Before we present the Lemma and the relevant
corollary, let us introduce some background. Lindenbaum’s Lemma and its corollaries are
frequently expressed in relation to some syntactical system of propositional logic. In this
case, we will be drawing on a presentation of the Lemma in Chellas’ book on propositional
modal logic (Chellas 1980). Relative to that context, several concepts can be characterized.
First, consider that the relevant “unit of assertion” is a set of sentences. One set of sentences
Q extends a set of sentences P, just in case P is a subset of (). Since the context is syntactic,
consistency is defined in terms of the derivability of contradictions. A set of sentences is
consistent just in case the contradictory sentence cannot be derived from them (p. 47). A
set of sentences is maximal if it is consistent, and has only inconsistent proper extensions
(p. 53). Another way to express maximality is that a set of sentences is maximal if it is
consistent, and no sentence not already in the set can be added to it without the result
being inconsistent.

Lindenbaum'’s lemma. itself can be expressed as follows: Every consistent set of sentences
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has a maximal extension (p. 55). The relevant corollary can be expressed: A sentence qis
deducible from a set of sentences P just in case g belongs to every maximal extension of P
(p. 57). Equivalently, one could say: A sentence q is deducible from a set of sentences P
just in case every maximal extension of P extends {q}. Looking at this corollary, we can see
a key concept, that a proxy for consequence (in this case deducibility) can be expressed in
terms of consistency and ordering. Translated into a semantic setting, this is the core idea

behind order-consistency representational techniques.

1.6.3 Assimilating the concept of order-consistency semantics to the rep-

resentational schema

In order to assimilate the concept that a proxy for consequence can be stated in terms of
order and consistency to the representational schema we have to take several steps, in line

with the four components articulated by the schema.

1. Foundational characterization. We can accept the same foundational characterization

as that used by the model-theoretic representational techniques.

2. Intelligible medium. We here use a different intelligible medium than that used by
model-theoretic representational techniques. Instead of supplementing the set of as-
sertion types with a set of models and a definition of a relation of truth-in-a-model,
we supplement the set of assertion types with a partial order (which will be assumed
to imply extension of commitment), and a specification of which assertion types are

taken to be consistent.

3. Proxy for consequence relation. Our first order-consistency representational technique
will use the concept expressed in the corollary to Lindenbaum’s Lemma as its proxy
for consequence relation. We will define a relation LLC such that for assertion types

p,q, LLC(p,q) just in case every maximal extension of p is a maximal extension of q.

4. Technique-specific assumptions. Here we will specify four general conditions which are
sufficient to imply that the proxy relation LLC' is equivalent to the representational

conception of logical consequence. We will discuss these assumptions in great detail in
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Chapter 4. For now, let us just say that in the first order-consistency representational

technique we define, there will be four assumptions (a set we will call “Set CL”).

(a) One ensures that the partial order given implies monotonic extension of commit-

ment.
(b) One ensures that the specification of consistency is correct.
(¢) One ensures that there are “enough” assertion types to express certain conditions.

(d) The last is Lindenbaum’s Lemma.

We will call this first order-consistency representational technique, the “Set C'L order-
consistency representational technique,” after the name of its assumption set.

We shall develop (or outline) several example applications of order-consistency repre-
sentational techniques. One example we will work out fully is the language of propositional
logic. That language is just one example of a language whose consequence relation is capable

of being modelled by multiple techniques with different explanatory strategies.

We have now presented (in outline) the two broad classes of representational techniques

we will be discussing in this dissertation. The general picture we have now:

e Representational techniques

1. Model-theoretic representational techniques

(a) Set E model-theoretic representational technique

(b) ... more to come
2. Order-consistency representational techniques

(a) Set CL order-consistency representational technique

(b) ... more to come

‘We now proceed to consider how the various techniques in these classes can be compared

with one another.
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1.7 Comparing representational techniques

One of the primary values of having a common schema to which all of the representational
techniques can be assimilated is that we then have a common ground on which to compare
them with one another. In this section, we will discuss four of the different dimensions
along which we can (and in this dissertation do) compare representational techniques. The
dimensions we will talk about include: (1) the mode by which the techniques explain the
consequence relation; (2) the range of interpreted languages to which the techniques are
applicable; (3) the degree of epistemological commitment which the techniques require; and

(4) the ease with which the techniques can be applied in particular cases.

1.7.1 Explanatory strategy

A fundamental way in which representational techniques can differ from one another is
in the explanatory strategy they use to explain the relation of logical consequence. We
have seen two broad classes of strategy: that used by the model-theoretic representational
techniques, and that used by the order-consistency representational techniques. A theory
of consequence constructed using a model-theoretic representational technique explains the
(usually) logically complex relation of logical consequence between assertion types in terms
of a logically simpler form of representation (the models) and a defined relation of truth-in-
a-model between assertion types and models. A theory of consequence constructed using
an order consistency representational technique explains the relation of logical consequence

between assertion types in terms of the simpler concepts of order and consistency.

We will see that within a category, there can also be some subtler differences in explana-
tory strategy. For example, while the Set F model-theoretic representational technique
explains the logical consequence relation between assertion types in terms of a form of rep-
resentation which has the simplest logical structure; we can describe other techniques in
which the form of representation used for the models is not logically simplest but is logically

simple, and typically simpler than the form used for the assertion types.
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1.7.2 Range of applicability

This is one of the most important dimensions on which we can compare representational
techniques, and one to which we will devote quite a bit of attention. One of the benefits of
the representational schema is that it gives us a standard way to establish relations of inclu-
sion between the range of interpreted sets of assertion types to which one representational
technique is applicable, and the range to which some other technique is applicable.

Here we will present the standard approach used to establish these relations of inclusion.
In Part IV, we will establish results linking all of the techniques presented in a chain of
inclusion. That is, every interpreted set of assertion types to which the first technique
can be applied, is an interpreted set of assertion types to which the second technique can
be applied, etc. We express the standard approach here, and will apply this approach
repeatedly in Part IV. The most important concept is that there is a standard method for
comparing ranges of application across techniques.

The central idea can be expressed as follows. We are given a (source) interpreted set
of assertion types for which an application of some (source) representational technique
can construct an explanatory intelligible proxy for the representational relation of logical
consequence. We want to know if some other (target) representational technique can do the
same.

The application of the (source) technique will have made use of an interpreted intelligible
medium of the type used by that technique. That (source) intelligible medium will satisfy
the technique-specific assumptions of the source technique with respect to the practices
of categorization by which its representative elements are interpreted. The key will be to
construct from the (source) interpreted intelligible medium, a (target) interpreted intelligible

medium, such that

1. the representational relation of logical consequence for the (source) interpreted set of
assertion types is embedded in the representational relation of logical consequence for

the (target) interpreted set of assertion types; and

2. the target interpreted intelligible medium is of the type used by the (target) repre-

sentational technique, and the practices of categorization by which its representative
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elements are interpreted satisfy the technique-specific assumptions of the target tech-

nique.

By (1), we mean that there is a function A mapping elements of the source set of assertion
types to elements of the target set of assertion types, such that for any p,q in the source
set of assertion types, ¢ is a representational consequence of p when pand g are interpreted
with respect to the source practice of categorization just in case h(g)is a representational
consequence of h(p) when h(p) and h(q) are interpreted with respect to the target practice
of categorization.

Then if (1) and (2) hold, the application of the target representational technique makes
the representational relation of logical consequence for the source interpreted set of assertion
types explanatorily intelligible. To see this, realize that given (1) and (2), it is the case that

for all p,q in the source set of assertion types,

q is a representational consequence of p when p and g are interpreted with respect
to the source practice of categorization just in case

h(q) is a representational consequence of h(p) when h(p) and h(q) are interpreted
with respect to the target practice of categorization just in case

the intelligible proxy for consequence relation for the target representational

technique considered with respect to the target intelligible medium holds for

the pair (h(p), h(q)) .

The discussion above gives us a definition. An arbitrary interpreted set of assertion
types is in the range of applicability of a representational technique X exactly when
there is a intelligible medium A of the kind used by X and practices of categorization P
interpreting the representative elements of A, such that Asatisfies the Set X technique-
specific assumptions with respect to the practices in P, and the representational relation of
logical consequence for the given interpreted set of assertion types is embedded (via some
function k) in the representational relation of logical consequence for the assertion types of
medium A as interpreted by the practice in P interpreting those types.

We will use the notation ra(Set X) to indicate the range of applicability of the Set

X technique.
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1.7.3 Degree of epistemological commitment

Another way in which techniques can differ is the degree of epistemological commitment
which their technique-specific assumptions require. Some techniques require stronger as-
sumptions than others. For example, the Set E model-theoretic representational technique
requires that the set of models contains, for each sentence, a subset whose members col-
lectively represent all of the possibilities in which that sentence could be false and another
subset whose members collectively represent all of the possibilities in which that sentence
could be true. We will show in an extension (the Set PP model-theoretic representational
technique) that we can make the representational relation of logical consequence explana-
torily intelligible with a weaker assumption. It will be sufficient that there be, for each
sentence, a subset of the set of models whose members collectively represent all of the pos-
sibilities in which that sentence could be true. Set PP is epistemologically weaker than Set
FE since it does not require the user to assume that their models represent the entire space
of possibility. Instead, they need only assume that their models represent those possibilities

represented by some one of their assertion types.

1.7.4 Ease of applicability

Another way in which we will see that techniques differ is in the ease with which they can
be applied in particular cases. Part of these differences in ease of applicability stem from
differences in the strength of the technique-specific assumptions used by the technique. A
technique with weaker assumptions may be easier to apply. Part of these differences in ease
of applicability stem from differences in explanatory strategy. For example, in a particular
application, it may be easier to specify ordering and consistency than to specify a set of

models and a defined relation of truth-in-a-model.

1.8 Extending the set of representational techniques

An important and useful attribute of the representational schema is that it establishes base
points and vectors along which new representational techniques can be developed. There

are three levels at which extension is possible:
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1. Foundational characterization. It is possible that a new family of techniques could
be generated by altering the foundational characterization upon which the families of

model-theoretic and order-consistency techniques are based.

2. Explanatory strategies. It is possible that new explanatory techniques beyond those

used by model-theoretic and order-consistency semantics could be expressed.

3. Techniques within categories of explanatory strategies. This is the level at which we

extend the set of representational techniques.

(a) Within the category of model-theoretic representational techniques we will define

two new techniques:

i. the Set PP model-theoretic representational technique... which as mentioned
above has lesser epistemological commitments than the Set E technique; but
is capable of modelling every representational relation of logical consequence
that the Set F technique is capable of; and

ii. the Set BFE model-theoretic representational technique... which allows the
use of partial models, and will turn out to be easier to apply in the case of

feature logics, than the Set E or Set PP techniques.

(b) Within the category of order-consistency representational techniques we will de-

fine one new technique:

i. the Set C'G order-consistency representational technique... which uses the
same technique-specific assumptions as the Set CL technique, less the as-
sumption of Lindenbaum’s Lemma. The Set CG technique uses a somewhat
more involved proxy for consequence relation than the Set C'L technique.
This new technique removes the requirement that the language under con-

sideration have a maximal extension for each consistent assertion type.

One idea which should be clear from the above. This project is not seeking to define
one particular technique which is capable of handling all interpreted languages. Instead, we
are presenting a way of organizing, understanding, comparing, and creating techniques.

The picture which we end up with looks like this:
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e Representational techniques

1. Model-theoretic representational techniques

(a) Set E model-theoretic representational technique
(b) Set PP model-theoretic representational technique
(c) Set BE model-theoretic representational technique

(d) ... more to come?
2. Order-consistency representational techniques

(a) Set CL order-consistency representational technique
(b) Set CG order-consistency representational technique

(¢) ... more to come?

Through our comparisons of the ranges of applicability of the various techniques, we
will be able to establish the following ordering:

ra(Set F) C ra(Set PP) C ra(Set CL) C ra(Set CG) C ra(Set BE)

This ordering indicates our current knowledge. When we say that the range of applica-
tion of the Set X technique is a subset of the range of applicability of the Set Y technique,
what we are saying is that we know that every interpreted set of assertion types for which an
applicability of the Set X technique can make the representational relation of consequence
explanatorily intelligible is an interpreted set of assertion types to which an application of

the Set Y technique can do the same.

1.9 Outline of the dissertation

That completes our overview of the content of the dissertation. Before proceeding to the

main text, let us present an outline of the chapters.
e Part 1. Introduction

— Chapter 1. Representational Semantics and the Representational Schema (this

chapter).
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e Part 2. Assimilating Model-theoretic Semantics to the Representational Schema.

— Chapter 2. Model-theoretic Representational Techniques.
In this chapter, we formally present and discuss the Set E, Set PP, and Set BE

model-theoretic representational techniques.

— Chapter 3. Applications of Model-theoretic Representational Techniques.
In this chapter, we give several example applications of the model-theoretic rep-
resentational techniques. We apply the Set F technique to a simple language;
and then to the language of propositional logic. We also outline the application

of the Set BE technique to languages of feature logics.
e Part 3. Assimilating Order-consistency Semantics to the Representational Schema.

— Chapter 4. Order-consistency Representational Techniques.
In this chapter, we formally present and discuss the Set C'L, and Set CG order-
consistency representational techniques. As a part of this presentation, we carry
out a more complete presentation of the background and motivation for order-
consistency semantics. We also show that the range of applicability of the Set

C L technique is included in the range of applicability of the Set CG technique.

— Chapter 5. Applications of Order-consistency Representational Techniques.
In this chapter, we present several example applications of the order-consistency
representational techniques, and outline the application of the Set CG technique

to languages where feature structures are used as assertion types.

e Part 4. Comparing the Ranges of Applicability of the Representational Techniques
Presented.
This part presents detailed proofs of the relations between the ranges of applicability

of the different representational techniques we have discussed.

— Chapter 6 demonstrates that the range of the Set PP technique is a subset of
the range of the Set CG technique.
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— Chapter 7 demonstrates that the range of the Set PP technique is a subset of
the range of the Set C'L technique.

— Chapter 8 demonstrates that the range of the Set C'G technique is a subset of
the range of the Set BE technique.

— Chapter 9 demonstrates for every application of the Set C'G technique there is an
application of Set CG technique which makes the same representational relation

of consequence intelligible, but with a minimal number of assertion types.
e Part 5. Reflections and next steps.

— Chapter 10. Reflections and next steps.
In this chapter, we reflect on the concepts developed and results obtained, and

look ahead to the next steps in the project.
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Part 11

Assimilating Model-theoretic
Semantics to the Representational

Schema
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Chapter 2

Model-theoretic Representational

Techniques

2.1 Introduction

We have chosen, as our primary dimension of conceptual organization, to categorize the
techniques of representational semantics by the way in which they seek to explain the
consequence relation; what we could call in a phrase their “explanatory strategy.” The
reason for this is simple. The explanatory strategy of a representational technique is the
end to which all the other variable elements of the technique (foundational characterization,
intelligible medium, proxy for consequence relation, and technique-specific assumptions) are
the means. These various latter elements are all developed with the intention of making
explanations of the kind described by the explanatory strategy possible.

In this chapter, we will investigate and discuss the category of representational tech-
niques which explain the logical consequence relation between assertion types in terms of
a logically simpler form of representation (the models) and a defined relation of truth-
in-a-model. This is the category we have termed: “model-theoretic representational
techniques.” We will call their shared explanatory strategy the “model-theoretic ex-
planatory strategy.” In the following chapter, we will describe and discuss various ap-
plications of these techniques.

Our plan for the chapter is as follows. We will begin by identifying and characterizing
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the three model-theoretic representational techniques we have considered as a part of our
investigations. This initial characterization will set our expectations from the remainder of
the discussion. We will proceed to carry out a formalization of the techniques. The presen-
tation of the formalization will begin with general concepts required for all three techniques,
and then describe those aspects in which the techniques differ. This discussion will make
clear the ways in which the techniques fulfill the model-theoretic explanatory strategy. The
next step will be to prove that all three techniques are capable of making consequence in-
telligible. We will then discuss certain relations between the ranges of applicability of the
techniques, and finish by considering the relations of the techniques to the separate task of

making logical truth intelligible.

2.2 Three model-theoretic representational techniques

Our investigations in this chapter will concern three different representational techniques
sharing the model-theoretic explanatory strategy. In this section, we will present the tech-
niques generally, and discuss their properties. The formal presentation of these techniques
will come in Section 2.3, and proofs of these properties follow that formalization.

All three techniques share the same foundational characterization, intelligible medium,
and proxy for consequence relation. They differ only in the sets of technique-specific as-
sumptions that they use. We have chosen to name the techniques according to the sets of
technique-specific assumptions they use. The three techniques are: the Set E technique,
the Set PP technique, and the Set BE technique. Let us consider these techniques and

their properties one at a time.

2.2.1 The Set E technique

The Set E technique is a formalization of Etchemendy’s account of how a model-theoretic
semantics implements a representational semantics. We have already described this tech-
nique informally above (in Section 1.3). One property of the Set E technique is that theories
developed using the Set E technique make logical consequence intelligible. As we discussed

above, theories developed using the Set E technique explain the relation of logical conse-
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quence between assertion types in terms of a logically transparent form of representation,
the models. Recall that logical transparency is the simplest logical form. The logical trans-
parency of the set of models used by an application of the Set E technique is due to the fact
that the sets of possibilities they represent are required (by the Set E assumptions) to be
disjoint and nonempty.

A special property of the Set F technique is that theories developed with it make logical
truth intelligible as well. That is to say, given that an intelligible medium of the type used
by the Set F technique satisfies the Set E assumptions with respect to the practices of
categorization interpreting its representative elements (the assertion types and the models),
there is a relation which can be defined in terms of the intelligible medium which is equivalent
to logical truth. We will explore this aspect of the Set E technique further in Section 2.6

below.

2.2.2 The Set PP technique

The Set PP technique is a derivative of the Set F technique. It uses a set of technique-
specific assumptions which are slightly weaker than the Set E assumptions. Like the Set E
technique, theories developed with the Set PP technique make logical consequence intelli-
gible, and they explain the relation of logical consequence between assertion types in terms
of a logically transparent set of models.

The logical transparency of the set of models used by an application of the Set PP technique
is due to the fact that the sets of possibilities they represent are required (by the Set PP
assumptions) to be disjoint and nonempty.

There are two primary effects of the weaker set of assumptions used by Set PP. One
is a gain, the other a loss. The gain is that it is epistemologically easier to commit to the
Set PP assumptions than to the Set E assumptions. We will see that to assume the Set F
assumptions, one must assume that the set of models béing used represent every possibility.
The Set PP assumptions have a lesser requirement. They only require that the set of
models being used represent every possibility we can represent with our assertion types.
We mentioned a gain and a loss. What we lose in moving from the the Set F technique to

the Set PP technique is that theories developed using Set PP do not make logical truth
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intelligible in the way that theories developed using Set F did.

2.2.3 The Set BFE technique

The Set BE technique is like the Set £ and Set PP techniques in that theories developed
using Set BE make logical consequence intelligible, and that theories developed using Set
BE explain the logical consequence relation between assertion types in terms of a logically
simpler form of representation, the models. The fundamental difference between the Set
BE technique and the other two model-theoretic techniques we have described is that in
theories developed using the Set BE technique, the set of models is not guaranteed to be
logically transparent. In the case of Set BE, the set of models is logically simple but not
logically simplest.

We'll discuss the way in which the models used by the Set BE technique are logically
simple below. The key thing to keep in mind at this point is that the Set BFE technique
does not include the requirement that the sets of possibilities represented by the models
be disjoint and nonempty. This makes the Set BE technique easier to apply in the case of
languages for which partial models are the most natural way to express the semantics.

We should also note that theories developed using Set BE do not make logical truth
intelligible in the way that theories developed using Set F did (but neither do they assume

that the models represent all possibilities).

2.2.4 Known relations between techniques in terms of range of applica-
bility

From our investigations, we have discovered that

1. the range of application of the Set E technique is a subset of the range of application
of the Set PP technique; and

2. the range of application of the Set PP technique is a subset of the range of application
of the Set BE technique.

These results will be proven below.
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2.3 Formalizing the model-theoretic representational tech-

niques

Now we will present a means for formalizing the model-theoretic techniques we have been
discussing. This formalization will include all of the elements of a technique as under-
stood from the representational schema; that is, foundational characterization, intelligible
medium, proxy for consequence relation, and technique-specific assumptions. All the tech-
niques we are considering share the same foundational characterization, intelligible medium,
and proxy for consequence relation. We will introduce formalizations for those first. Then

we shall present formalizations of the technique-specific assumptions for each technique.

2.3.1 The intelligible medium

All the model-theoretic representational techniques we are defining (Set F, Set PP, Set
BFE) use the same intelligible medium. The structure of this medium follows directly from
the model-theoretic explanatory strategy. A model-theoretic representational technique
explains the relation of logical consequence for a set of assertion types in terms of a logically
simpler form of representation (the models) and a function characterizing the relation of
truth-in-a-model between assertion types and models. We will combine these three elements:
set of assertion types, set of models, and defined function characterizing the relation of
truth-in-a-model into a single structure and call it a “truth medium.”

Formally, a truth medium consists of a triple (X, M,t) where ¥ is a set of assertion
types, M is a set of models, and tis a function from ¥ to P(M). We use the function ¢ to
specify the set of models for each assertion type, instead of the relation = defined on M and
3. The expression ¢ (¢) gives the models of . The two forms are interchangeable: Vo € %,
Vme M, mkEoiff met(o).

Given a truth medium A, we refer to the constituents of A as follows: ¥ 4 is the set of
assertion types of A, My is the set of models of A, and t4 is the function characterizing
truth-in-a-model for A. Using this notation: t4 (¢) is the set of models of ¢ for medium A.

For every truth medium A, we assume that ¥4 and M, are non-empty. A medium

without assertion types is worthless for expressing information; a medium without models
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cannot implement a model-theoretic semantics.

By definition, we can see that truth media are instances of the classification structure
used in Barwise and Seligman, and therefore, are instances of Chu spaces (Barwise and
Seligman 1997, 28ff). Furthermore, these structures are of the kind studied in Abstract
Model Theory, which considers various general postulates that are supposed to hold for
all ‘logics,” e.g. “isomorphism implies truth equivalence” and closure under negation and
conjunction. The level of generality of the postulates in abstract model theory is similar to
that of the technique-specific assumptions we discuss here (Barwise and Feferman 1985).
Another area with a similar degree of abstractness is Abstract Data Types (Cardelli and
Wegner 1985).

We give the truth media structure the name “medium” for two reasons. First, as we
will see, it is not simply a classification, but a classification used in a particular way, with
associated practices and assumptions. Secondly, we use the term “medium” to reinforce the
connection between truth media and the “consistency media” which we will introduce

later.

2.3.2 The proxy for consequence relation MC

All the model-theoretic representational techniques we are defining (Set E, Set PP, Set
BE) use the same proxy for consequence relation MC, which was defined informally as

preservation of truth-in-a-model across all models, and more formally as:

For set of sentences ¥, and sentence ¢,

MC(Z, ) if and only if,

for every model m (if (for every sentence o € ¥, m F o) then m F )

We make several adjustments. First, we are now considering arguments as consisting
of a single assertion type as premise and a single assertion type as conclusion. Second, we
wish to make the definition media-relative, that is, every truth medium A will have its own
defined relation MC4. Third, our truth media use the function ¢ from assertion types to

sets of models, instead of the relation F on models and assertion types.
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Making these adjustments, we can give the formal definition of MCy4 (MC for truth

medium A) as follows:

For any pair of assertion types p,q € ¥4,
MC4(p,q) if and only if ta(p) € ta(q).

That is to say, every model of p is a model of q.

2.3.3 Foundational characterization

All the model-theoretic representational techniques we are defining (Set £, Set PP, Set BE)
share the same foundational characterization of practices of categorization of possibility, and

a representational conception of logical consequence.

Practices and possibilities

As we discussed in section 1.3.4, the assumptions we are using to interpret the model-
theoretic structure contain an implicit usage of the notion of practices, by which assertion
types (subsuming sentences) and models categorize a space of relevant possibility. These
practices appear in two guises: the practice of assertion types (sentences) being true, and
the practice of models being accurate. In our formalization, we treat these two kinds
of practices (assertion types being true, and models being accurate) in parallel since both
assertion types and models are full-fledged representational schemes on the representational
view.

In our formalization, we make the assumption that the possibilities under consideration
are discrete, and that exactly one of the possibilities is actual. So we can model the space
of possibility by a set of possibilities ¢/, and the practices by means of functions.

The practice of categorizing a possibility as being one in which an assertion type is true,
we can model by a function: 75, : ¥ — P(U), such that, for any o € £, 75 (o) is the set of
possibilities in which ¢ is true. We say that 75, (o) is the set of possibilities represented
by o.

The practice of categorizing a possibility as being one of which a model is accurate,

we can model by a function: T3y : M — P(U), such that, for any m € M, Tps (m)is the
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set of possibilities in which m is accurate. We say that 7js (m) is the set of possibilities
represented by m.

In most cases, we will be considering 7x; and 7js relative to some truth medium A, in
which case we write Ty ,, and Ty,.

We wish to emphasize the difference in our epistemological relationship with respect
to the space of possibility and the practices by which we assume to categorize it, on one
hand, and the elements of our model-theoretic intelligible medium, i.e. the sentences, class
of models, and specified function characterizing the relation of truth-in-a-model, on the
other. We are not committed to being able to know the possibilities as possibilities; nor
to being able to know a practice in its totality. We are only committed to being able to
know a practice through its individual applications. On the other hand, we can intelligibly
comprehend the totality of our sentences, models, and function characterizing the relation
of truth-in-a-model.

We represent the epistemological inaccessibility of the space of possibility and the as-
sumed practices by using the calligraphic typeface, that is, U, T, Taz,-

Also: since we will be using the term quite a bit, we will often shorten the phrase
“practice of categorization of possibility” to simply “practice of categorization.”

While practices of categorization of possibility provide interpretations for assertion types
and models, we have chosen not to call them simply “interpretations” for two reasons: first,
because the usage could be confusing given the other uses for the term “interpretation”
already in the literature; and secondly, because we wish to draw attention to the fact that
the various methods under investigation are dependent upon a specific kind of interpretation,

namely, the kind of practice described above.

We can update the informal diagram from Section 1.3.4 with our new definitions.

assertion types — models
)y t M
1Tz 1 Tu
possibilities
U
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The representational concept of logical consequence

In our informal discussion, we chose to model the representational concept of logical con-
sequence as preservation of truth across all possibilities given a fixed interpretation of the
language. We can capture this concept relative to our formalization as follows: for any
assertion types p and ¢, q is a logical consequence of p if and only if every possibility in
which p is true is a possibility in which ¢ is true.

Formally, we say, for a set of assertion types X related to a space of relevant possibility

U via a practice of categorization 7y,
for any elements p, q of ¥, ¢ is a consequence of p iff 75 (p) C T (q).

We will define a relation ALC(s, 1,y (Assumed Logical Consequence) on ¥ x ¥ as

follows:

Vp,q € ¥, ALC(s. 13,)(p, q) iff T5(p) C T=(q).

The subscripting on ALC is important, because every assumed concept of logical con-
sequence is relative, not just to some set of assertion types %, but also to the practice
of categorization of possibility 7s; by which the elements of ¥ are interpreted. We use the
phrase “interpreted set of assertion types” to refer to the combination of a set of as-
sertion types and a practice of categorization of possibility interpreting that set. So we
could say that our assumed concept of logical consequence is relativized to interpreted sets
of assertion types.

When we wish to refer to an interpreted set of assertion types on its own, we may use
the notation (3,7x) to indicate the set of assertion types ¥ as interpreted by practice of

categorization 7x.

The representational account of consistency

Looking ahead, we will also need an account of consistency. We will assume the follow-
ing concept of consistency: an assertion type is consistent just in case it represents some
possibility. We can express this condition formally as follows:

Vp € , p is consistent iff Tx(p) # @.
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As in the case of the concept of logical consequence, we should note that this is not an

analysis of consistency, but an foundational assumption for the representational account.

2.3.4 Prelude to the technique-specific assumption sets

Now we are about to describe three sets of technique-specific assumptions (the Set E assumptions,
the Set PP assumptions, and the Set BE assumptions). As a shorthand, when we are talk-
ing about assumption sets (vs. techniques) we may simply say “Set E” for assumption Set
E. We will claim that, each set, when taken together with the foundational characteriza-
tion, intelligible medium, and proxy for consequence relation described above, constitutes
a representational technique.

Demonstrating this claim will require that we show (for each technique) two subsidiary

claims.

1. First, we will have to show that the technique’s technique-specific assumption set is
sufficient to imply the intelligibility of consequence. That is to say, we will need to
prove that: given any truth medium A and practices of categorization 7s;, and 7T,
interpreting its assertion types and models, if the medium A satisfies the assumptions
in the set with respect to the practices, then the proxy for consequence relation MC 4
is equivalent to the representational conception of logical consequence (ALC (EA,TEA))'
Relative to some truth medium A and the practice of categorization interpreting its
assertion types Ty ,, we can express this goal condition formally as follows:

(ICC) intelligibility of consequence condition: MCy = ALC(EA,TEA)

2. Secondly, we will have to show that for any theory constructed using the technique, the
set of models is logically simple. Theories constructed using the technique will consist
in a truth medium, such that the truth medium is assumed to satisfy the technique-
specific assumptions with respect to the practices of categorization interpreting the
assertion types and models. So we will need to show that the technique-specific

assumptions are sufficient to imply that the models are logically simple.

As we consider each technique-specific assumption set below, we will show that that set is
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sufficient to imply that the models are logically simple. We will prove that each assumption
set is sufficient for the intelligibility of consequence in a later section. Now we consider the
three technique-specific assumption sets Set E, Set PP, and Set BE corresponding to the

three model-theoretic representational techniques we are defining.

2.3.5 Assumption Set F

The Set E technique is a formal carrying-over of the informal account of model-theoretic se-
mantics presented by Etchemendy. (“Set E” is a mnemonic for the “Etchemendy” set). Soin
this section we will define formal equivalents for each of the assumptions which Etchemendy
outlined. We express the assumptions relative to an arbitrary truth medium A, and prac-
tices of categorization of possibility 7s;, and 737,. As a naming convention, we name those
assumptions involving just 7ps with a “A” prefix, and we name those involving both 7,

and 7x, with a “B” prefix.

Assumption la: “Any individual model represents a logically possible configu-

ration of the world”

We can restate this as the equivalent: “Every model could be accurate,” that is, relative
to each model, there is some possibility in which it would be accurate. Recall that for any
model m, Tpz,(m)is the set of possibilities in which mis accurate. So we can write this
assumption as follows:

Ab:VYm e MA,TMA(m) 75 %)

Assumption 1b: “Any two (non-isomorphic) models are logically incompatible;

at most one can be accurate”

For now, we leave out treatment of isomorphic models. We can restate this as the equivalent:

” So we can write this

“There is no possibility in which two distinct models are accurate.
assumption as follows:
Ad: Ym,n € Ma,m#n — (Tar,(m) N Ty, (n) = D)
Alternatively we can write the contrapositive

Ad: Ymyn € My, (Tpr,(m) N Tar,(n) # @) > m=n
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Assumption 1c: “Jointly, (the models) are meant to represent all of the possi-

bilities relevant to the truth values of (assertion types) in the (medium)”

Taken together with A4 and A5, Assumption lc is to ensure that “the models impose an
exhaustive partition on the possible circumstances that could influence the truth of our
(assertion types)” (Etchemendy 1990, 25).

This assumption as written permits of a number of interpretations. The simplest is that
the set of possibilities represented by any model (considered collectively) equals the entire

space of relevant possibility. Formally, we could express this as follows:

A6 U (Tumu(m))=U

meMp

A notational consideration: From this point forward in our presentation, we will use
function image notation to express sets like |J (7a,(m)) above. It will simplify the
readability of many of the proofs to come. Givgif f?unction fand a subset ¢y of the domain
of f,the image of co under fis {f(a) | a € ¢p} which we write as f [cp]. Using function image

notation, we can write assumption A6 as

A6 T, [Mal=U

Assumption A6 is definitely not Etchemendy’s desired interpretation. For as we will
see below, this condition, when taken together with the other assumptions Etchemendy
proposes (A4, A5 from above and B5 introduced below), is not sufficient to guarantee the
intelligibility of consequence condition (/CC). (See Proposition 16).

So let’s look for another interpretation; one that does work. That is, we are looking for an
interpretation of assumption lc, such that that interpretation, taken together with A4, A5,
and B5 is sufficient to guarantee the intelligibility of consequence (ICC) condition. Consider
taking the requirement that “models represent all of the possibilities relevant to the truth
values of assertion types” to apply to each assertion type on a one-by-one basis. Let’s

explore what this means in detail.
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We have been given a truth medium A and practices of categorization 7x,, and 7y, . For
each assertion type o € ¥4, we will consider two sets: 1) the set of possibilities represented
by o (that is, the set of possibilities in which o would be true, formally 75, (¢)); and
2) the set of possibilities not represented by ¢ (that is, the set of possibilities in which o
would be false, formally U— T, , (0)). Our proposed assumption will require that, for every
assertion type o in the medium A, there be a set of models collectively representing exactly
those possibilities in 75, (0), and a set of models collectively representing exactly those

possibilities in U — 75, (o). The entire assumption could be written formally as:

(35 C M4 such that |J7wm, [S] =T, (0))and
(3R C M4 such that (JTp, [Rl=U —Tx, (0) )

B8:Vo e Xy

When considered relatively to some truth medium A and practices of categorization 7s; ,
and 7Tjz,, such that A satisfies A4 and A5 with respect to 7ys,, assumption B8is sufficient
to assure that, for every assertion type ¢ in the truth medium A, there exist two sets of
models: one (S) which imposes a partition (via Tjs,) on the possibilities in which o can
be true, and another (R) which imposes a partition (via 7js,) on the possibilities in which
o can be false. Formally, 73/, [S] is a partition of 75, (o), and 7Ty, [R] is a partition of
U~ Tz, (0). As we will see in the proofs below, the conjunction of assumptions B8 with
A4, A5, and B5 is sufficient to imply the intelligibility of consequence condition. (Spelling
this result out fully: given a truth medium A and practices of categorization 75;, and 7jz,
such that A satisfies assumptions A4, A5, B5,and B8 with respect to 75, and 7js,, then A
satisfies ICC with respect to 75, and 7ps,.) We will accept B8 as our formal interpretation

of Assumption lc.

Assumption 2: “An (assertion type) o should be true-in-a-model (with respect
to) m iff 0 would be true if the world were as depicted by m, that is, if m were

an accurate model”

In the formalization we have introduced:

e that ois true-in-a-model with respect to m, is expressed by m € t4(o)
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o that the world is as depicted by m, would be expressed by claiming that the possibility

which is actual is an element of Ty, (m)

e that o is true, would be expressed by claiming that the possibility which is actual is

an element of 7y , (o)

We can then formalize the phrase: “o would be true, if the world were as depicted by m”
as follows: Vu € U, u € Tpr,(m) — u € Ty, (o), which is equivalent to Tys, (m) C s, (0).
This allows us to formalize the complete assumption as follows:

B5: Vo€ 4 Vm € My (m € tyg(o)iff Ty, (m) C T, (0))

Sometimes we will wish to split this assumption into two independent assumptions:

B2: VYo € ¥4 Vm € My (if Ty, (m) C Ts,(0), then m € t4(0))

B3: Vo€ XaV¥m € My (if m € t4(o), then Ty, (m) C Tx, (0))

B2is the claim that if the possibilities represented by a model m are within the possi-
bilities represented by an assertion type o, then ¢ is true-in-a-model with respect to m.

B3is the claim that if an assertion type o is true-in-a-model with respect to a model

m, then the possibilities represented by m are within the possibilities represented by o.

Assumption Set FE

We can now assemble the elements of assumption Set F in one place.

Assumption Set E consists of:

A5 :Vm € My, Ty, (m) # @
o Ad: Vm,n € Myg,m #n— (Tay,(m) N Ty, (n) = D)

(35S C My such that |J7m, [S] = Tx, (o)) and

B8:Vo € Xy
(3R C My such that |7, [Rl=U—-Ts, (0) )

e B5: VoeXgVme My (m €ta(o)iff Ty, (m) C T, (0))

We note that assumption A5 says that the every model represents at least one possibility;
and that assumption A4says that the possibilities represented by any pair of models are

disjoint. This is sufficient to show that, for any truth medium A satisfying assumption Set
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E, the set of models M4 will be logically transparent. The only relation of consequence
between models is the reflexive case.

As a note, it may at first seem strange to talk about consequence between models. But on
the representational view, models are full-fledged representations with their own practice of
categorization of possibility, so there is an assumed relation of logical consequence between
models just like the one between assertion types. We can express that relation as follows:
Given some truth medium A, for any two models m,n € M4, nis a consequence of m just
in case Tpr, (m) C Tapr, (0).

Looking more closely at assumption B8, we can see that it implies that there exists a
T C My such that |J7p, [T] = U. This is a strong assumption. It implies that every

possibility is covered by some model.

2.3.6 Assumption Set PP

As stated above, assumption Set PP is a derivative of assumption Set £. To form the Set
PP assumptions, we are going to take the Set E assumptions, and relax B8, replacing it
with B6.

Assumption Set PP first form:

o A5:VYm e My, Ty, (m) # @
o Ad: VYm,n € My,m #n— (Tpr,(m) N Tpr,(n) = D)
o B6: Vo € ¥4 (3S C Masuch that|JZu, [S] = Ts,(0))

e B5: Vo eXaVme My (mety(o)iff Tpr,(m) C Tx,(0))

B6is the new assumption here, replacing B8. It says that, for every assertion type o,
there is a set of models such that the set of possibilities represented collectively by those
models is equal to the set of possibilities represented by o. It is just the half of B8 talking
about the possibilities represented by o (versus the half of B8 talking about the possibilities
NOT represented by 0.). The above set is equivalent to the following set, which is the one
we will use.

Assumption Set PP second form:

93



o A5:Vm € My, Ty, (m) # &

o Ad: Ym,n € Mg,m#n— (Tp,(m) N7y, (n) = )

o Bl: VYo e Xy (UTm, [talo)] =Ts,(0))

Proposition 1 The two forms of Set PP assumptions are equivalent. See proof at the end

of the chapter.

Blis the new assumption here. It says that, for every assertion type o, the set of
possibilities represented by the models of o is equal to the set of possibilities represented by
o itself.

We can immediately notice two things about assumption Set PP. First, there is no
longer an assumption that every possibility is represented by some model. The requirements
imposed on the models by the assumptions in Set PP involve only those possibilities for
which some assertion type is true. This is epistemologically less demanding than Set F,
since it does not require the user of the technique to construct models for possibilities
which no assertion type in the language under consideration can represent. Secondly, we
can immediately see that since Set PP includes assumptions A5 and A4, it is the case
that for any truth medium A satisfying assumption Set PP, the set of models M4 will be

logically transparent.

Understanding assumption B1

We can look at assumption Bl from another perspective, one which may make its role
clearer. We can think about the model-theoretic semantic picture as having three com-
ponents: sentences, models, and possibilities. Given some truth medium with practices of
categorization 7y and 7y, we can see the following structure: the assertion types in ¥ are
linked to the models in M by the function ¢, the models in M to possibilitiesin U by the
function 7y, and the assertion types in ¥ to the possibilities in ¢/ by the function 7y. We

repeat the picture from Section 2.3.3.
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assertion types — models
Y t M
1T T
possibilities

U

We can rewrite the various maps as relations. So consider

1. a relation Ton Ux X such that v T p iff u € Tx(p);
2. arelation R on U x M such that u R m iff u € Tps(m);

3. arelation t on M x ¥ such that m ¢ p iff m € t(p).

This allows us to redraw the picture as follows:

assertion types > models
x t M
1T IR
possibilities
U

Then we can express a constraint:

T = the relational composition of ¢ and R in that order: i.e.

u T p iff there exists an m such that u R m and m ¢ p

This constraint is a principle of commutation for relations. And it is equivalent to

assumption B1.1

2.3.7 Assumption Set BE

Assumption Set BE adds a new wrinkle. The Set BF technique will require that the set of
models in the truth medium be partially ordered. For medium A, we indicate the ordering
on My as follows: <y, .

The Set BE assumptions can be expressed as follows:

!This correspondence was pointed out to me by Johan van Benthem.
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o A7:VYm,n € Ma, Tpr,(m) C Tpr,(n) iff n <pr, m

o Bl: Vo€ X4 (UTm, [talo)] =Tx,(0))

o B2: VYo € X4 Vme My (if Ty, (m) C Ty, (o), then m € t4(0))

In this case, the assumption A7 ensures that the set of models is logically simple. One
model nis a consequence of another model m just in case n <57, m. So there are non-trivial
consequence relations, but the relations that do exist fit a specific simple and specified
pattern. (For most interesting sets of assertion types, the consequence relation is more
complex than a partial order). An example of a set of models which would satisfy the
assumption A7, would be a set of partial models, for which the ordering <j, was the

subsumption relation (so n <3z, mwould indicate that m was more articulated than n).

As we will show later, the second two assumptions: Bl and B2, are sufficient, by them-
selves, to ensure the intelligibility of consequence. So this assumption set is different than
the first two. For assumption Sets E and PP, some of the assumptions involved in ensuring
intelligibility of consequence (i.e. A4 and A5) also grounded the explanatory strategy. Here,
one assumption (A7) grounds the explanatory strategy, and others (B1 and B2) ensure the
intelligibility of consequence. Note that assumptions Bl and B2 alone would not ground
the explanatory strategy. Taken alone, they do not ensure that the set of models is logically

simple.

The Set BE technique will be easier to use than the other model-theoretic techniques
when the natural set of models has the structure of a partial order, in which the ordering
completely characterizes consequence among the models (i.e. when the natural set of models
satisfies A7). We will see this in the example of applying the representational schema to
feature logics (in Chapter 3), and also in the proof showing that the range of application of
the Set CG technique is included within the range of the Set BE technique (Chapter 8).
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2.4 Proofs that theories developed with the model-theoretic
representational techniques presented do in fact make

consequence intelligible

In order to show that that theories constructed with any of the model-theoretic representa-
tional techniques Set F, Set PP, and Set BE make consequence intelligible, it is sufficient

to show the following results:
e For any truth medium A, and practices of categorization 7x;, and 7y,

1. if A satisfies assumptions B1 and B2 with respect to 7x;, and 7js,, then the proxy
for consequence relation (MC}y) is equivalent to the representational conception

of the logical consequence relation (ALC<EA T >> This is the central proof.
1484

2. if A satisfies assumption Set PP with respect to 7y, and Tjs,, then A satisfies

assumptions Bl and B2 with respect to 7x, and Ty, .

3. if A satisfies assumptionSet E with respect to 7x, and Ty, , then A satisfies

assumption Set PP with respect to 75, and Tyy,.

We show the first claim immediately. Following that we will introduce some additional
named assumptions, identify implications between named assumptions, and then show the

other two.

2.4.1 Additional named assumption sets

For ease of reference, we name two additional assumption sets. But note that these do not
correspond to representational techniques.

Set B is assumptions Bl and B2.

Set LT is assumptions B5 and AG6.

2.4.2 Intelligibility of consequence theorem for truth media (Set B ver-

sion).
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Theorem 2 For any truth medium A satisfying assumption set B (B1 and B2) with respect
to practices of categorization Tx, and Tyr,, it is the case that the proxy for consequence

relation (MCy) is equivalent to the representational conception of the logical consequence

relation (ALC<EA7TEA>> (that is, ¥ p,q € ¥4, ta(p) C talq) iff I, (p) € Tx,(q)).

Proof:
Let A be an arbitrary truth medium, and 75, and 7y, practices of categorization such
that A satisfies assumptions B1 and B2 with respect to 7y, and 7as,. Let p, g be arbitrary

elements of ¥ 4.

=)

1. Assume that t4(p) C t4(q)-

2. Let u € Ts . (p).

3. By BL, UTum, [ta(p)] = T, (p)-

4. So there is some m € t4(p) such that u € Ty, (m).

5. Since t4(p) C ta(q), m € ta(q), and therefore u € |J7nr, [ta(q)]-
6. By B1, UTum, [ta(9)] = T, (9)-

7. Sou € Ts ,(q). M (—)

()

1. Assume that 7x, (p) € T5,(q)-

2. Let m € t4(p).

3. Since m € ta(p), T, (m) € U7, [ta(p)]-

4. By B1, U7, [ta(p)] = Tz, (p); s0 Ta,(m) € T, (p)-
5. Since T3, (p) C T3 ,(q), we know Tz, (m) C 75, ().
6. By B2, we know m € t4(q).H (—) W
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2.4.3 Additional named assumptions

We introduce some additional named assumptions.

Assumption A2

A2 : Yz € Ma (3y € T, () such that Vz € My (y € Ty, (2) — 2 = z))

Every model in M4 has at least one possibility that it uniquely represents.

Assumption B4

Bd: JTu, Uta[B4l] = UTz, (4]
The possibilities represented by any model of any sentence equals the possibilities rep-

resented by any sentence.

Assumption B7

BT : U7—2A [ZA] - UTMA [MA]
The possibilities represented by any sentence are a subset of the possibilities represented

by any model.

2.4.4 Relations of implication between named assumptions

The following relations of implication among the named assumptions can be easily identified.

Proofs can be found at the end of the chapter.
Proposition 3 B8 implies B6. Immediate from definitions.
Proposition 4 B8 implies A6.

Proposition 5 A4,A5 imply A2.

Proposition 6 BI implies Bj.

Proposition 7 B4 implies B7. Immediate from the definitions, since | Jta [24] C Ma, so
UTm, [Uta [Z4]] € U T, [Ma].
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Proposition 8 BI implies B7. By transitivity.

Proposition 9 BI implies B3. Immediate from the fact that if m € to(0), then Ty, (m) C
U7, [Ea(o)]-

Proposition 10 (B2 and B3 and B6) imply B1.
Proposition 11 (B2 and B3) iff B5. Immediate from the definitions.
Proposition 12 (B1 and A2) imply B2. (Proposition )

2.4.5 Relations of implication between assumption sets

In this section, we demonstrate various relations which exist between the named proposition

sets.

Proposition 13 Based on the above propositions, we can see the following relations of

implication between the assumption sets presented.
For any truth medium A, and practices of categorization 7x;, and 7y, interpreting A,
e Set E (B5,A4, A5, B8) implies Set PP (B1, A4, A5).

(a) B8implies B6 by Proposition 3.
(b) B5 implies B2 and B3 by Proposition 11.
(c) B2,B3,B6 imply B1 by Proposition 10.

e Set PP (B1, A4, A5) implies Set B (B1, B2)

(a) A4, A5 imply A2 by Proposition 5.

(b) B1, A2 imply B2 by Proposition 12.

Set BE (B1, B2, A7) implies Set B (B1, B2).

Set E (Bb, A4, A5, B8) implies set LT (B5, A6).
(a) B8implies A6by Proposition 4.
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Sets E,PP are each individually sufficient to imply the intelligibility of conse-

quence

Corollary 14 For any truth medium A satisfying assumption Set E
(or assumption Set PP) with respect to practices of categorization Ts,, and Tp,, it is the

case that MC 4 is equivalent to ALC(ZA Ts,)"
TEA

This is immediate from Theorem 2 and
Proposition 13 establishing the relations among assumption sets.
This completes the proofs that that theories constructed with any of the model-theoretic

representational techniques Set E, Set PP, and Set BE make consequence intelligible.

2.5 Relative ranges of applicability among the model-theoretic

representational techniques

We can show the following relationships between the ranges of applicability of the model-
theoretic representational techniques we have introduced:
Set E technique C Set PP technique C Set BF technique
This ordering indicates our current knowledge. When we say that the range of applicability
of the Set X technique is a subset of the range of applicability of the Set Y technique, what
we are saying is that we know that every interpreted set of assertion types for which an
application of the Set X technique can make the representational relation of consequence
explanatorily intelligible is an interpreted set of assertion types to which an application of
the Set Y technique can do the same.

Since the Set F assumptions imply the Set PP assumptions, we can show that every
interpreted set of assertion types in the range of applicability (remember this a technical
term defined in Section 1.7.2) of the Set F technique is a member of the range of applicability

of the Set PP technique as well.

Proposition 15 The range of applicability of the Set E technique is included in the range
of applicability of the Set PP technique.
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1. Let (¥,7x) be an interpreted set of assertion types in the range of applicability for
the Set E technique.

2. Then there is a truth medium A and practices of categorization 75, and 7j,, such
that Asatisfies the Set E' assumptions with respect to Tz, and Tar,, and ALC(5, 73

1s embedded in ALC<2A Ts,)"

3. In that case, by Proposition 13, Asatisfies the Set PP assumptions with respect to
Ts, and 7Tpr,. Then it is the case that (X, 7x) is in the range of applicability of the
Set PP technique.

4. So the range of applicability of the Set E technique is a subset of the range of applica-
bility of the Set PP technique.

The other result, that the range of application for the Set PP technique is a subset of
the range of application for the Set BE technique, will be shown by two later proofs. In
Chapter 6 we will show that the range of applicability of the Set PP technique is a subset
of the range of applicability of the Set CG technique, and in Chapter 8 we will show that
the range of applicability of the Set C'G technique is a subset of the range of applicability
of the Set BE technique.

2.6 Model-theoretic representational techniques and logical

truth

2.6.1 Introduction

In this section, we show that it is possible to model the representational conception of logical -
truth analogously to the way we modelled the representational conception of logical conse-
quence. We have already chosen to characterize the representational conception of logical
truth as truth in all possibilities. In the context of an interpreted truth medium (that is,
a truth medium A and practices of categorization 75, and 7js, interpreting A) there is a

proxy predicate for logical truth, such that if certain sets of assumptions are satisfied, that
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proxy predicate is true of an assertion type just in case that assertion typeis a represen-
tational logical truth. That is, under those conditions, the proxy predicate will make the

representational conception of logical truth intelligible.

2.6.2 The proxy for logical truth predicate MT

We will have already informally identified just such a proxy predicate (the predicate MT).
Our informal characterization of the predicate MT was that MT held of a sentence just in
case the sentence was true-in-a-model for all models. Given our definitions so far, we could
define MT4 (MT for truth medium A) formally as:

For any assertion type p € X4, MT4(p) if and only if t4(p) = M.

2.6.3 The representational concept of logical truth

In our informal discussion, we chose to model the representational conception of logical
truth as truth in all possibilities. We can capture this understanding in a formal definition
as follows. For set of assertion types ¥ related to a space of relevant possibility U via a

practice of categorization 7y,
for any element pof X, p is a logical truth iff 7x;(p) = U.
We will define a predicate ALT}s, 75y (Assumed Logical Truth) on X as follows:
Vp € X, ALT@,TE)(p) iff 7s(p) = U.

The subscripting on ALT is important, because every assumed concept of logical truth is
relative, not just to some set of assertion types 3, but also to the practice of categorization
of possibility 7s; by which the elements of ¥ are interpreted. That is, our assumed concept
of logical truth is relativized to interpreted sets of assertion types. One could argue that
the concept of logical truth is also relative to the space of relevant possibility U, but that
involves issues we choose not to consider at this time. For a discussion of some of the issues
involved here, see Barwise 1999. For purposes of our discussion, we consider all instances

of the assumed concept of logical truth to refer to a common space of relevant possibility.

63



2.6.4 Goal condition

We can express the goal condition for the intelligibility of logical truth (I7T'C) relative
to a truth medium A and practice of categorization Ty, as follows:
MTy = ALT(ZA,TEA>'
Expanding defined predicates, ITC'is: : Vp € X4, ta(p) = Maiff 75, (p) = U.

We will use this goal condition like we used the intelligibility of logical consequence
condition (ICC), that is, a set of assumptions are sufficient for the intelligibility of logical
truth, just in case, for every truth medium A and practices of categorization 75, and 7y,

if A satisfies that assumption set with respect to 75, and 7js,, then IT'C is true.

2.6.5 Results about the intelligibility of logical truth

In the proofs at the end of the chapter, we show that given a truth medium, either of
the assumption sets LT or E, are sufficient to make logical truth intelligible via the proxy
relation MT (Propositions 18 and 19); but that neither PPnor BE are (Propositions 20
and 21). We have already shown that given a truth medium, any of the assumption sets F,
PP, or BE, in conjunction with the relation MC are sufficient to ensure the intelligibility
of logical consequence (Propositions 2 and 14); whereas below we show that assumption
set LT is not (Proposition 17). This highlights an important point, that logical truth and

logical consequence can be made intelligible independently of one another.

2.6.6 We can usefully study logical consequence independently of logical

truth

Knowledge of logical consequence is epistemologically significant even in the absence of
knowledge of logical truth. Our investigations above show how we can study the construc-
tion of intelligible proxies for logical consequence separately from the construction of intel-
ligible proxies for logical truth. For the remainder of this dissertation (with the exception
of an appendix), we will focus on the relation of logical consequence.

This concludes the linear text of the chapter. The remainder of the material in this

chapter are the proofs of propositions mentioned earlier in the text.
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2.7 Proofs of supporting propositions

2.7.1 Proofs relating named assumptions

In this section, we give proofs of supporting propostions mentioned in the text of the chapter.

Proof of Proposition 1: The two versions of Set PP are equivalent.
Version 1={A5, A4, B6, B5}; Version 2={ A5, A4, B1}

(1-2)

Let A be a truth medium satisfying { A5, A4, B6, B5} with respect to 75, and Tjy,.

1. B5 implies B2 and B3 by Proposition 11.

2. B2, B3, B6 imply B1 by Proposition 10.H(1 — 2)

(2—1)
Let A be a truth medium satisfying { A5, A4, B1} with respect to 7y, and Ty, .

1. Blimplies B3 by Proposition 9.

2. A4, A5implies A2 by Proposition 5.

3. B1, A2implies B2 by Proposition 12.

4. B2, B3implies B5 by Proposition 11.

5. Let 0 € ¥4. By Bl, JTm, [ta(0)] = Tx, (0).

6. So S =ty (0)satisfies B6.l (2 — 1)

Proof of Proposition 4: BS implies 46.

Let A be an arbitrary truth medium satisfying B8 with respect to practices of catego-
rization Ty, and Ty,.

Show that A satisfies A6 with respect to 7Tz, .
Proof:

1. [Show UTas, [Ma] =U]
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2. (9

(a) Immediate since Tpr, : Mg — P(U).M(C)

3. (2)

(a) Let u € Y.
(b) Let o € £ 4. We know such a o exists since A is a truth medium.
(c) Since Ty, (0) CU, either u € Ty, (o) oru €U — T3, (0).
(d) Case 1. ue Ty, (0)
i. By B8, 3§ C M4 such that |J Ty, [S] = T, (0).
ii. So there exists an s € My, such that u € Ty, (s).
ili. Sou e |JTpm, [Ma] M (Casel)
(e) Case 2. ued — T, (0)
i. By B8, 3R C My such that |7, [R] =U — T, (0).
ii. So there exists an 7 € My, such that u € Ty, (7).

ili. Sow € |JTp, [M4] M (Case2) B (D) MProposition.

Proof of Proposition 5: 44, A5implies A2.

Let Abe an arbitrary truth medium satisfying A4 and A5 with respect to practice of
categorization Taz,.

Show that Asatisfies A2 with respect to practice of categorization Tpz,.

Proof:

Let © € M4. By A5, Ty, (x) # @. Pick an arbitrary element y of Tps, (). Let zbe an
element of M4 such that y € Ty, (2). Then z = = by A4 .MProposition.

Proof of Proposition 6: B1implies B4.

1. Let Abe an arbitrary truth medium satisfying B1 with respect to practices of cate-

gorization Tx;, and Tpy, .
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Show that Asatisfies B4 with respect to practices of categorization 75 ,and7yy,, that is,
show U 7w, [Uta[Eall = UTs, [24]

3. (Q)

a) Let u € UTn, [Uta[24]]-
b) Then there is an m € (Jt4 [£4] such that u € Typs, (m).
(c) Then there is a 0 € £4 such that m € t4 (o).
(d) S0 u € Uiy [t4 (o))
(e) By Bl, u € Ty, (0).

)

(f) Soue T, [Sa)-

4. D

e) Since 0 € 4, m € |Jt4 [Z4]-

(
(f) Sowe JTm, [Uta [E4]] .MProposition.

Proof of Proposition 10: B2, B3, B6imply B1
Let Abe an arbitrary truth medium satisfying B2, B3, and B6 with respect to prac-

tices of categorization 7y, and 7js,. Show that Asatisfies B1 with respect to practices of

categorization 75, and Tay,.
Proof:

Let ¢ be an arbitrary element of ¥ 4.
(€)
1. Let w € |UTpm, [ta(o)].
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2. So there is some m € t4(o) such that u € T, (m).

3. By B3, Tu, (m) C Ts, (U).(g)

(2)

1. Let u € T, (o).

2. So by B6, there exists 35 C M4 such that | Ty, [S] = Tz, (0).
3. So there is some m € S such that u € Tys, (m).

4. Since m € S we know Tpr, (m) C Ty, (0).

5. By B2, m € t4(c).H(2) MProposition.

Proof of Proposition 12: B1, A2imply B2.

Let Abe an arbitrary truth medium satisfying B1, A2 with respect to practices of catego-
rization 7Ty, and Tp,. Show that Asatisfies B2 with respect to practices of categorization
T):;A and TMA-

Proof:

Let o be an element of ¥ 4, and let mbe an element of M4 such that Tz, (m) C Tx,(0).

[ Show m € t4(0)]

1. Since Asatisfies A2 with respect to 7ps,, we know that 3y € T, (m) such that Vz €

My (y € Tar, (2) — 2z =m). Pick one such y.
2. Since Tpr,(m) C Tx,(0), y € Ts ,(0).
3. Since A satisfies B1 with respect to T, and 7Tjy,, we know | 7oy, [ta(o)] = Tx, (o).
4. So there is an n € t4(0) such that y € Ty, (n).
5. So by above, m = n.
6. So m € t4(c).MProposition.
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2.7.2 Proofs that certain sets of assumptions are insufficient for the in-

telligibility of logical consequence

Proposition 16 The conjunction of assumptions B4,B5, A4, A5, A6 is insufficient to

imply the intelligibility of consequence.

Here we construct a case in which a truth medium A satisfies the assumptions B4, B5, A4, A5
and A6 with respect to practices of categorization 7x, and Tjs,, and yet the intelligibility
of consequence condition fails.

Consider the following:

a={p,q,r}
My = {m,n,o}
U=1{1,2,3,4,5}
z | Tn,(z)
Define 75, as follows: p | {1,2,4,5}
q|{2,3}
r | {4}

So UTs, [24] = {1,2,3,4,5}

z TMA (x)
1
Define 7j, as follows: m | {1
n | {23}
o | {4,5}

The above definitions satisfy assumptions A4 (the models are disjoint) and A5 (the
models are consistent). A6is satisfied as well.

We use the statement of B5 to construct t4.

@ | ta(z)
Construct t4 as follows: p | {mo}

g | {n}

|9

So ta[X4] = {m,n,o} and therefore | JTar, [Uta [Z4]] ={1,2,3,4,5} =UTs, [Z4].

Given the above definitions, assumptions B4 and B5 are satisfied.
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Now we show that the intelligibility of consequence condition is NOT satisfied.

From the above, we can compute the relation t4(x) C t4(y) as follows:

Y

q|r
plt|f]|f
z
g|f|t|f
rit |t |t

Whereas the relation Ty, (z) C 75, (y) is as follows:

Y
plg|r
plt|f|f
x
gttt |f
ritf|t

Consider the ordered pair (r,q). ta(r) C ta(qg), but Ty, (r) € Tx,(g). Since the above
example satisfied B4, B5, A4, A5 and A6, we conclude that the conjunction of these assump-

tions is NOT sufficient to guarantee the intelligibility of consequence condition.

Corollary 17 Set LT is not sufficient to imply the intelligibility of consequence condition.

2.7.3 Proofs indicating which sets of assumptions are sufficient or insuf-

ficient for intelligibility of logical truth
Assumption sets which are sufficient for the intelligibility of logical truth

This theorem demonstrates that LT is sufficient for the intelligibility of logical truth (ITC).

Proposition 18 For any truth medium A satisfying assumption set LT (B5 and A6) with
respect to practices of categorization Ty, and Ty ,, it is the case that that ITC is true, that

is, that MT4 = ALT(EA Ts,)"

1. Let Abe an arbitrary truth medium, and 7y, and 7y, practices of categorization
such that A satisfies assumptions B5 and A6 with respect to Ty, and 7ps,. Let pbe

an arbitrary element of ¥ 4.
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2. (=)

(a) Assume ta(p) = My. [Show Ty, (p) =U.]
(b) (S)
i. Immediate by definition of 75, , .l (C)
() (2)
i. Letuel.
ii. By A6,u € |JTar, [Mal.
ili. So there exists an m € My, such that u € Ty, (m).
iv. By (—) assumption, m € t4(p).
v. By BS, Ty, (m) C Ts,(p)-
vi. Sou e Ty, (p). M (D) M (—)

3. (<)

(a) Assume 75, (p) =U. [Show t4(p) = M4.]
(b) (S)
i. Immediate by definition of ¢4.M (C)
() (2
i. Let m € My.
ii. Tpr, (m) CU, by definition of Ty, .
ili. So Ty, (m) C Ts,(p), by («) assumption.
iv. By B5, m € ta(p).M (D) M (—) WTheorem.

Corollary 19 For any truth medium A satisfying assumption Set E with respect to practices
of categorization Ty, and Tpr,, it is the case that ITC is true, that is, that MTy =
ALT(EA,TEA) :

This is immediate from Theorem 18 and Proposition 13.
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Assumption sets which are not sufficient for the intelligibility of logical truth

Assumption set PP (B1, A4, A5)is not sufficient to imply the intelligibility of logical truth

condition.

Proposition 20 [t is not the case that: for any truth medium A satisfying assumption set
PP (B1, A4, A5) with respect to practices of categorization Ts;, and Tyr,, that ITC is true,

i.e. that MTy = ALT(EA T):A> .

We construct an example of a truth medium A and practices of categorization 7y,
and Ty, such that Asatisfies assumption set PP (A1, A4, A5) with respect to practices of

categorization 7y, and 7jz,, and yet the intelligibility of logical truth condition (I7°C)is

false.
¥a={p}
My = {m,n,o}
Uu=1{1,2,3,4,5}
z | Ty, ()
Define 75, as follows:
p | {1,2,3,4}
z | Ty, (x)
1
Define T3z, as follows: m | {1}
n | {2,3}
o | {4}

The above definitions satisfy assumptions A4 (the models are disjoint) and A5 (the
models are consistent).

We use the statement of Bl to construct 4.

z | ta(x)

Construct t4 as follows:

p | {m,n,o0}

" Given the above definitions, assumption Bl is satisfied, as U7Zum, talp)] ={1,2,3,4} =

TEA (p) '
In our example, t4(p) = My, yet Ts ,(p) # U. So ITC'is false. MProposition.
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Proposition 21 It is not the case that: for any truth medium A satisfying assumption set
BE (B1, B2, A7) with respect to practices of categorization Ts;, and Tpr,, that ITC is true,
i.e. that MTy = ALT(EA,’T):A>'

We construct an example of a truth medium A and practices of categorization 75,
and Ty, such that Asatisfies assumption set BE (B1, B2, A7) with respect to practices of
categorization 7y, and 7js,, and yet the intelligibility of logical truth condition (I7'C)is
false.

For this example, take the example from Proposition 20. Define the ordering <s,on My
as the antichain ordering. Then the medium Agiven in the example satisfies B1, B2, and

AT. Yet it does not satisfy IT'C.lProposition.
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Chapter 3

Applications of Model-theoretic

Representational Techniques

3.1 Introduction

In this chapter we will explore the application of model-theoretic representational techniques
to three different interpreted languages: (1) a simple language meant to illustrate the basic
concepts involved; (2) the language of propositional logic; and (3) the languages of feature
logics (sentential languages with feature structures as models). As you will recall from
Chapter 2, all the model-theoretic representational techniques we have defined share the
same foundational characterization, form of intelligible medium, and intelligible proxy for
consequence relation. They differ only in the sets of technique-specific assumptions used.
We can therefore begin by presenting a general methodology for applying any of the defined
model-theoretic representational techniques. Our next step will be to give a high-level
overview of the example applications to be presented. For each application, we will explain
(1) what the language(s) in question are; (2) which techniques we plan to use in building
theories of consequence for those languages; and (3) why those applications are of interest.
We will then proceed to apply the techniques. We will carry out complete applications
in the case of the initial example and the language of propositional logic; and sketch the

application in the case of the languages of feature logics.
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3.2 A general methodology for applying model-theoretic rep-

resentational techniques

In Section 1.5.1, we introduced a general methodology for applying instances of the represen-
tational schema. We can now specialize that methodology in the context of model-theoretic
techniques. At the current time, we have defined three such techniques: the Set E technique,
the Set PP technique, and the Set BFE technique. The only variable element between these
three techniques is the set of technique-specific assumptions which they employ. So we can
describe a common methodology for applying any of these techniques.

Given a selected technique,

Step 1: Identify a set of assertion types for the language.

Step 2: Form a truth medium by supplementing the set of assertion types with a set of
models, and a relation of truth-in-a-model between sentences and models.

Step 3: We have two kinds of representative elements in a truth medium: assertion types
and models. Define semantic conventions describing acceptable interpretations for these
elements.

Step 4: Prove that if a practice of categorization for assertion types and a practice
of categorization for models satisfy the semantic conventions described for those kinds of
practices in Step 3, then the truth medium we have constructed satisfies the technique-
specific assumptions with respect to those practices.

Given that proof, we know that for every pair of acceptable interpretations for assertion
types and models, the proxy relation of preservation of truth-in-a-model across all models is
equivalent to the representational conception of logical consequence (preservation of truth
across all possibilities). Further, because of the technique used, we know that the theory
so constructed explains the consequence relation between assertion types in terms of the

logically simple form of representation given by the models.

3.3 Overview of the applications

We will carry out or outline three applications of model-theoretic representational tech-

niques. The first example will be a simple one, intended to bring out key concepts. The
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second will be the language of propositional logic. The third will be the languages of feature

logics.

3.3.1 The “roll of the die” example

The first application we will consider involves a very simple language used to describe the
numerical value of a roll of a six-sided die. This language will only have three assertion types
odd, greaterThanFour, and five; and a single acceptable interpretation. The simplicity of
the language will make it easy for us to carry out the application; and also will demonstrate
just how little it takes to get a model-theoretic semantics off the ground. We will use the

Set F technique for this application.

One attribute of this application that is of special interest is that it demonstrates that the
model-theoretic techniques we are considering have no requirement that the set of assertion
types be “complete” in the sense of representing the space of relevant possibility in some
regular way. For example, in the case of this language, we can say “odd” but we cannot
say ‘not odd;” we can say “greater than four” but we cannot say “odd or greater than
four.” For the model-theoretic techniques we have considered, the sets of technique-specific
assumptions place no requirements on assertion types involving the possibilities represented
by some other type or types. Call such requirements “mutual constraints on assertion
types.” As an example of one such potential requirement consider: we could require, for
every assertion type p, that there exist some assertion type ¢ such that g represents all
relevant possibilities not represented by p; that is, the requirement that every assertion

type have an absolute negation in the language.

As should be obvious (and as we will explore in some detail in Chapter 4), such mutual
constraints on assertion types can play an important role in determining the usefulness of a
language for various practical applications. As a matter-of-fact, most of our standard logical
languages do obey such mutual constraints on assertion types and, as a result, represent
the space of relevant possibility in a regular way. Such regularities will serve as part of the

basis for the order-consistency representational techniques we shall discuss in Chapter 4.
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3.3.2 The language of propositional logic

The second application we will consider is the language of propositional logic. The standard
analysis of propositional logic is of course model-theoretic. By taking such a standard
example, this application will help make the less-familiar concepts of our representational
schema more clear.

As we mentioned above, the language of propositional logic, as defined, is only partially
interpreted. The language characterizes a class of‘ acceptable interpretations, but does
not specify a single interpretation. We will use the concept of semantic conventions to
describe the class of acceptable interpreting practices of categorization for the language of
propositional logic. An important aspect of this application is that is will allow us to work
through and apply a complete analysis of a set of semantic conventions.

An important attribute of the language of propositional logic (as used to represent and
reason about arguments) is that it does obey mutual constraints on assertion types, and as
such, does represent the space of relevant possibility in a regular way. We will explore some
of these regularities in Chapter 4.

There are some technical attributes of this application that will be of special interest.
For one thing, we consider the question of what counts as the appropriate set of assertion
types for our application. Do we take the set of assertion types to be the set of propositional
sentences, or the powerset of the set of propositional sentences? We will argue that we need
to consider the latter case if we are to model the concept of logical consequence as we use
it to represent and reason about arguments in propositional logic. Our application will
actually be factored into two levels. First we will apply the Set F technique to a version
of the propositional language which has single sentences for its assertion types; then we
will use that construction as a basis for applying the same technique to a version of the
propositional language which has sets of propositional sentences for its assertion types.

This two-level application will introduce two important ideas: the concept of partially
ordered truth media, that is, a truth medium where the set of assertion types has
a partial order defined upon it; and the concept of operators on intelligible media,
that is, operators which take one or more interpreted intelligible media as arguments, and

constructs from them an interpreted intelligible medium. Such operators will be important
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to many of the proofs to come.

3.3.3 The languages of feature logics

Feature structures, or “attribute-value matrices,” are a certain kind of structure
enabling an organized presentation of information. An example feature structure is shown

here. This example is from Rounds 1997.

- -
vp

NUM sing
PERS 3rd

SUBJ[1]

AGR [1]

Informally, feature structures work by allowing information to be expressed as the values
of features. There are various types of features (e.g. “AGR,” “NUM,” in the above).

Features take values (e.g. “sing”). The value of a feature can itself be a set of features
NUM sing

PERS 3rd
the “[1)” above, the AGR feature and the SUBJ feature share the same value, namely

NUM sing . Lo . . : :
« ?). Circularity in the structure is also possible. We will describe feature

PERS 3rd
structures in more detail in the outline of the application below.

[13

with values (e.g. ”.) Parts of the structure can be shared (as indicated by

Structures of this kind have a rich tradition in linguistic theories (Chomsky 1957; Chom-
sky 1965; Kaplan and Bresnan 1982; Gazdar, Klein, Pullum, and Sag 1985; Pollard and
Sag 1987) and have also been used for a number of computational frameworks (Kay 1979;
Shieber 1986). More recently, feature structures are being used as the foundation for XML,
the next general standard for information interchange on the Internet.

Feature logics define sentential languages which are interpreted with respect to feature
structures. In a feature logic, (1) the assertion types are sets of sentences in a defined sen-
tential language, (2) feature structures play the role of models, and (3) there is a definition
of a relation of truth-in-a-feature-structure between sentences and feature structures. The
relation of logical consequence is characterized by the preservation of truth-in-a-feature-

structure across all feature structures (Rounds 1997, 506). The actual relation is slightly
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more involved, due to the modal nature of the feature logic language; we will deal with this

once we have had a chance to introduce feature structures more formally.

Here we have something very important to notice. From the representational perspec-
tive we have taken, this story giving an account of logical consequence for a feature logic is
not complete. Given that we take the powerset of the set of sentences in the feature logic as
the set of assertion types, and given that we take feature structures to be the models, and
given that we take the relation of truth-in-a-feature-structure to play the role of the rela-
tion of truth-in-a-model, the relation of preservation of truth-in-a-feature-structure across
all feature structures is the model-theoretic candidate for a proxy relation for the represen-
tational conception of logical consequence for the language of the feature logic. But what
is missing... is a characterization of the semantic conventions of the language of the feature
logic, and of the feature structures themselves, and a proof that given some acceptable (i.e.
semantic conventions satisfying) practice of categorization interpreting the sentences of the
language, and some acceptable practice of categorization intepreting the feature structures,
the intelligible medium (powerset of set of sentences, feature structures, and definition of
truth-in-a-feature structure) satisifies one of the technique-specific assumption sets with re-
spect to those practices. Only then would we have a complete justification of the claim that
the proposed proxy relation of preservation of truth-in-a-feature-structure across all feature
| structures is in fact equivalent to the representational conception of logical consequence for
acceptable interpretations of the sentences and models of the logic. The most important

attribute of this application is the recognition of the need for this further investigation.

There is a second important attribute of this application. Though we have not yet
worked out the semantic conventions for a feature logic, from our intuitive understanding
of how feature structures are used, it is the case that the semantic conventions of a feature
logic will allow the interpretations of feature structures (i.e. the sets of possibilities they
represent) to overlap one another. If the set of all feature structures is being used as the
set of models in the application, then neither the Set F nor the Set PP techniques will
be appropriate; since both techniques have the requirement that the sets of possibilities
represented by models be disjoint. Either some other set of models is required (not feature

structures or a disjoint subset of feature structures), or a new technique. This opens up a
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potential application for the Set BFE technique.

The overview completed we now proceed to the specific applications.

3.4 The “roll of the die” application

3.4.1 Introduction to the example

In this section we apply amodel-theoretic representational technique to construct and
make explanatorily intelligible the relation of logical consequence for a simple language.
Our example will concern a very primitive language used to describe the numerical value
of a roll of a single six-sided die. This language will have three assertion types: odd,
greaterThanFour,and five. The practice of categorization by which these assertion types
are interpreted coincides with the ordinary English meanings of their names, applied as
predicates to the number of dots on the side of the die facing upwards after a roll. For
example, if a die is rolled such that the side with five dots is facing up, all three assertion
types would be assessed true by the practice. Whereas, if a die is rolled such that the
side with six dots is facing up, the assertion types odd and five would be assessed false,
and the assertion type greaterThanFour would be assessed true. Our task is to apply a
model-theoretic representational technique to make the representational relation of logical

consequence between these assertion types intelligible.

3.4.2 Details of the application

We could carry out the application of a model-theoretic representational technique as fol-
lows. (Note that this example does not go through the full mechanism of a proof. Our
purpose here is to highlight the main ideas of an application of a model-theoretic technique
as simply as possible. We will conduct a full proof of correctness in the propositional logic
example).

We choose the Set F technique.

We will define a truth medium Roll = (X gou, Mpoir, trolt) -

We are given the set of assertion types L goy = {odd, greaterThanFour, five} .

Take the set of models Mg,y to be {1,2,3,4,5,6}.
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Take the set U to be the space of possible rolls of the die. Note that on this view I is
not simply a set with six elements. Rather, partial descriptions of some of the elements
of U might include “a white die with black spots was rolled on felt and the side with

”

three dots came up...,” or “a red die with white dots was rolled in Las Vegas on Tuesday

”

and the side with four dots came up...,” etc. The given practice of categorization which
interprets the elements of £ gy can then be seen as the function 7x, ,, : oy — P(U). The
representational relation of logical consequence we assume, and wish to make intelligible, is
given by ALC(ER(,”, Top,)

Define Tary,,, as follows. Given any possible roll » € U of the die, and element m of
Mgrou, 7 € Tip,, (M) just in case the number of dots on the side of the die facing up in r is
the numeric value, on the usual interpretation of the digits, of the digit naming m.

We can then define the function t g,y as follows:

tRou(0dd)={1,3,5}

tro(greaterThanFour)={5,6}

tRou(five)={5}

In accepting these definitions as implying the Set E assumptions, we would be making

the following claims:

1. Assumption A5: Every model is possible, that is, each of the integral numbers of dots

1,2,3,4,5,6 may appear on the side of the die facing up after some roll.

2. Assumption A4: No two distinct models accurately describe the same possibility, that
is, after every roll, the side of the die facing up shows at most one of the numbers of

dots 1,2,3,4,5,6.

3. Assumption B8: For each assertion type p, we can give a set of models which collec-
tively and precisely represent the possibilities in which that assertion type is true; and
a set of models which collectively and precisely represent the possibilities in which that
assertion type is false. For example, for odd... we could claim that the possibilities
collectively represented by the models 1,3, and 5 precisely exhaust the possibilities in
which odd is true; and that the possibilities collectively represented by the models 2,4,

and 6 precisely exhaust the possibilities in which odd is false. Making this assumption
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means that we are excluding certain cases from consideration, such as the case where
the side of the die facing up shows two and one-half dots, for example. No model as

we have specified them would accurately represent such a case.

4. Assumption B5: “An (assertion type) ¢ should be true-in-a-model (with respect to)
m iff ¢ would be true if the world were as depicted by m, that is, if m were an accurate
model.” We can claim that the function ¢ g,y reflects this relation between the English
interpretations of odd, greaterThanFour, and five, and the usual interpretations of

the digits 1,2,3,4,5,6.

Given the truth medium Roll as defined, the relation M Cg; would be as shown in the

following table:

MCrou(p,q) q
odd | greaterThanFour | five
odd true | false false
P greaterThanFour | false | true false
five true | true true

If the truth medium Roll did in fact satisfy the Set E assumptions (A4, A5, B8, B5) with
respect to practices of categorization Ty, , and Ty, then by the Corollary to the
Intelligibility of Truth Media Theorem (Corollary 14), MCg,y would be equivalent to

ALC’< So under those conditions, the relation MCg,; makes the assumed

Srott, Topoy )

relation of logical consequence ALC< ) explanatorily intelligible. The relation

ERrotty Tup,y,

of consequence between the assertion types is explained in terms of the logically simpler

models, and the definition of truth-in-a-model.

3.5 The propositional logic application

3.5.1 Introduction

The standard semantics of the language of propositional logic is defined in a model-theoretic

style. In this section, we will describe that semantics using the Set E technique.

82



Our first step is to define the set of assertion types for the language of propositional

logic. Let’s begin by considering two alternative candidates.

1. One approach would be to take the assertion types of this language to be the set
of propositional sentences, i.e. the set of sentences formed from the sentence sym-
bols by construction operators building conjunctions, disjunctions, implications, and
negations (Enderton 1972, 17ff). One could take this position, as the propositional
sentences do in fact make propositional claims, and each propositional sentence is as-
sumed to divide the space of possibility into those possibilities of which it is true and

those of which it is false. For certain purposes this approach would be appropriate.

2. But if we wish to model the propositional language as it is in fact used to make
claims and evaluate arguments, we should take a wider view. In our standard usage,
we take the premise of an argument to be a set of sentences, and the conclusion to
be a single sentence. This means that if we wished to model our standard usage of
the language of propositional calculus, we should take the set of assertion types to
be given by the set of sets of propositional sentences (i.e. the powerset of the set of
propositional sentences). Note that in formally implementing this approach, we will
use the approach described in (1) (which considers single propositional sentences as

assertion types in their own right) as a foundation.

Soin modelling the language of propositional logic, there are at least two candidates for
the set of assertion types . We could take X to be the set of propositional sentences W F F
or we could take X to be the powerset of WEFF (with the empty set interpreted as a logical
truth, and nonempty sets interpreted as the conjunction of the individual claims made by
their members). Rather than choose between these candidates, we will first apply the Set
E technique to the case where the set of assertion types is taken to be W FF'| and later to
the case where the set of assertion types is taken to be P(WFF). When we have a need
to distinguish them, we will refer to the version of the language of propositional logic in
which the assertion types are single sentences as the W EF'F-language of propositional logic,
and the version of the language of propositional logic in which the assertion types are sets

of sentences as the P(W FF)-language of propositional logic.
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3.5.2 Application of the Set E technique to the W F'F-language of propo-

sitional logic

In this section, we apply the Set E technique to construct a representational account of
logical consequence for the W F F-language of propositional logic. In the next section (at
this level) we will use the results of this section, and the Set E technique, to construct a
representational account of logical consequence for the P(W F'F')-language of propositional
logic.

For this application, we assume that the given set of assertion types is the set of propo-

sitional sentences W F'F'. This application will take the following steps.

1. We will describe the truth medium ST for the application;

2. We will give semantic conventions describing acceptable interpretations of

(a) the set of propositional sentences (the set of the assertion types for the WFF-

language of propositional logic); and

(b) the set of total truth assignments (the set of models for the application);

3. We will prove that if practices of categorization Twrr and 77r4 together satisfy
the semantic conventions for interpretations of the set of propositional sentences and
interpretations of the set of total truth assignments, respectively; then the truth

medium ST satisfies the Set E assumptions with respect to Tywrr and Tpr4.

Then, for any practices of categorization Ty rr and Tpr4 which together satisfy the
semantic conventions for interpretations of the set of propositional sentences and interpre-
tations of the set of total truth assignments, respectively; the relation M Cgr makes the
representational relation of logical consequence ALCw rr Ty ) €xplanatorily intelligible.

This will complete the application.

The truth medium ST

We will now describe how we form the truth medium in this application. We will call the

truth medium we are constructing ST. As with any truth medium, ST will be composed
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of three elements: a set of assertion types, a set of models, and a function identifying the

models of each assertion type.

The set of assertion types in ST'is the set of propositional sentences WFF. In the
standard semantics for propositional logic, the set of models is given by the set of functions
from the set SS of propositional sentence symbols to the set of truth values {7, F'}. Each
such function is called a “total truth assignment” or “tta” for short. We will call the set of
all such total truth assignments by the name TT A. We define the set of models in ST as
equal to TTA.

The last step in constructing ST is to give the function for truth-in-a-model. We will
call this function {gp. In the standard semantics for propositional logic, this is given by
the relation |=of truth-in-a-truth-assignment defined on TT A x WFF, such that m = p
just in case pis true-in-a-truth-assignment with respect to m. We can adopt that definition

directly, defining tgr as follows. For all p € WFF, tgp(p) = {m € TTA | m = p}

Semantic conventions for interpretations of the sets WEFF and TTA

We will now define semantic conventions for practices interpreting the set of sentences
WFEFF and the set of models TTA. The important idea here is that acceptable interpreta-
tions of WFF and TT Acome in pairs; and that acceptable pairs will share an acceptable
interpretation of the sentence symbols. So first we shall characterize the set of acceptable
interpretations for the set of sentence symbols SS5. Then we can give an account of the

semantic conventions on the interpretations of WFF and TT Ain the following form:

A practice of categorization Ty pr : WEF — P(U) in conjunction with a practice of cat-
egorization Trra : TT A — P(U) are acceptable interpretations of W F F and TT A respectively,
provided that there exists a function f: SS — P(U) that is an acceptable interpretation of

the sentence symbols, and Ty pr and 7774 bear certain further relations to f.

So we will first characterize the set of acceptable interpretations for the set of sentence
symbols S5, then consider what further conditions we need to impose on 7y rr and Tp74.

Following that, we will pull the semantic conventions together into a single statement.
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Semantic conventions defining acceptable interpretations of SS So let us now
define what counts as an acceptable interpretation of the sentence symbols. What we will
be doing here is defining a condition, such that, if a function f : S — P(U) satisfies
that condition, then f counts as an acceptable interpretation of the sentence symbols.
The condition we will use for our analysis is that an interpretation must ensure that the
sentence symbols are logically independent to be acceptable. That is, no knowledge of the
truth values of a set S of sentence symbols should imply knowledge of the truth values of any
set of sentence symbols not contained in S. It is not necessary to use such an assumption
to ground a semantics for the language of propositional logic (Barwise and Etchemendy,
1999), but we will use it here.

We can capture this convention of logical independence as follows.

We begin with the concept of a truth assignment. A function gis a truth assignment
if gis a partial function from the set of propositional sentence symbols SSto {T', F}. We
will call the set of all truth assignments T'A (to distinguish it from the set of total truth
assignments TT'A). The set of truth assignmentsT'A has a standard ordering as a set of
partial functions. For any f,g € TA, f =14 g just in case dom(f) C dom(g) and for all
z € dom(f) f(z) = g(x).

We can capture the standard interpretation 774 of a truth assignment g relative to an
interpretation of the set of sentence symbols f as follows. (We use the notation 77,y to

name this interpretation).

For all g € TA, for all f:SS — PU)

TTA(f)(g) = N if g(4,) =T then f(A,) else U — f(Ay).!
An€dom(g)

What this definition says is that, if truth assignments are being interpreted relative to an

interpretation f of sentence symbols, then... for every truth assignment g, the possibilities

!(Note that one of the subexpressions in this specification has the form “if condition then ezpression;
else expressions”. This type of expression is called a “conditional expression.” The value of a conditional
expression is defined as follows. If the value of the subexpression condition is true, then the value of the
conditional expression as a whole is the value of ezpression; else the value of the conditional expression as
a whole is the value of ezpressions. Giving the specification
“z = if g(An) = T then f(An) else U — f(An)” is equivalent to the specification
“if g(An) = T then z = f(An) else z =U — f(An)")
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in which g is true are just those possibilities in which every sentence symbol that g assigns
“T"is true, and every sentence symbol that g assigns ‘F’ is false.

The following is an immediate consequence of this definition.

Proposition 22 For any practice f : SS — P(U) interpreting the sentence symbols, and
any g,h € TA, th jTA g then %A(f)(g) - TTA(f)(h)

Now we can express the condition of logical independence of sentence symbols as follows.

Definition 23 Semantic convention for a practice interpreting SS
(LI) A practice f : SS — P(U) interpreting the sentence symbols is acceptable, providing
that, for every pair of truth assignments g,h € TA, Tpa(5)(9) C Tra(y)(h) then h <14 g.

Let’s consider this convention LI. This convention says that if a truth assignment is
a logical consequence of another, then every assignment of truth value in the conclusion is
included within the premise.

As a case of a f which would violate convention LI, consider the following. Say that
F(A)Nf(As) C f(As). Note that such a f would mean that A3z was a logical consequence of
the conjunction of A; and A This is not to be allowed, for then the Ag is not independent
of A1 and A;. We can show that this f fails convention LI as follows. Consider truth
assignments g, h € T'A such that g assigns A; the value T and Ay the value T' and makes
no other assignments; and that h assigns A3 the valueT, and makes no other assignments.

Then given this f, by the definition of Tr4, Tr4(5)(9) € Zra(y)(h). This violates LI, since

h £14 g.

Proposition 24 Combining the result of Proposition 22 with Convention LI, we know that

for any f satisfying the semantic conventions for a practice interpreting SS, Vg,h € TA,
Trai)(9) € Tra(R) iff h 274 9.

Additional semantic conventions constraining acceptable interpretations of W F'F.
Now that we have defined what it is for an interpretation of sentence symbols to be accept-
able, we can define the additional semantic conventions governing acceptable interpretations

of WFF. Remember that the semantic conventions for practices interpreting WFF' and
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TTA apply to practices in pairs, and that the interpretation for WFEFF and the interpreta-
tion for TT'A in an acceptable pair will both refer to a common acceptable interpretation
for the set of sentence symbols. So as we characterize the semantic conventions for an
interpretation of WEF', let us do so in the context of a practice f : SS — P(U), which is
understood to be the shared acceptable interpretation of the sentence symbols.

We will define an acceptable interpretation of the set of sentences W F F as one that (1)
agrees with f for its interpretation of simple sentences (those which are simply a sentence
symbol); and (2) interprets complex sentences in accordance with our intended interpreta-
tions of the sentential connectives.

In line with this intention we give the following definition:

Definition 25 Additional semantic conventions for a practice interpreting W FF
To be an acceptable interpretation of WFF, a practice of categorization Tyypp : WFF —
P(U) must, with respect to the acceptable practice f it shares with the interpretation of TT A,

obey the following conventions:

1. Convention STM (for “simple sentences”)

(SIM) for all A, € SS, f(As) = Twrr(As); and

2. Convention COM (for “complex sentences”)
(COM)Vp,q € WEFF, Twrr(E-(p)) = U=Twrr(p) and Twrr(EA(P, 9)) = Twrr(p)N
Twrr(q)®

The convention COM assures that the interpretations of the sentences of W FF obey
the intended interpretations of the sentential connectives. In our discussion here and below,
we will use only the truth functional connectives — (for negation) and A (for conjunction)
as together these form a complete set of connective symbols.

The convention COM assures that every assertion type and its negation partition the

space of relevant possibility.

*Recall that £, constructs the negation of its argument, and . constructs the conjunction of its
arguments.
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Additional semantic conventions constraining acceptable interpretations of TT A
Now we give the additional semantic conventions defining acceptable interpretations of the
set TT A of total truth assignments, the models in our truth medium S7T. Again, we must
remember the semantic conventions for practices interpreting WFF and TTA apply to
practices in pairs, and the interpretation for WFF and the interpretation for TTA in an
acceptable pair will both refer to a common acceptable interpretation for the set of sentence
symbols. So as we characterize the semantic conventions for an interpretation of TT A, we
do so in the context of a practice f : SS — P(U), which is understood to be the shared

acceptable interpretation of the sentence symbols.

Definition 26 Additional semantic conventions for a practice interpreting TT A

To be an acceptable interpretation of TTA, o practice of categorization Trrs : TTA —
P(U) must, with respect to the acceptable practice f it shares with the interpretation of
WFF, obey the following conventions:

(AMC) Trra = Tra) 1 TTA. (that is, Tpr4 s equal to the function T4 interpreted with
respect to f and restricted to TTA).3

Recall that 774 gives a truth assignment (partial or total) its standard interpretation,
based upon an interpretation of the sentence symbols.
This constraint assures that an interpretation of T'T' A follows the standard interpretation

of a truth assignment, given the acceptable shared interpretation of the sentence symbols.

The semantic conventions for interpretations of WFF and TTA We can now pull

together the full specification of semantic conventions:

Definition 27 A practice of categorization Typp : WFF — P(U) in conjunction with a
practice of categorization Tppa : TTA — P(U) are acceptable interpretations of WEFF and
TT A respectively, provided that

1. there exists a function f : SS — P(U) that is an acceptable interpretation of the

sentence symbols, and

3 We use the notation | to indicate function restriction, so m | S indicates the function m restricted to
the domain S.
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(a) (WFF interpretation conditions)
i. (SIM) VA, €SS, f(An) = Twrr(4y); and
ii. (COM)Vp,q € WFF, Twpr(E-(p)) =U —Twrr(p) and Twrr(En(p,q)) =
Twrr(p) N Twrr(q)

(b) (T'T Ainterpretation conditions)

i. (AMC) Trra = %A(f) [TTA

Consequences of the semantic conventions The propositions below are immediate

consequences of the semantic conventions:

Proposition 28 For any Twrr, Trra satisfying the semantic conventions for interpreta-
tions of WEF and TT A, no sentence and its negation are true in the same possibility, that
18,

Vp € WFF (Twrr(p) N Twrr(E-(p)) = 2)

Proposition 29 For any Twrr, Trra satisfying the semantic conventions for interpreta-
tions of WEFF and TTA, for any sentence, it is the case that together, a sentence and its
negation exhaust the space of relevant possibility (Law of Ezcluded Middle), that is,

Vp € WEF (Twrr(p) U Twrr(E-(p)) =U)

Proposition 30 For any Twrr, Trra sotisfying the semantic conventions for interpreta-
tions of WFF and TTA, the set of possibilities represented collectively by the set of all
sentences in WFF is U, that is, JTwrr WFF] =U.

Proposition 31 For any pair Twrr, Trra satisfying the semantic conventions for inter-
pretations of WEF and TTA, the set of possibilities represented collectively by the set of
all elements of TTA is U, that is, |y Trra [TTA = U.

1. 7774 [TTA] C U since Trr4 is a function from T'A to P(U).

2. For U C UTrra [TTA], consider that it is possible, for any u € U, to construct an
element m of TT'A such that uw € Tprra(m). Since Trr4 satisfies AMC there is an

f such that fis an acceptable intepretation of the sentence symbols, and Tpry =
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Tra(r) | TTA. Simply define m as follows:
VA; € SS if u € f(A;) then m(A;) = Telse m(A;) = F.

Proof of correctness of the application

We claim the following:

Proposition 32 Given practices of categorization Tyyrr and TrT 4 that together satisfy the
semantic conventions for practices interpreting WFE and TTA,

the truth medium ST = (WFF,TTA,tst) satisfies assumption Set E with respect to Tyypr

and Trra.

Proving this claim will show the correctness of the application, permitting us to claim
that given any practices of categorization Ty rr and 7Tpra that together satisfy the se-
mantic conventions for practices interpreting WFF and TT A, the proxy for consequence

relation MCgr will be equivalent to the representational relation of logical consequence

ALC(WFF»TWFF>'

Goal of the proof The assumptions in Set E considered in relation to truth medium
ST, with the sentences interpreted by 7w rr and the models interpreted by Trr4, can be

expressed as follows.

e Assumption A5: Every element of TT A (every total truth assignment) is possible (on

interpretation by Trra4).

e Assumption A4: No two distinct elements of TT"A are accurate of the same possibility

(when interpreted via 7774).

e Assumption B8: For every sentence p € WFFE,

1. there exists a set S C TT A such that |J 7774 [S] = Twrr(p); and

2. there exists a set R C TTA such that |J7rr4 [R] =U — Twrr(p).
The set S = tgp(p), that is, the set of models of p satisfies the first condition;
the set R = tgr(E-(p)), that is, the set of models of the negation of p, satisfies

the second.
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e Assumption B5: A sentence p is true-in-a-model (with respect to) total truth assign-
ment m iff p would be true if the world were as depicted by m, that is, if m were
an accurate model. Symbolically we can write, Vp € WFF, Vm € TTA, m [ piff

Trra(m) € Twrr(p).

We will need to show that all of the above are true, given that practices of categoriza-
tion Ty pr and Tpra together satisfy the semantic conventions for practices interpreting

WEFF and TTA.

Proof (top level) First, we will prove a generally useful proposition. Then we will show
that if practices of categorization Ty rr and 777 4 together satisfy the semantic conventions
for practices interpreting WFF and TT A, then truth medium ST satisfies all of the Set F
assumptions with respect to Ty rr and Tpra. We will sketch the proofs here, and give the

full proofs at the end of the chapter.

Proposition 33 Given that practices of categorization Tywrr and Trra together satisfy
the semantic conventions for practices interpreting WFF and TTA, it is the case that for
every sentence, and every total truth assignment, if the possibilities represented by the sen-
tence and the total truth assignment overlap at all, then the possibilities represented by the
total truth assignment are completely contained within the possibilities represented by the
sentence.

Formally, we state:

Given that practices of categorization Ty pp and Irra together satisfy the semantic con-
ventions for practices interpreting WFF and TTA,

for allp e WEFNm € TTA, Trra(m) N Twrr(p) # @ implies Trra(m) C Twrr(p).

— This proof shows that the granularity of total truth assignments is finer than the

granularity of sentences. The proof is an induction on the structure of WFEF'F.

Proposition 34 Given that practices of categorization Ty pr and Trr 4 together satisfy the
semantic conventions for practices interpreting WEFF and TTA, it is the case that every
element of TT A is possible when interpreted with respect to Tywrr, that is,

(A5 applied) Ym € TTA, (Trra(m) # D)
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— Proof by reductio. A total truth assignment which was inconsistent would have
every other truth assignment as a consequence, including ones which were not
less than or equal to it in the ordering of truth assignments. This would violate

convention LI on acceptable interpretations of the sentence symbols.

Proposition 35 Given that practices of categorization Tywrp and Tpra together satisfy the
semantic conventions for practices interpreting WFF and TTA, it is the case that no two
distinct elements of TT A represent the same possibility (when interpreted with respect to
Trra), that is,

(A4 applied) Ym,n € TTA, (m # n tmplies Trra(m) N Trra(n) = 2).

— If two total truth assignments are distinct, then they differ on the value of some
sentence symbol, and then by the definition of 774, their interpretations are

distinct.

Proposition 36 Given that practices of categorization Ty pp and Tpra together satisfy the
semantic conventions for practices interpreting WFF and TT A, it is the case that

(B5 applied) For everyp € WEFF,¥Ym € TTA, (m = p iff Trra(m) C Twrr(p))

— This proof is by induction on WFF. It shows that the definition of j=behaves

correctly given our semantic conventions. Proposition 33 plays a special role.

Proposition 37 Given that practices of categorization Ty pr and Tpr 4 together satisfy the
semantic conventions for practices interpreting WFF and TT A, it is the case that

For every p € WFEF, the set S = {m € TTA | m |= p} is such that |JTrra [S] = Twrr(p).
(This implies B8a).

— Shows that the set of models of a sentence collectively represent exactly the pos-
sibilities represented by the sentence. To show that the possibilities represented
by a model of pare included within the possibilities represented by p, use Propo-
sition 36.

To show that the possibilities represented by a sentence pare included in the

possibilities represented by a model of p, let uwbe a possibility represented by
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p. Construct a total truth assignment that represents w. Since the possibilities
represented by the total truth assignment and the sentence overlap (at ), by
Proposition 33, the possibilities represented by the truth assignment are a subset
of the possibilities represented by p. By Proposition 36, the truth assignment is

a model of p. So u is a possibility represented by a model of p.

Proposition 38 Given that practices of categorization Tyyrpr and IrT 4 together satisfy the
semantic conventions for practices interpreting WEFF and TT A, it is the case that

For every p € WFF, the set R = {m € TTA|m#¥ p} is such that \JTra[R] = U —
Twrr(p). (This implies B8b).

— Show that the set of non-models of a sentence collectively represent exactly the
possibilities not represented by the sentence. Like the proof of Proposition 37

with an extra twist thrown in to handle negation.

Summary of the proof Given the above propositions, we have shown that, given that
practices of categorization Ty pr and Trra together satisfy the semantic conventions for
practices interpreting W F'F and TT A, then the truth medium ST = (WFF,TT A, tsr) satisfies
assumption Set E (A4, A5, B8, B5) with respect to Twrr and Trr4. In that case, by the
Corollary to the Intelligibility of Truth Media Theorem (Corollary 14), MCgr would be
equivalent to ALC\wrp, Ty pp)- S0 for any such Twrr and Tpry4, the relation MCgr
makes the assumed relation of logical consequence ALC\wrp, 7y, ) intelligible. This com-
pletes our application of the Set E model-theoretic representational technique to the W F F-

language of propositional logic.

3.5.3 Application of Set F technique to the P(WFF)-language of propo-

sitional logic

Now we are ready to consider the application of the Set E technique in the case when the
set of assertion types is P(W FF). We will use the results of the previous section.

For this application, we will assume that the given set of assertion types is the powerset
of the set of propositional sentences, that is, P(WFF). This application will take the

following steps.
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1. We will describe the truth medium PT for the application;

2. We will give semantic conventions describing acceptable interpretations of

(a) the powerset of the set of propositional sentences (the set of assertion types for

the P(W F F)-language of propositional logic); and

(b) the set of total truth assignments (the set of models for the application);

3. We will prove that if practices 7pwrp) and Trra together satisfy the semantic con-
ventions for interpretations of the powerset of the set of propositional sentences and
interpretations of the set of total truth assignments, respectively; then the truth

medium PT satisfies the Set £ assumptions with respect to Tp(wrpy and Trra.

Then, for any practices Tpwpr) and Trra which together satisfy the semantic conven-
tions for interpretations of the powerset of the set of propositional sentences and interpre-
tations of the set of total truth assignments, respectively; the relation MCpr makes the
representational relation of logical consequence ALC<P(W FE) Tpwrr) explanatorily intelli-

gible. This will complete the application.

The truth medium PT

We will now describe how we form the truth medium in this application. We will call the
truth medium we are constructing PT. As with any truth medium, PT will be composed
of three elements: a set of assertion types, a set of models, and a function identifying the
models of each assertion type.

The set of assertion types in PTis the powerset of the set of propositional sentences
P(WFF). The set of models in PT" will be the same as the models we used in modelling
the W F F-language of propositional logic, namely, the set of total truth assignments TT A.

The last step in constructing PT is to give the function for truth-in-a-model. We will call
this function tpr. In the standard semantics for propositional logic, a total truth assignment
is a model of a nonempty set of sentences just in case it is a model (on the single sentence
level) of every sentence in the set. Every total truth assignment is a model of the empty

set of sentences. Following this, we will define tpp as follows:
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VP € P(WFF), tpr(P) = if P =@ then TTA else (\tsr[P].
Here we use the function tg7, defined for the truth medium ST, to describe the relation

of “being a model at the single sentence level.”

Semantic conventions for interpretations of the sets WFF and TTA

We will now define semantic conventions for practices interpreting the powerset of the set
of sentences WF'F and the set of models TT'A. The important idea here is that acceptable
interpretations of P(W FF) and TT A come in pairs; and that acceptable pairs will share
an acceptable interpretation of the sentence symbols.

We will give our account of the semantic conventions on the interpretations of P(W FF’)
and TT Ain the following form:

A practice of categorization Tpwrpy : P(WFF) — P(U)in conjunction with a practice
of categorization 7rrgq : TTA — P(U)are acceptable interpretations of P(WFF) and
TT Arespectively, provided that there exists a function f : SS — P(U) that is an acceptable
interpretation of the sentence symbols, and Tp(w gy and 7174 bear certain further relations
to f.

The ‘further relations to f’ we need characterize in the case of a practice interpreting
TT Awill be the same as those characterized in the case of the W F F-language of propo-
sitional logic. So we need now only consider those additional constraints in the case of a

practice interpreting P(WFF).

Additional semantic conventions constraining acceptable interpretations of P(W F'F’).
Now we define the additional semantic conventions governing acceptable interpretations of
P(WFF). Remember that the semantic conventions for practices interpreting P(WFF)
and TTA apply to practices in pairs, and that the interpretation for P(WFF') and the
interpretation for TT A in an acceptable pair will both refer to a common acceptable inter-
pretation for the set of sentence symbols. So as we characterize the semantic conventions

for an interpretation of P(W FF), let us do so in the context of a practice f : SS — PU),
which is understood to be the shared acceptable interpretation of the sentence symbols.

In the standard semantics for propositional logic, a nonempty set of sentences represents
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those possibilities in which every sentence in the set (considered as an assertion in its
own right) is true, and an empty set of sentences is true in every possibility. We will
say that Tpayrr) is an acceptable interpretation of P(WFF) just in case there is an
acceptable interpretation Ty rr of the sentences in W FF (considered as assertions in the
own right) such that 7py ) interprets sets of sentences in accordance with the way that
Tw rF interprets individual sentences.

In line with this intention we give the following definition:

Definition 39 Additional semantic conventions for a practice interpreting P(WFF')
To be an acceptable interpretation of P(WFF), a practice of categorization Tpwwrp) :
P(WFF) — P(U) must, with respect to the acceptable practice f it shares with the inter-

pretation of TT A, obey the following:

1. There exists an interpretation Ty prp of WFF that satisfies SIM and COM with
respect to f,
such that VP € P(WFF), Tpiwrry(P) = (if P = & then Uelse (Twrr [P))

The semantic conventions for interpretations of P(WFF) andTTA We can now

pull together the full specification of semantic conventions:

Definition 40 A practice of categorization Tpiwpp) : P(WFF) — P(U) in conjunction
with a practice of categorization Tppa : TTA — P(U) are acceptable interpretations of

P(WFF) and TT A respectively, provided that

1. there exists a function f : SS — P(U)that is an acceptable interpretation of the

sentence symbols, and

(a) (P(WFF) interpretation conditions)

i. There exists an interpretation Ty pr of W FF that satisfies SIM and COM
with respect to f,
such that VP € P(WFF),
Tpwrr)(P) = (if P =@ then Uelse (\Twrr [P]); and
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(b) (T'T'Ainterpretation conditions)

i. Tpry satisfies AMC with respect to f.

Proof of correctness of the application

We claim that given practices of categorization 7pw rr) and 774 that together satisfy the
semantic conventions for practices interpreting P(W FF') and TT' A, that the truth medium
PT = (P(WFF),TTA,tpr) satisfies assumption Set E with respect to Zpwrp) and Trr4.

Proving this claim will show the correctness of the application, permitting us to claim
that given any practices of categorization 7pwrr) and 7rra that together satisfy the se-
mantic conventions for practices interpreting P(W F'F') and T'T A, the proxy for consequence

relation MCpr will be equivalent to the representational relation of logical consequence

ALO<73(WFF),T7>(WFF)> '

Goal of the proof The assumptions in Set E considered in relation to truth medium
PT, with the sentences interpreted by Tpw pryand the models interpreted by 7714, can

be expressed as follows.

e Assumption A5: Every element of TT A (every total truth assignment) is possible (on

interpretation by 7rr4).

e Assumption A4: No two distinct elements of TT'A are accurate of the same possibility

(when interpreted via Tr74).

e Assumption B8: For every P € P(WFF),

1. there exists a set S C TTA such that |J 7774 [S] = Tpawrr)(P); and

2. there exists a set R C TT A such that | Trra [R] = U — Tpwrry(P).

e Assumption B5: VP € WFF,Vm € TTA, m € tpr(P)iff Trra(m) C Tpwrr)(p)-

We will need to show that all of the above are true, given that practices of categoriza-
tion Tpwrr)y and Tr74 together satisfy the semantic conventions for practices interpreting

P(WFF)and TTA.
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Proof

Proposition 41 Given practices of categorization Tpay pry and Trra which together sat-
isfy the semantic conventions for practices interpreting P(W FF) and TTA, it is the case

that truth medium PT satisfies assumption Set E with respect to Tpayrry and Trra.

1. Since Tpw rr) and Tr74 together satisfy the semantic conventions for practices inter-
preting P(W FF)and TT A, we know that there exists a function f : SIS — P(U) that

is an acceptable interpretation of the sentence symbols, and

(a) There exists an interpretation Ty g of W FF that satisfies STM and COM with
respect to f,
such that VP € P(WFF), Tpawpry(P) = (if P = @ then Uelse (\Twrr [P));

and

(b) TrTa satisfies AMC with respect to f.

2. So, by Proposition 32 (the proof showing the correctness of the application for the

W F F-language), we know that ST satisfies assumption Set E with respect to Ty pp and

Ir1A4-

3. We now consider each of the assumptions in Set F, and show that PT satisfies each

of them with respect to 7pwrr) and Trra.

(A4 and A5)

Since ST satisfies assumptions A4 and A5 with respect to Tpra,and Mg = Mpr, we
know that PT satisfies assumptions A4 and A5 with respect to Tpr4.

(BS)

[Show VP € P(WFF)VYmeTTA (m € tpp(P)iff Tpra(m) C Tp(WFF)(P))]

The details of this proof are to be found at the end of the chapter in Section 3.7. It is a
straightforward application of the definitions, and the fact that truth medium ST satisfies
Set E with respect to Ty rpr and T 4.

(B8)
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Show VP € P(WFF)
a. 38 C TT Asuch that |JT774 [S] = Tpwrr)(P)and

b. 3R C TT Asuch that (J7Zrra [R] =U — T:D(WFF) (P)
For part a., there are two cases. If P = &, take S = TTA. If Pis nonempty, take

S = tsr [P], that is those truth assignments which are models of every sentence in P.
For part b., there are again two cases. If P = &, take R = &. If Pis nonempty, take
R=TTA —\tsr[P], that is those truth assignments not a model of every sentence of P.

Details are found at the end of the chapter in Section 3.7.MProposition.

Summary of the proof Given practices of categorization Tpyrr) and 7rra which
together satisfy the semantic conventions for practices interpreting P(WFF)and TTA,
it is the case that truth medium PT satisfles assumption Set E with respect to Tpw rp)
and 7rra. As a consequence, for any such practices Tpyy r r) and Tpr4; the relation MCpr
makes the representational relation of logical consequence ALC (POWFF) Tpwer) explanatorily

intelligible. This completes the application.

3.6 Feature logics application

3.6.1 Introduction

As we mentioned in the brief discussion of feature logics in Section 3.3.3, the most important
attribute of this application is recognizing the need for further investigation. The account
of logical consequence typically given for feature logics, i.e. that the consequence relation
is given by the relation of preservation of truth-in-a-feature-structure across all feature
structures, is incomplete from the representational viewpoint. The described relation may
be (and this author expects is) the appropriate proxy relation, but a justification of that
belief needs to be demonstrated. As we just saw in the case of propositional logic, there is
a distinction between knowing what the proxy relationship is, and having a justification of
the correctness of that proxy, and an understanding of why it works. Our general method
for applying the representational schema outlines for us the steps we need to take in order

to complete the feature logic account of consequence, and justify the use of the existing
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proxy relation.

We will begin this section with a brief presentation of the main structural elements of
a feature logic. We will then proceed to consider how the various model-theoretic repre-
sentational techniques we have defined might be applied to the task of constructing a more
complete theory of logical consequence for a feature logic. In the course of this consideration,
we will see that there is a challenge in applying techniques which require disjoint models
to feature logics, and further, that the Set BE technique, which has no such requirement,

may be an appropriate means for carrying out the construction.

3.6.2 Feature logics

The sentences of feature logics talk about feature structures. The sentences of feature logics
are interpreted modally, that is, they are interpreted from the point of view of objects within
a feature structure itself. We will begin our introduction by reviewing some key definitions

in one formulation of feature structures, from Rounds 1997.

Feature systems and feature structures

Feature structures are a specialization of a more general class of object, known as feature
systems. A feature system is characterized by a domain of elements, a set of partial
functions on that domain (implementing features), and a set of subsets of that domain
(implementing types). Feature systems can be categorized by the features and types they
support. Let Lbe a set of feature names, and A be a set of sort (type) names. Then
(L, A)is a feature signature characterizing a particular type of feature system. A feature
system A of signature (L, A)is a tuple A = (D,{fi |l € L},{D, | a € A}) where D is the
domain of elements, the f; are partial functions on D (one for each feature), and the D,
are subsets of D (one for each sort name).

The feature-functions are interpreted as follows: if f; maps element x to element y, then
the value of feature [ for element xis element y. Function symbols for features are written
on the right (and the f is left off), so I(d) is written dl, with dl being the value of feature [ for
element d. If lis defined at d, we write di |, else we write dl 1. We use p, g to denote strings

of feature names. Such strings are called paths. Equations of the form dp = eq means that
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dp | and eq | and the values of dp and eq are equal.
The sort-sets are interpreted as follows: if element x is a member of set D,, then zis of
the sort a.
As a simple example, consider
D ={a,s,r,e,m},
L = {mother}, and
A = {Alan, Steven, Ronnie, Estelle, Mirra, Male, Female}.

A feature system of signature (L, A) could be defined as follows:

D ={a,s,r,e,m},
B :< {fmother = {{a,7) , (s,7) , {r,€)}}, >
{Daian = {a}, Dsteven = {8}, DRonnie = {7}, DEstelie = €, Dpirra = {m},
Dprate = {a, 8}, Dremate = {7, €,m}}

We could display feature system B graphically in Figure 3-1.

We will now define three concepts: first, the concept of a subsystem of a feature system;
then in terms of that, the concept of a principal subsystem; then in terms of that, a feature
structure. A subsystem of a feature system A consists of (1) a subset Eof D* (the
domain of A) such that if f is a feature, d € F, and df |, then df € E (that is, E'is closed
under features), and (2) subsets F, of D,such that F, C E (that is, all the sort-sets of the
subsystem are subsets of E). Given some element d € D, the principal subsystem P(d)
is defined as follows. The domain E(d) of this subsystem is the set {dp | p € L* Adp |}, and
E, = Do N E(d). So for instance, P(s)for the feature system Bis shown in Figure 3-2. A
feature system A is a feature structure if there is a d € D*, such that P(d) = DA; that
is, there is some element din the domain of Asuch that the principal subsystem formed
from dis equal to Aitself. That is the case exactly when there is some element din the
domain of Asuch that every element in the domain of A can be reached via some finite
path of features from d. The feature system B in Figure 3-1 is not a feature structure. The
subsystem P(s) in Figure 3-2 (considered as a feature system on its own) is, with d = s.

A homomorphism between feature systems A and B of the same signature, is a total
map -y between D* and D®, satisfying (1) for any d € D* and f € L, if dy | and df* |, then
dffy = dyfB. In particular, dyf®is defined; (2) whenever d € D2 we have dy € DE.In
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Figure 3-1: Feature system B
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Principal subsystem P(s)

Female

Estelle Mirra

Figure 3-2: Principal subsystem P(s)
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terms of the definition of a homomorphism, we can define the subsumption preorder
Con A as follows: d C eiff there is a homomorphism v : P(d) — P(e), with dy = e. We
say that d subsumes e. As Rounds puts it, “The intuitive idea behind the definition of
subsumption is that of information content. If an element d subsumes an element e, then
in some sense e bears at least as much information as d does” (Rounds 1997, 482). The
concept of subsumption may be even easier to see between elements of different feature
structures of the same signature. So for instance, element sin feature structure C in Figure
3-3 subsumes element s in feature structure P(s) in Figure 3-2. In addition to all of the
information borne by element sin feature structure C, element s in feature structure P(s)
bears the information that e is the value of mother for r, and that e is of sort Female,
and that eis of sort Estelle. We should note that there is a great diversity of feature-type
systems and structures in the literature. For the purposes of our discussion, this one will

do.

A language for feature structures

Here we review the language L(KR) introduced in Rounds 1997 (p. 483). This is just
one of many languages used to express information about feature structures. The language
is parametrically defined in terms of the feature signature (L, A) of the feature structures

under consideration. The basic formulas of the language are:

e (Constants) a for each a € A,
e (Truth) The special formula true;
e (Path equations) p = gfor p,q € L*.

The compound formulas are defined inductively. If ¢ and v are formulas, then so are:

® oA
e oV
o [:pforleL.
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Feature structure C

Figure 3-3: Element s of this feature structure subsumes element s of feature structure P(s)
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The semantics of the logic are defined relative to a feature system. Let A be a feature

system. Let drange over elements in D*. Then |=is characterized relative to A as follows:

o d=aifde Dy;
e d |= true always;

o d=p = qif dp = dg;

dEeAYifdlEpand d =

dEeVyifdEpor di y;

d = 1: ¢if dl = ¢ (implicitly dlis defined).

The above definition shows how [=is dependent on a feature system and an element.
We write (A, d) = ¢ to indicate that element d satisfies ¢ in structure A.

Consequence can be expressed as follows: Sentence ¢is a consequence of a set of
sentences Y, just in case, for all feature structures A and elements d,if for all o € X,
(A,d) = o, then (A, d) = ¢.* We see how this is an instance of the model-theoretic category,
with the assertion types being sets of sentences in the language, the models being feature
structure/element pairs, truth-in-a-model being given by = (adjusted to conjoin nonempty
sets of sentences, and be true in all models for the empty set). Taken together, the whole
package ends up giving rise to a proxy for consequence relation of the usual model-theoretic

form.

3.6.3 Applying the representational schema

What we would like to do is construct an application of the representational schema that is
capable of justifying the picture of consequence just outlined. Our representational view has
made it clear to us that the relation of consequence outlined above is not the consequence
relation proper, but rather is a proxy for that relation. We would like to be able to articulate

the assumptions we hold about feature structures and the language of the feature logic, that

1A similar definition can be given for feature systems.
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if true, are sufficient to show that the proxy relation we are using is indeed equivalent to

the representational conception of logical consequence; and why.

The representational schema shows us the way to proceed. Our most basic choice is that
of explanatory strategy. Since we are looking to justify a model-theoretic proxy relation,
the natural strategy to start with is the model-theoretic one (e.g. vs. the order-consistency
strategy). With that choice made, we will need to choose a particular model-theoretic
representational technique. We have several to choose from (Set E, Set PP, Set BE);

though note that if none of these do the trick, we could seek to create another one.

In addition to selecting the technique, we will need to identify the assertion types, form
a truth medium, give a statement of the semantic conventions describing acceptable inter-
pretations for the sentences and models, and then prove that if practices of categorization
for the sentences and models satisfy those conventions, then the truth medium we have
constructed satisfies the technique’s technique-specific assumptions with respect to those

practices. Then a full explanatory account will be in place.

Let us momentarily set aside the choice of technique, and begin by considering the set
of assertion types, and formation of a truth medium. Our discussion above has already
suggested candidates for an appropriate set of assertion types, and the way to go about
forming a truth medium. We could take sets of sentences in the feature logic as the assertion
types, pairs (A,d) of feature structures and elements as the models, and a version of the
relation F defined above as the relation of truth-in-a-model, slightly adjusted to handle
sets of sentences instead of single sentences. Call the medium formed this way F'L. Then
the proxy for consequence relation for any model-theoretic technique that we have defined
will be M Crp, which is preservation of truth-at-an-object-in-a-feature-structure across all

feature structure/object combinations.

Seeing this structure, we can apply a simplification from our experience with the case of
propositional logic, and factor the problem into two parts: applying a representational tech-
nique in the case where single sentences are the assertions, and then building the application
in the case where the assertions are sets of sentences from the solution in the single sentence
case. Since the latter should be trivial, and follow the outlines of our propositional logic

solution, we will from this point on in the discussion focus on the former (the consequence
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for single sentences problem).

So let us consider the case where the truth medium is composed as follows. The assertion
types are single sentences in the feature logic. For this discussion, we will call this set W F'F.
Pairs (A, d) of feature structures and elements are the models. For this discussion, we will
call this set F'SE. The relation |=as defined above (with no adjustment) is the relation
of truth-in-a-model. For this discussion we use the name ¢ for the function giving the
models of any sentence via the relation . Call the medium formed this way SL. So
SL=(WFF,FSE,t).

Now let us turn to the question of semantic conventions. We are going to need to
describe acceptable interpretations for the set of sentences WFF and the models FSE.
An interpretation for WFF would be a function Tywrp : WFF — P(U), assigning to each
sentence a set of possibilities in which it would be true; and an intepretation for F.SE would
be a function Tpgg : F'SE — P(U), assigning to each feature structure/element pair a set
of possibilities in which it would be true. Our working out of the semantic conventions of
propositional logic should give us some guidance in how to proceed here. There we saw how
the semantic conventions of one form of representation can be coordinated with another; e.g.
in the case of the W F'F-language of propositional logic, the semantic conventions required
the existence of an interpretation of the sentence symbols which was compatible with both
the interpretation of the sentences and the interpretation of the total truth assignments.
Here we will want to coordinate the semantic conventions of the interpretations of the

sentences and the feature structure/element pairs.

The general shape of the solution we can see is something like this. We characterize
the semantic conventions for the interpretations of the feature structure/element pairs in
FSE, and then define the semantic conventions for the interpretations of the sentences
in WFF in terms of those. We could express the semantic conventions for interpretations
of WF'F in the following form: An interpretation 7y rp of the set of sentences WFF is
acceptable, provided that there exists an acceptable interpretation Tpgg of the feature
structure/element combinations in F'SE, and 7w rr bears the appropriate relation to 7Trgg

(that appropriate relation characterized by |=).

At this stage, we should step back from the details, and notice something important.
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The elements of F'SE, our putative models for this application of a model-theoretic repre-
sentational technique, have an ordering defined upon them... the subsumption preorder...
which intuitively implies the relation of relative information content; if d subsumes e (d C e),
then e bears the same or more information as d does. In the spirit of Dretske 1981, Barwise
and Etchemendy 1995, and Barwise 1999, etc., we are using the inverse of possibilities rep-
resented as a measure of information. That is to say, e bears the same or more information
than d, just in case the possibilities represented by e are a subset of the possibilities covered
by d. Jon Barwise states this as “The Inverse Relationship Principle: Whenever there is an
increase in available information there is a corresponding decrease in possibilities, and vice
versa” (Barwise 1999, 5). So the semantic conventions for an interpretation 7rgg of FSE,
will imply something like this:

For all (A,d),(B,e) € FSE, if (A,d) C (B, e) then Trsg ((B,e)) C Trsr ((A,d))

Looking back to our earlier example, in Figures 3-2 and 3-3, (C,s) subsumes (P(s),s).
According to our intended interpretations (P(s), s) contains at least as much information
as (C,s) (and in this case actually more, since it carries information about the mother of
element r, etc.) So in this case, for any acceptable interpretation 7rgg of F'SE, we should
have Trpsg ((P(s),3)) C Trse ({C, s)).

The existence of this ordering and its intended interpretation has a significant impact on
our choice of model-theoretic representational technique. For if our models are represented
by feature structure/element pairs in F'SE, and the possibilities represented by those models
are intended to overlap, then neither the Set E nor Set PP techniques will be appropriate
for this application. Both of those techniques require (as a part of their technique-specific
assumptions) that the sets of possibilities represented by the models be disjoint.

We have two choices in moving forward. Either we can change our choice of models, or

we can use a different technique. Changing our choice of models, would require either

1. Identifying a subset of the feature structures to use as models (a subset for which the
possibilities represented by the elements of that set would be disjoint, some kind of

maximal feature structures); or

2. Identifying some other class of structures for which the possibilities represented by
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those structures were disjoint, and coming up with a different way of characterizing

truth-in-a-model.

Note however that neither of these alternatives would be able to justify the proxy for
consequence relation as it has been developed in the literature, since neither follows the
form of that account. In addition, both approaches seem likely to add complexity to the
account. The first approach (a maximal subset of F'SE) adds the complexity of defining
that maximal subset, and dealing with its infinitely sized members. The second approach
(a new class of structures) involves coming up with a new truth definition.

We believe that the best approach will be to try and use a different technique, namely the
Set BFE technique. This is a model-theoretic representational technique which allows models
that overlap in the possibilities they represent. If we applied the Set BE technique directly
to the truth medium SL (recall SL = (WFF, FSE,t)), then the task would be to formulate
appropriate (intuition matching) semantic conventions for interpretations of WFF and
FSE such that, if a pair of interpretations 7y rr of the set of sentences and Trgg of the
class of feature structure/element pairs satisfied those conventions, then SL would satisfy
the Set BE assumptions (B1, B2, AT) with respect to Twrr and Trgg.

We have reason to expect that it should be possible to work out this account. We have
not yet worked out the account. Here we will sketch one way in which it seems like it should
be able to work.

Satisfying assumptions B1 and B2 depends on the correct specification of the t function,

which should follow from the definition of F. More interesting is the question of whether
the semantic conventions for interpretations of the class of feature structure/element pairs
would satisfy A7, with respect to the subsumption ordering. In this context, A7 would read:
V(A,d),(B,e) € FSE, Trse((B,e)) C Trse((A,d)) iff (A,d) C (B,e).
We already know (by our intuitive understanding of the relation of C and 7rgg, that if
(A,d) C (B,e)then Trsg ((B,e)) C Trse ((A,d)). So we have to ask: does our intuitive
understanding also include the converse, that if 7pgg ((B,€)) C Trse ((A,d)) then (A,d) C
(B,e)? Or looking at the equivalent contrapositive, if (A,d) does not subsume (B, e) then
Trse ((B,e)) € Trse ((A,d))?

Consider the case where (A, d) does not subsume (B,e). That means there is no ho-
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momorphism vfrom P((A,d)) to P({B,e)). That is, for every map « from P((A,d))to
P((B,e)), such that dy = e there

1. exists a d € D and f € L, such that dy |and df* |, yet df*y # dyfB(either the

values are distinct or dyf® is not defined), or

2. there exists a d € D2 such that dy ¢ DE.

We could restate this by saying the lack of homomorphism indicates that there is some at-
tribute (either a feature assignment, or sort assignment) in the principal structure P({A,d))
either distinct from or not in the principal structure P((B,e)). If every attribute is logically
independent of the others, and attributes are interpreted conjunctively, then such a differ-
ence between P((A,d)) and P((B,e)) would indicate that there were some possibilities rep-
resented by P((B,e)) not represented by P((A,d)), that is: Trsg ((B,e)) € Trsr ((A,d)).
That would give the other direction of A7. So we see that we have some reason to think
that the Set BE technique may be applicable in this case.

The completion of this analysis will have to wait for future work on this project. For
now, we can recognize two things: (1) that this additional analysis is important in making
the account of logical consequence for feature logics more complete; and (2) that the Set
BE technique may be a good way to carry it out.

We have now completed our presentation of examples of applications (and potential
applications) of the model-theoretic representational techniques. The next chapter begins
Part III, the discussion of the order-consistency strategy for representational semantics.

This concludes the linear text of the chapter. The remainder of the material in this

chapter are the proofs of propositions mentioned earlier in the text.

3.7 Proofs of supporting propositions mentioned in the text

Proof of Proposition 33:
Given that practices of categorization Ty rr and Trr4 together satisfy the semantic
conventions for practices interpreting W FF and TT A, it is the case that for every sentence,

and every total truth assignment, if the possibilities represented by the sentence and the
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total truth assignment overlap at all, then the possibilities represented by the total truth
assignment are completely contained within the possibilities represented by the sentence
Formally, we state:
Given that practices of categorization Tywpp and 7774 together satisfy the semantic con-
ventions for practices interpreting WFF and TTA,
for all p e WFF,Ym € TTA, Trra(m) N Twrr(p) # @ implies Tpra(m) C Twrr(p).

Let Twrr and 7774 be practices of categorization that together satisfy the semantic
conventions for practices interpreting WFF and TTA. Let f be the shared acceptable
interpretation of the sentence symbols.

By induction on WF'F.

1. Base case. p € §S,s0 p = A, for some n € N.

(a) Let Trra(m) N Twrr(Ar) # 2.
(b) Since m is a tta, either m(4,) =T or m(Ay) = F.
(c) Claim: m(Ay) # F.
i. Assume m(A,) = F. Then Tprra(m) C U — f(A,). This contradicts
Trra(m) N Twrr(An) # .

(d) So m(Ay) =T. Then Trra(m) C Twrr(Ay) MBase.
2. Inductive case ()

(a) Inductive hypothesis (I.H.).: Assume that for some p € WFF,Ym € TTA,
Trra(m) N Twrr(p) # @ implies Trra(m) € Twrr(p).
(b) Show that Vm € TT A, Trra(m) N Twrr(E-~(p)) # &

implies Trra(m) C Twrr(E-(p))-
(c) Let m € TT A such that Trra(m) N Twrr(E-(p)) # @.

(d) Then Ju such that u € Tpra(m) and v € U — Twrr(p) (by COM). So u ¢
Twrr(p)-
(e) So Trra(m) & Twrr(p)-

(f) So TTTA(m) N TWFF(p) = . (by IH)
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(g) So Trra(m) CU — Twrr(p).
(h) So Trra(m) C Twrr(E-(p)).M(-)

3. Inductive case (A)

(a) (IH) Let p € WFF, such that Ym € TTA, Trra(m) N Twrr(p) # @ implies
Trra(m) C Twrr(p)-
Let ¢ € WFF ,such that Vm € TT A, Trra(m)NTwrr(q) # @ implies Trra(m) C
Twrr(q)-
(b) Show VYm € TTA, Trra(m) N Twrr(En(p,q)) # @
implies Tpra(m) C Twrr(En(p,q))-
(c) Let m € TT A such that Trra(m) N Twrr(En(p,q)) # 2.

(d) Then 3u such that u € Trra(m) and u € Tyypr(p) and u € Tywrr(q) (by COM).

(f) So Trra(m) NTwrr(q) # 2. By LH., Trra(m) C Twrr(q).

)
)
(e) So Trra(m) N Twrr(p) # 2. By LH., Trra(m) € Twrr(p).
)
(g) So Trra(m) C Twrr(En(p,q)) (by COM).M(A).MProposition.

Proof of Proposition 34:

Given that practices of categorization 7w rr and Tpra together satisfy the semantic
conventions for practices interpreting WFF and TT A, it is the case that every element of
TT Ais possible when interpreted with respect to Twrp, that is,

(A5 applied) Ym € TT A, (Trra(m) # @)

1. Let Twrr and 7774 be practices of categorization that together satisfy the seman-
tic conventions for practices interpreting W FF and TT A, respectively. Let fbe the

shared acceptable interpretation of the sentence symbols.
2. Let m € TT Asuch that Tpra(m) = @. [Show contradiction.

3. Let n be an element of TT A exactly like m, except in its assignment to Ag. If m(Ag) =
T, then n(Ag) = F;if m(Ao) = F, then n(Ag) = T. Son Ar4 m. Yet Trra(m) C
TrrA(n). This violates convention LI, and thus our assumption that f satisfies the

semantic conventions for an interpretation of the sentence symbols..Contradiction.
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4. So Trr4(m) # @.MProposition.

Proof of Proposition 35:

Given that practices of categorization Tywrp and 7774 together satisfy the semantic
conventions for practices interpreting WFF and TTA, it is the case that no two distinct
elements of TT Arepresent the same possibility (when interpreted with respect to 7pr4),
that is,

(Adapplied) Vm,n € TTA, (m # n implies Trra(m) N Trra(n) = 2).

1. Let Twrr and Tpr4 be practices of categorization that together satisfy the seman-
tic conventions for practices interpreting WFF and TT A, respectively. Let f be the

shared acceptable interpretation of the sentence symbols.

2. Let m,n € TTA, such that m # n.
3. If m # n then there exists an A; € SS such that m(4;) # n(4;).
4. There are two cases: (1) m(A4;) =T and n(4;) = F, or m(A;) = F and n(4;) =T.
5. Case 1. m(A;) =T and n(A4;) = F.

(a) Then Tra(py(m [ {Ai}) = f(A).°

(b) And Try(s)(n [ {Ai}) =U — f(Ai).

(c) So Tracsy(m I {A:}) NTrapy(n [ {Ai}) = 2.

(d) By Proposition 22, since (m [ {A;}) 214 m, Trra(m) C Trapy(m [ {4i}).

(e) Similarly, since (n | {4A:}) 274 n, TrTa(n) C Tras)(n [ {Ai}).

(f) So Trra(m) NTrra(n) = &.MCase 1.
6. Case 2. m(A;) = F and n(4;) =T.

(a) Same as case 1 with m and n exchanged.MCase 2.lProposition.

SWe use the notation | to indicate function restriction, so m | {A:} indicates the function m restricted
to the domain {A4;}. -
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Proof of Proposition 36:

Given that practices of categorization Ty rr and 7714 together satisfy the semantic
conventions for practices interpreting WFF and TT A, it is the case that
(B5 applied) For every p € WFF,¥Ym € TTA, (m = p iff Tpra(m) C Twrr(p)).

Let Twrr and Trr4 be practices of categorization that together satisfy the semantic
conventions for practices interpreting WFF and TTA. Let f be the shared acceptable
interpretation of the sentence symbols.

By induction on WF'F.
1. Base case. p € SS.

(a) Let m e TTA.
(b) (=)
i. Assume m |= p.
ii. By definition of }=, we know that m(p) = T. So Trra(m) C f(p)by the
definition of 7774, and f(p) = Twrr(p)W(—)
(©) (=)
i. Assume Trra(m) C Twrr(p).
ii. Say m ¥ p.[Show contradiction.]
iii. Then m(p) = F, by definition of }=.
iv. Then Trra(m) CU — Twrr(p).
v. Then Trra(m) = @.

vi. That violates Proposition 34M (+—) EBase.
2. Inductive case ()

(a) Inductive hypothesis (I.H.):
Let p € WFF such that Ym € TTA, (m = p iff Trra(m) C Twrr(p))

(b) [Show that Ym € TTA, (m |= &-(p) iff Trra(m) C Twrr(E-(p)))]

(c) Let m € TTA.
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(d) (=)
i. Let m = &-(p).
ii. So by the defintion of |=, m ¥ p.
iii. By the LH., Tpra(m) € Twrr(p).
iv. So Ju € Tpra(m) such that u ¢ Twrr(p).
v. So u € Twrr (E-(p))(by COM)
vi. So Trra(m) € Twrr (E-(p))by Proposition 33.0(—)
© (=)
i. Assume Tpra(m) C Twrr (E-(p)) -
ii. Twrr (E-(p)) =U — Twrr(p) by COM.
iii. So Tpra(m) NTwrr(p) = .
iv. Yet Tpra(m) # @ by Proposition 34.

v. So TTTA(m) g TWFF(p)
vi. So m¥ p by 1.H.
vil. So m = E-(p) by the definition of .M («)W(-)

3. Inductive case (A)
(a) (LH.) Let p € WFF such that Ym € TTA, (m |= p iff Tppa(m) C Twrr(p)) .
Let ¢ € WFF such that Vm € TTA, (m |= ¢ iff Trra(m) C Twrr(q)) -
(b) [Show that Vm € TTA, (m |= En(p, q) iff Trra(m) C Twrr(En(p,q)))]
(c) Let m € TTA.
(d) (=)

i. Assume that m = EA(p, q).

e

i. So by the definition of =, m |=p and m = q.

iti. By the ILH., Tpra(m) C Twrr(p) and Trra(m) C Twrr(q).
iv. So Trra(m) € Twrr(p) N Twrr(q)-

v. Twrr(En(p,q)) = Twrr(p) N Twrr(g) by COM.
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vi.
vii.
(e) (<)
i
ii.
ii.
iv.

V.

Since ITrra(m) # @, Trra(m) N Twrr(En(p,q)) # @.
So Trra(m) C Twrr(En(p,q)) by Proposition 33.l (—)

Assume Trra(m) C Twrr(En(p, q))-

Twrr(En(p,q)) = Twrr(p) N Twrr(g) by COM.

So Trra(m) C Twrr(p) and Trra(m) C Twrr(q)-

So by the LH., m = p and m = q.

So by the definition of |=, m |= Ex(p,q). M (<) H(A).MProposition.

Proof of Proposition 37:

Given that practices of categorization Ty rr and Tpra together satisfy the semantic

conventions for practices interpreting WEFF and TT A, it is the case that

For every p € WFF, the set S = {m € TTA | m |= p} is such that |JT7rr4 [S] = Twrr(p).

(This implies B8a).

1. Let Twrr and Tpra be practices of categorization that together satisfy the semantic

conventions for practices interpreting WF F and TTA. Let f be the shared acceptable

interpretation of the sentence symbols.

2. Let pe WFF.

3. Let S={meTTA|mf=p}.

4. [Show |JTr74[S] = Twrr(p)].

5. (%)

(a) Let u € UTTTA [S]

(b) Then u € Tprra(s) for some s € S.

(c) Sinces € S, s [=p.

(d) So Trra(s) € Twrr(p), by Proposition 36.

(e) Sou € TWFF(p).. (g)
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6. (2)

(a) Let u € Twrr(p).
(b) [Show that there exists an m € TTA such that m = p and u € Tpra(m)]

(c) We build a truth assignment m that represents w.
Define m as follows:

VA; € SS if u € f(A;) then m(A4;) = Telse m(A;) = F.

(d) So u € Trpa(m).

(e) Sinceu € Ty rr(p) and u € Trra(m), we know by Proposition 33 that Trra(m) C
Twrr(p)-

(f) By Proposition 36, m = p.

(g) Som e S, and u € |JTrr4 [S].M(2) W (B8a)

Proof of Proposition 38:

Given that practices of categorization 7w pr and Tprg together satisfy the semantic
conventions for practices interpreting WEF and TT A, it is the case that
For everyp € WFF, theset R = {m € TTA | m ¥ p}issuch that | JT74 [R] = U—Twrr(p).
(This implies B8b).

1. Let Twrr and 7774 be practices of categorization that together satisfy the semantic
conventions for practices interpreting WF F and TT A. Let f be the shared acceptable

interpretation of the sentence symbols.
2. Let p € WFF.
3. Let R={m eTTA|mkFp}.
4. [Show Tzra [R] = U — Twrr(p)]
5. (S)
(a) Let u € |JTrr4 [R)].
(b) Then u € Ty 4(r) for some r € R.
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(c) Sincer € R, 7 ¥ p.

(d) By Proposition 36, Trra(r) € Twrr(p).

(e) By Proposition 33, 7rra(r) N Twrr(p) = @.
(f) Sou ¢ Twrr(p), sou €U — Twrr(p).

(8) By COM, U — Twrr(p) = Twrr(E-(p))-
(h) Sou € Twrr(E-(p)).

(i) By Proposition 33, since Trra(r) N Twrr(E-(p)) # &, Trra(r) C Twrr(E~(p)).
(§) So Trra(r) CU — Twrr(p) B(C)

6. (2)

(a) Let u e — TWFF(P)-
(b) [Show Im € TT A such that m ¥ pand u € Tpra(m))

(c) We build a truth assignment m that represents .

Define m as follows:

VA; € SS if u € f(A;) then m(A;) = T else m(4;) = F.

(d) So u € Trra(m).

(e) By COM,U — Twrr(p) = Twrr(E-(p)).

(f) Since u € Trra(m)and v € Twrr(E-(p)), by Proposition 33, we know that
Trra(m) C Twrr(E-(p))-

(g) So by Proposition36, m = £.(p). So m ¥ p by the definition of F.

(h) So m € R, and u € |J 7714 [R].H (2) MProposition.

Proof of Proposition 41 .
B5 portion of proof of Proposition 41

1. Let P be an arbitrary element of P(WFF).

2. Let m be an arbitrary element of TT A.
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3. (Case 1) P = 0.

(a) tpr(P) = TTA.

(b) Tpwrry(2) =U.

(c) m € tpr(P) is true, as is Trra(m) C Tpwrr)(P) M(Case 1).
4. (Case 2) P # @.

(a) tpr(P) =tsr [P].
(®) Tpwrr)(P) =N Twrr [P].
(c) m € tpr(P)ift

m € tgr(p) for every p € Piff

m [= pfor every p € P (by definition of tgr) iff
Trra(m) C Twrr(p) for every p € P (since ST satisfies B5with respect to

TWFF and TTTA) iff
Trra(m) C N Twrr [P)iff
Trra(m) C Tpawrr)(P) M(Case 2). W(B5).

B8 portion of proof of Proposition 41
Show VP € P(WFF)

a. 38 C TT Asuch that |J7r7a [S] = Tpwrr)(P) and
=U

b. 3R C TTAsuch that |JTrra [R] = U — Toawrr)(P)
(Part a)

1. [ShOW VP € P(WFF) (ES Q TT Asuch that UTTTA [S] = TP(WFF)(P))]

2. (Case 1) P = 2.

(a) Tpwrr)(P)=U.

(b) Let S = TTA.

(c) By Proposition 31, |JTpra [TTA] =U.M(Case 1.)
3. (Case 2) P # @.
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(&) Tpwrr)(P) =N Twrr [P].
(b) Let S =tsr[P].
(c) [Show UTrra[S] =N Twrr [P]]
(d) (9
i. Let u € UZrralS)
ii. Then there is an m € S such that v € Trra(m).
iii. Since m € S, we know that m € tsr(p) for every p € P.
iv. By the definition of tsr(p), we have m = pfor every p € P.
v. Since ST satisfies B5 with respect to Twrr and Trra, Vp € P, Trra(m) C

Twrr(p)-
vi. Therefore, u € (\Twrr [P] .H(C)

(e) (2)
i. Let w € Twrr [P).
ii. Then Vp € P, v € Twrr(p)-
ili. By Proposition 31, |JZrra [TTA] =U.
iv. So there exists an m € TT A, such that u € Tpr4 (m).
v. [Show Vp € P, m € tsr(p)]
vi. Let p € P.
vil. By the definition of |, if m ¥ £_(p), then m k= p.
viil. [Claim: m ¥ £.(p)]
A. Assume m = €-(p). [Show contradiction.
B. Since ST satisfies B5 with respect to Twpr and Trra, Trra(m) C Twrr(E-(p)).
C. By convention COM of the W F F-language of propositional logic,
Twrr(E-(p)) =U = Twrr(p).
D. So u ¢ Twrr(p). Contradiction.
E. So m ¥ £.(p). MClaim.

ix. Since pwas arbitrary, Vp € P, m k= p.
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X.
xi.

xii.

(Part b)

So Vp € P, m € tgr(p).
SomeS.

So u € |JTrra [S].M(2) M (Case 2.) M (Part a).

[Show VP € P(WFF) (3R C TTAsuch that Zrr4 [R] = U — Tpawrr)(P))]

1. (Case 1) P = @.

(a) U -

(b) Let

Tpawrr)(P)=U-U=0..

R=g.

(¢) UTrraR] = .M (Case 1)

2. (Case 2) P # @.

(a) Tpwrr)(P) = (Twrr [P].

(b) Let

R=TTA - \tsr[P].

(c) [Show UTrra [R] =U—-NTwrF [P]]

(d) (9
iv.

vi.

vil.

viii.

iX.

Let u € 774 [R)-

Then there is an m € R such that u € Tppa(m).

Since m € R, we know that there exists a p € Psuch that m ¢ tgr(p).
By the definition of tgr(p), we have m ¥ p.

So m = E-(p) (by definition of |=).

Since ST satisfies B5 with respect to Twrp and Trpg,

Trra(m) C Twrr(E-(p))-

So u € Tywrr(E-(p)).

So since Ty rr satisfies the conventions of the W F F-language of proposi-
tional logic, u ¢ Twrr(p).

Therefore, v ¢ (Twrr [P] .M (C)
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(e) (2)
i. Let w e U= Twrr [P).
ii. Then there exists a p € P, u ¢ Twrr(p)-
iii. By Proposition 31, |J Trra [TTA] = U.
iv. So there exists an m € TTA, such that u € Trpa (m).
v. [Show m ¢ tsr(p)]
vi. Assume m € tgr(p). [Show contradiction.

vii. Then m = p, by definition of tgr.

viii. Since ST satisfies B5 with respect to Ty rr and Trra, Trra(m) C Twrr(p).
ix. But u € Tpra (m) and u ¢ Twrr(p). Contradiction.
x. Som ¢ tgr(p).

xi. Som ¢ (tsr [P].
xii. Som € R. B(2) M (Case 2) M (Part b).
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Assimilating Order-consistency
Semantics to the Representational

Schema
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Chapter 4

Order-consistency

Representational Techniques

4.1 Introduction

The goal for this part of the dissertation is to motivate, define and investigate order-
consistency representational techniques. These techniques are distinguished from the model-
theoretic techniques we discussed in Part II in virtue of the different explanatory strategy
they employ. Where a model-theoretic representational technique explains the consequence
relation between assertion types in terms of a logically simpler form of representation (the
models) and a defined relation of truth-in-a-model, an order-consistency representational
technique explains the same relation in terms of the simpler concepts of ordering and con-
sistency. In this chapter, we will define and consider the general properties of two order-
consistency representational techniques. In the next chapter, we will explore applications
of these techniques.

We can sketch the overall plan of this chapter as follows. You may recall that in Section
1.6.2, we located the fundamental intuition underlying order-consistency representational
techniques in a corollary to Lindenbaum’s Lemma, the one that says: A sentence g¢is de-
ducible from a set of sentences P just in case gbelongs to every maximal extension of
P. Looking at this corollary, we can see that a proxy for consequence (deducibility) can

be expressed in terms of consistency and ordering (since maximality is defined in those
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terms). We will use that intuition as our starting point in creating a new representa-
tional technique, the Set C'L technique. One of the technique-specific assumptions for the
Set C'L technique will be a representational version of Lindenbaum’s Lemma, requiring the
existence of maximal extensions. Some interpreted languages may not have maximal exten-
sions. For other interpreted languages, maximal extensions may be cumbersome to work
with. So we will consider the question of whether Lindenbaum’s Lemma is necessary for
an order-consistency semantics. That is to say, we will consider the question: is there
some other order-consistency technique that does not require the assumption of maximal
extensions?! In answer, we will create just such a technique, which we will call the Set CG
technique. We will explore the relationships between the two techniques, and show that the
Set CG technique is a generalization of the Set C'L technique.

In this next section, we present an overview of all of the material in the chapter, and

then proceed to work through the details.

4.2 Overview

4.2.1 Creating an order-consistency representational technique from the

corollary to Lindenbaum’s Lemma

How will we get started? By definition, every representational technique is an instance
of the representational schema. That schema gives a structure to use in constructing a
new technique. There are four elements to techniques constructed using the schema: a
foundational characterization, an intelligible medium, a proxy for consequence relation, and
a set of technique-specific assumptions. Our first task will be to use these elements to create
enough “representational context” in order to be able to express representational versions
of Lindenbaum’s Lemma and the order-consistency condition specified in the corollary (i.e.

“gbelongs to every maximal extension of P”). That context will include the following:

1. We will use the same foundational characterizations of assertion types, possibilities,

practices of categorization, and representational conception of logical consequence

!Special thanks to Johan van Benthem for asking this question.
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(ALC') as was used for the model-theoretic techniques.

2. We will construct a new form of intelligible medium, which we will call the consis-
tency medium. Given an interpreted set of assertion types whose relation of logical
consequence is to be modelled, the consistency medium will supplement that given
set of assertion types with a partial order and a specification of the subset of those

types which are taken to be consistent.

3. We will add a technique-specific assumption (called D2) which will say, in terms of
the foundational characterization, that those assertion types which are specified to be
consistent as a part of the consistency medium, are in fact consistent (that is, that an

assertion type specified to be consistent in fact represents some possibility).

We will then be able to express representational versions of Lindenbaum’s Lemma and
the order-consistency condition specified in the corollary in terms of the consistency medium,
given that medium’s intended interpretation. Call the representational version of Linden-
baum’s Lemma LL, and call the representational version of “gbelongs to every maximal
extension of P,” LLC. We can then add LL and LLC to the “representational context,”
and be on the way to a representational technique. In the developing technique, LL will
play the role of a technique-specific assumption. Meanwhile, LLC will play the role of the
proxy for consequence relation.

Let us take a moment and take stock. At this point in the development, what will we
have? We will have a foundational characterization. We will have an intelligible medium
(the consistency medium). We will have a proxy for consequence relation (LLC). And we
have some technique-specific assumptions, specifically D2 and LL.

So now we can ask the question: is this enough? Have we defined a new representational
technique? And the answer at that point will be “no.” Even if a consistency medium satisfies
the technique specific assumptions specified so far (D2 and LL), we can construct cases in
which LLC is not equivalent to the representational conception of logical consequence. We
will need to do more.

One way to complete the definition in progress and reach the goal of a new representa-

tional technique will be to add more technique-specific assumptions to the ones defined so
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far. And we have a natural place to look for these assumptions: the language of proposi-
tional logic. We already know that in the syntactic context, Lindenbaum’s Lemma applies
to the language of propositional logic, and the order-consistency condition specified in the
corollary is equivalent to deducibility for propositional logic (the syntactic proxy for conse-
quence). So we will look for semantic conditions, expressed in representational terms, which
characterize the language of propositional logic, in the hopes that if we add these condi-
tions to the technique-specific assumptions we already have, those collected assumptions
will be sufficient to imply the equivalence of LLC' and the representational conception of
consequence. (Note that the version we are interested in will be what we have called the
P(W FF)-version of the language of propositional logic.)

We will identify two such conditions: conditions we call “monotonic extension of
commitment” and “weak extensibility.” We will motivate and define these conditions,
and later prove that conventional usages of propositional logic satisfy them both. We
will show how to express these conditions with respect to the consistency medium and
the practice of categorization that interprets its assertion types. In that form, we shall
know these conditions by the names D1 and D3 respectively. We will be able to show
that if a consistency medium D satisfies D1, D2, D3 and LL with respect to the practice
of categorization that interprets the assertion types of D, then LLC'is equivalent to the
representational conception of consequence for those types as interpreted. And importantly,
the consistency medium (because of its structure and intended interpretation) will permit
an explanation of the consequence relation made intelligible by LLC in terms of the simpler
concepts of ordering and consistency. So at that point, we will have constructed a full

representational technique. We will call this technique the Set C'L technique.

4.2.2 Creating an order-consistency technique that does not require max-

imal extensions

One of the most salient features of the Set C'L technique, is, not surprisingly, its dependence
on the representational version of Lindenbaum’s Lemma (LL). LL is one of the technique-
specific assumptions for the Set CL technique. That means that every interpreted set

of assertion types to which the Set C'L technique is applied must satisfy assumption LL,
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that is, it must guarantee maximal extensions. Some languages may not have maximal
extensions, and for others, working with maximal extensions may be cumbersome. So, as we
mentioned in the Introduction to this chapter, we will consider the question: is it possible to
construct an order-consistency technique that does not require the representational version
of Lindenbaum’s Lemma (LL)? We will show that the answer to this question is “yes” and

in the process define a new technique, the Set CG technique.

In our discussion of model-theoretic representational techniques, we saw that we could
generate new techniques by changing the set of technique-specific assumptions used. In
the techniques we looked at, the only difference between techniques were different sets
of technique-specific assumptions. The foundational characterization, intelligible medium,
and proxy for consequence relation were the same for all. Here, in considering order-
consistency techniques, we are going to see something new. We are going to generate a new
technique from the Set C'L technique by dropping assumption LL from the set of technique-
specific assumptions, and then changing the proxy for consequence relation “to make up
the difference.” (For if there were no difference, Set C' L would not have needed assumption

LL in the first place).

The new proxy for consequence relation for use in the Set C'G technique will be defined
in terms of a binary relation of compossibility between assertion types. We will call the
new proxy LC. The relation of compossibility is derived from the primitive partial or-
der relation and primitive unary consistency predicate present in the consistency medium.
Stated in a line, for assertion types p and g, LC(p,q) iff every assertion type compossible
with p is compossible with g. It can be shown that if a consistency medium D satisfies D1,
D2,and D3 with respect to the practice of categorization interpreting its assertion types;
then LC'is equivalent to the representational conception of logical consequence for those
types as interpreted. So we can form a new technique consisting of the shared foundational
characterization; the consistency medium, the new proxy for consequence relation LC, and

the technique-specific assumptions D1, D2, and D3. This is the Set CG technique.

We will prove that LC, the proxy for consequence relation for the Set CG technique,
bears a special relation to LLC, the proxy for consequence relation for the Set C'L tech-

nique. Given that a consistency medium satisfies LL, then LC'is equivalent to LLC. We can
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show this result purely order-theoretically. This result has the following implication for the
relationship between the two techniques. If a consistency medium satisfies assumptions D1,
D2, and D3 with respect to the practice of categorization by which its assertion types are
interpreted, the LC'is equivalent to the representational conception of logical consequence
for those types. If it further satisfies condition LL, then LLC is equivalent to the represen-
tational conception of logical consequence for those types as well. (We will actually be able
to characterize the range of the LLC proxy relation even more accurately than this). The
upshot of all this is that every application of the Set C'L technique just is an application of
the Set CG technique, so the range of applicability of the Set CL technique is a subset of
the range of applicability of the Set C'GG technique.

After the exposition described above has been completed, we will give the proof that
Set CG technique makes the representational relation of logical consequence intelligible,
the corollary that the Set C'L technique makes the representational relation of logical con-
sequence intelligible, and then give the proofs which characterize the cases in which the

LLC proxy relation is capable of making consequence intelligible.

4.2.3 Proving that any conventional interpretation of propositional logic
satisfies the conditions of monotonic extension of commitment and

weak extensibility

Section 4.8 will take up a matter mentioned earlier, but set aside to keep the flow of argu-
ment going. This section will prove that any conventional interpretation of the language
of propositional logic does in fact satisfy the conditions of monotonic extension of com-
mitment and weak extensibility. These results support the claims made earlier, help make
the conditions proven more salient, but also, and importantly, introduce a number of new
concepts which will be important for the proofs in Part IV. The concepts to be introduced
include: partially ordered truth media, operators on interpreted truth media, a
property of truth media negation-completeness, and two properties of partially ordered
truth media monotonic extension of commitment with respect to models and weak

extensibility with respect to models.
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4.3 Creating an order-consistency technique from the corol-

lary to Lindenbaum’s Lemma: the Set CL technique

We have located the fundamental intuition underlying order-consistency representational
techniques in a corollary to Lindenbaum’s Lemma, the one that says: A sentence qis de-
ducible from a set of sentences P just in case ¢ belongs to every maximal extension of P.
Looking at this corollary, we can see that a proxy for consequence (deducibility) can be
expressed in terms of consistency and ordering (since maximality is defined in those terms).
We will use that intuition as our starting point in creating a new representational technique,

the Set C'L technique.

4.3.1 Constructing a “representational context”

We have set ourselves the task of creating a new representational technique embodying the
concepts present in the corollary to Lindenbaum’s Lemma. The representational schema
is our guide to constructing new techniques. There are four elements to techniques con-
structed using the schema: a foundational characterization, an intelligible medium, a proxy
for consequence relation, and a set of technique-specific assumptions. We will begin our
solution by using these elements to create enough “representational context” to enable us
to express representational versions of Lindenbaum’s Lemma and the order-consistency con-
dition expressed in the corollary (i.e. “gbelongs to every maximal extension of P.”). That

expression will require that the context support notions of ordering and consistency.

Foundational characterization

We will use the same foundational characterizations of assertion types, possibilities, prac-
tices of categorization, and representational conception of logical consequence (ALC) as

was used for the model-theoretic techniques. We repeat the assumptions here for clarity.

1. We assume a conceptual space of possibility;

2. We assume the existence of a practice by which each assertion type categorizes possi-

bilities into those of which the assertion type is true, and those of which it is false;
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3. We assume that the conclusion of an argument is a logical consequence of its premise

if and only if that argument preserves truth across all possibilities.

4. We assume that an assertion type is consistent just in case it represents some possi-

bility.
We formally model these assumptions as follows:

1. We model the set of assertion types by a set X;

2. We model arguments as pairs of assertion types, the first being the premise and the

second the conclusion;
3. We model the space of possibility by the set of possibilities i/;

4. We model the practice of “categorizing a possibility as being one in which an assertion
type is true” by the function: 7y, : ¥ — P(U), such that, for any o € X, 75, (o) is the
set of possibilities in which ¢ is true. We say that 7y (o) is the set of possibilities

represented by o.

5. In relation to a set of assertion types X interpreted via a practice of categorization Ty,
we model the assumed concept of logical consequence with the relation ALC' (Assumed
Logical Consequence) defined on ¥ x ¥ as follows:

Vp,q € %, ALC(s, 13,)(p, @) iff T2(p) C Tx(g).

6. In relation to a set of assertion types Y interpreted via a practice of categorization Ts;,
we model the assumed concept of consistency as follows:

Vp € ¥, p is consistent iff Tx(p) # @.

New form of intelligible medium: the consistency medium

We now construct a new form of intelligible medium. Recall that an intelligible medium
is a mathematical structure supplementing and including the original set of interpreted
assertion types for which the relation of consequence is to be modelled. We want to be able
to express versions of Lindenbaum’s Lemma and the order-consistency condition expressed

in its corollary with respect to the structure we create here. So the constructed intelligible
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medium needs to support both an ordering on assertion types, and a specification of which
assertion types are consistent.

We begin with the set X of assertion types for which the relation of logical consequence
is to be modelled. We add a partial order < on those types. We also add a subset C of
3, with the intention that the assertion types in C' are all, and only, the assertion types
in ¥ which are held to be consistent. So the complete intelligible medium will be a triple
D =(%,=,C). We will call it a consistency medium. We will refer to the elements of a
consistency medium D, as follows: ¥p,=<p,Cp.

The consistency medium has a surface similarity to “information systems” of the type
defined by Dana Scott (Scott 1970, 169-176; Scott 1982, 577-613; Davey and Priestley 1990,
63-71). There, an information system is a triple A = (A, Con, ), where A is a set of tokens,
Con is a nonempty set of finite subsets of A, and Fis a relation of entailment. The relation
between consistency media and information systems is subtle, since in a consistency medium
we specify order and consistency and consequence is implied; whereas in an information
system, we specify consistency and consequence and order is implied. The connection
between consistency media and information systems will probably go through the concept
of algebraic [ —structures, since those structures play a role more like consistency media,
in that they determine information systems, and hence consequence relations. Working out
the relation between consistency media and information systems is one of the next steps in
this project, and the development of the concept of minimal media (in Chapter 9) is a stage

toward this end.

- Visualizing consistency media

We can adapt a standard diagramming technique to illustrate particular finite consistency
media (consistency media with a finite number of assertion types). The Hasse diagramming
technique is a standard for illustrating finite partial orders. For more background on Hasse
diagrams see Davey and Priestley, p. 7ff. We repeat in the note below the key points

needed to read such diagrams.? For any finite consistency medium D, the Hasse technique

?Begin with the definition of the covering relation. “Let P be an ordered set and let z,y € P. We say
that zis covered by y (or y covers z), ... if z < yand z < z < yimplies z = z. The latter condition is
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Figure 4-1: Modified Hasse diagram showing a complete finite consistency medium P.

is sufficient to illustrate the set of assertion types ¥p and the ordering <p . We need only
add a way to see the subset Cp. We indicate extension of Cp on the ordering diagram
by filling in the circles of those assertion types in Cp. This modified version of the Hasse
diagram is capable of showing an entire (finite) consistency medium in a single diagram.

For example, see Figure 4-1. This diagram shows a consistency medium P in which the

demanding that there be no element zof Pwith £ < z < y.” As Davey and Priestley point out, in the finite
case, the covering relation determines, and is determined by, the order relation. The definition of the Hasse
diagram is given in terms of the covering relation. “Let Pbe a finite ordered set. We can represent P by
a configuration of circles (representing the elements of P) and interconnecting lines (indicating the covering
relation). The construction goes as follows.

1. To each point x € P,
associate a point P(z)of the euclidean plane R?, depicted by a small circle with centre at P(x).

2. For each covering pair
(z, y) such that ycovers z in P, take a line segment I(x,y) joining the circle at P(z)to the circle at

P(y).
3. Carry out (1) and (2) in such a way that

(a) if ycovers z, then P(z) is ‘lower’ than P(y) (that is, in standard cartesian coordinates, has a
strictly smaller second coordinate);

(b) the circle at P(z)does not intersect the line segment I(z,y) if z # zand 2 # y”
(Davey and Priestley 1990, p. 7).
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set of assertion types is ¥ = P({1,2,3}), where the ordering < is given by set inclusion,

and every assertion type except those containing both 2 and 3is in C.

First technique-specific assumption: D2

As of this point in the discussion, we have expressed our intention that in a given consistency
medium D, the elements of the set Cp be all, and only, the elements of Xp which are
consistent. Now we need to back that up with our first technique-specific assumption. We
will define, as an technique-specific assumption, the condition that for any assertion type
p € ¥p, p € Cpjust in case pis actually consistent. This assumption will apply to every
consistency medium D with respect to the practice of categorization 7y, by which the
elements of Xp (the assertion types for D) are interpreted.

D2: (Consistency) Vp € £p (p € Cpiff Tx, (p) # @)

D2 paraphrase: We assume that Cp contains all, and only, the elements of ¥p which
are consistent when those elements are interpreted with respect to 7y ,.

We have now introduced enough structure to make it possible to express representational
versions of Lindenbaum’s Lemma and the order-consistency proxy for consequence relation

from the corollary to Lindenbaum’s Lemma.

4.3.2 Expressing the representational forms of Lindenbaum’s Lemma and
the order-consistency condition from the corollary to Lindenbaum’s

Lemma
Informal definition

In keeping with our foundational characterizations, we can informally re-express Linden-

baum’s Lemma and the order-consistency condition in the corollary as follows:

Lindenbaum’s Lemma:
We replace “set of sentences” with the more general “assertion type” and the result is

“Every consistent assertion type has a maximal extension.”
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Order-consistency condition in the Corollary to Lindenbaum’s Lemma:

We begin with “g belongs to every maximal extension of P.” Since extension in the set of
sentences context is given by set inclusion, this is equivalent to “every maximal extension
of Pextends {q}.” Since according to our foundational characterization, we are using asser-
tion types instead of sets of sentences, this becomes: “every maximal extension of pis an
extension of q.” We can further rephrase the condition, since if zis a maximal extension of
p and z extends g, then zis a maximal extension of q. So we can say: “every maximal

extension of pis a maximal extension of ¢.”

Formal definition of the representational form of Lindenbaum’s Lemma (LL)

Recall that a maximal assertion type is one that is consistent, and has only inconsistent
proper extensions. Relative to a consistency medium D, we can express the set of maximal
extensions in D as follows:

Mazp ={ze€Cp |Yy e Zply>pr—y ¢ Cp)}

Maxpis the set of all maximal extensions for the consistency medium D.

For example, in the consistency medium P shown in Figure 4-1 on page 136, Mazp =
{{1,2},{1,3}}.

We can now define a function Maxp : ¥p — Maxp, such that for any assertion type p,
the value of the Mazp(p) is the set of maximal extensions of p. We define the function
Mazxp as follows:

Vp € p, Mazp(p) = {z € Maxp | z =p p}.

For example, in the consistency medium P shown in Figure 4-1 on page 136, Mazp({1}) =
{{1,2},{1,3}}, while Mazp({2}) = {{1,2}}.

Above we informally characterized the representational form of Lindenbaum’s Lemma as:
Every consistent assertion type has a maximal extension. Using the concepts just defined, we
can express the representational form of Lindenbaum’s Lemma formally as follows:

(LL) ¥p € Cp, Maxp(p) # @.

We will take LL to be a technique-specific assumption in the representational technique
we are developing.

The example consistency medium P shown in Figure 4-1 on page 136 satisfies LL.
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Formal definition of the representational form of the order-consistency condition

in the corollary to Lindenbaum’s Lemma

Above we informally characterized the representational form of the order-consistency condi-
tion in the corollary to Lindenbaum’s Lemma as: “every maximal extension of pis a maximal
extension of ¢.” Using the concepts just defined, we can express the representational form
of the order-consistency condition in the corollary to Lindenbaum’s Lemma formally using
a defined predicate LLC. LLC is a predicate to be applied to pairs of assertion types. We
can state the definition of LLC formally as follows:

Vp,q € Xp, LLCp(p,q) iff Mazp(p) C Mazp(q).

We will use LLC as the proxy for consequence relation in the representational technique

we are developing.

4.3.3 Taking stock: an incomplete representational technique

Let us review what we have at this point in the development. We have a foundational
characterization, identical to that used for the model-theoretic techniques. We have an
intelligible medium, the consistency medium. We have a proxy for consequence relation
LLC. And we have two technique-specific assumptions: D2 and LL.

We can consider what we have developed, and ask “is this enough? have we devel-
oped a complete representational technique?” The answer is “no.” The reason is that our
technique-specific assumptions are not strong enough to imply the intelligibility of conse-
quence. That is, given that some consistency medium D satisfies D2 and LL with respect
to 7x,,, it is not the case that the proxy for consequence relation LLC'is equivalent to the
representational concept of logical consequence ALC.

Consider the following example: Say that the set of assertion types ¥ = { p,q}, that
the universe of relevant possibility & = {1,2}, and that the practice of categorization 7
maps pto {1} and gto {1,2}. Form a consistency medium D, such that ¥p = {p,q},
=p= {(p,p),(0,9),{q,9)}, and Cp = {p,q}. Then Mazp = {q}, Maxp(p) = {q}, and
Mazp(q) = {q}. So D satisfies D2 and LL with respect to 7s,,,. Yet in this case, LLCp(q,p)
is true but ALC/x; 13,,(g, p) is false. '

So D2 and LL are not sufficient to imply the intelligibility of consequence.
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We need to do more. One way to complete the definition in progress and reach the goal
of a new representational technique will be to add more technique-specific assumptions to

the ones defined so far. We begin the search for such assumptions in the next section.

4.3.4 Looking for additional technique-specific assumptions
A place to look: the language of propositional logic

We have a natural place to look for these additional assumptions: the language of proposi-
tional logic. We already know that in the syntactic context, Lindenbaum’s Lemma applies
to the language of propositional logic, and the order-consistency condition specified in the
corollary is equivalent to deducibility for propositional logic (the syntactic proxy for conse-
quence). So we will look for semantic conditions, expressed in representational terms, which
characterize the language of propositional logic, in the hopes that if we add these condi-
tions to the technique-specific assumptions we already have, those collected assumptions
will be sufficient to imply the equivalence of LLC and the representational conception of
consequence. (Note that the version of propositional logic we are interested in will be what

we have called the P(W FF)-language of propositional logic.)

Properties of the P(WFF)-language of propositional logic

We can note the following properties of the P(W FF')-language of propositional logic:

1. The set of assertion types for the language is structurally defined. That is to
say, there is a mathematical construction (in this case the powerset operation) by
which the set of assertion types for the system is generated. Structural definition is a
common way to characterize a set of assertion types, as it makes it possible to give a

finite description of an infinite set of assertion types.

2. The set of assertion types for the P(W F'F)-language of propositional logic supports
an ordering which corresponds to a notion of structural elaboration. By structural
elaboration, we mean a relation between two assertion types such that the structure of
the first assertion type is somehow included in the structure of the second. We could

equivalently say that the structure of the first is “elaborated” by the second, or
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the second “structurally elaborates” the first. The flexibility in this “definition”
is due to the great variety in the possible structural forms for assertion types, and
the methods by which they could be interpreted. Like the notion of “satisfaction”
the best we can do is to gesture in the general direction of the concept intended, and
provide specific examples. See Etchemendy 1990, 33ff, for a discussion of the challenge

of providing a general account of the satisfaction relation.

(a) In the case of the P(W FF)-language of propositional logic, the inclusion ordering
corresponds to structural elaboration. For any sets of propositional sentences P
and @, @ structurally elaborates P just in case the structure of Pis included

within the structure of @, that is, just in case P C Q.

(b) In the case of feature structure/element combinations from feature logic, the
subsumption relation corresponds to structural elaboration.
For feature structure/element combinations (A,d) and (B, e), (B, e) structurally

elaborates (A, d) just in case (A, d) subsumes (B, e).

The concept of structural elaboration can only apply to sets of assertion types which
are structurally defined (and so have articulable internal structure).

We see from the above that the set of assertion types for the P(W FF)-language of
propositional logic (i.e. the set P(WFF) itself) can be thought of as a partially ordered
set (P(WFF),C) in which the ordering C corresponds to structural elaboration among the
assertion types. In the following sections, we will look at two conditions which apply to
partially ordered sets of assertion types (X, <), and the practices of categorization 7 inter-
preting those types. These two conditions are called “monotonic extension of commitment”
and “weak extensibility.” These are both conditions satisfied by the assertion types of the
P(W FF)-language of propositional logic with respect to any conventional interpretation of
those types. In other words, the partially ordered set (P(W F'F'), C) satisfies both conditions
with respect to any practice of categorization 7p( ppy that meets the semantic conventions
of the P(W FF)-language of propositional logic. We will prove this result in Section 4.8

below.
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These two conditions: monotonic extension of commitment and weak extensibility, when
adapted to the context of consistency media, will provide the technique-specific assumptions

we need to complete the representational technique under construction.

4.3.5 The condition of monotonic extension of commitment
The concept of extension of commitment

Extension of commitment is a relation between assertion types. Simply put, extension
of commitment is the inverse of the assumed relation of logical consequence. That is to say,
pextends the commitments of q iff g is a consequence of p. Formally, given a set of assertion
types ¥ and a practice of categorization 7y, for any p,q € ¥, pextends the commitments

of q iff Ts(p) C Tx(q).

Extension of commitment in relation to elaboration of structure

The P(W FF)-language of propositional logic exhibits the following property.
Given two assertion types P, @, if @ elaborates the structure of P, then ) extends the com-
mitments of P.
We call this property “monotonic extension of commitment with respect to succes-
sive elaboration of structure.” Consider the following sequence of assertion types drawn
from the P(W FF')-language of propositional logic:{A;}, {41, Aa},{A1, A2, As}. These as-
sertion types are ordered by C as follows: {A;} C {41, A2} C {44, Ay, As}. We know from
the semantic conventions of propositional logic that the possibilities represented by each
member in this sequence is a subset of the possibilities represented by the previous mem-
ber, regardless of how the sentence symbols are interpreted. We can state this relationship
formally as follows. For all P,Q € P(WFF); if P C Qthen Tpwrr)(Q) € Tpwrr)(P).
We will show how this property follows from the semantic conventions of the P(W FF)-
language of propositional logic below (in Section 4.8).

Let us here consider the value of using a language of assertion which obeys such a
property. (Note: when we say “language of assertion” we mean a set of assertion types
together with the semantic conventions constraining acceptable interpretations of those

types). This property is very useful for beings like ourselves (or computers) which have fi-
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nite processing capability and which produce and consume the expressions of propositional
claims over time. The processing of a complex propositional claim, e.g. {Ai, A2, A3} can be
modelled as the sequential processing of three assertion-types { A1}, {41, A2}, {41, Az, As}.
The idea behind this modelling technique is as follows. At each step, there is a single as-
sertion type that models the current commitments of the processor at that point in time.
The monotonicity property increases the efficiency of processing compound propositional
claims by guaranteeing that as long as the processing follows some sequence of elaboration
of structure, every step in processing either reduces the possibilities under consideration or
leaves them unchanged. Given the assumption of monotonicity, once a possibility has been
excluded, there is never some future processing step which will bring it back into consid-
eration. This means that the complex expressions of those languages of assertion which
obey this assumption can be processed very efficiently. For this reason, many languages
of assertion (though not all) are assumed to obey this property as a consequence of their

semantic conventions.

The constraint defined

Monotonic extension of commitment (MEC) is a constraint defined relatively to an
ordered set of assertion types (X, <) and a practice of categorization Ty, : ¥ — P(U).
MEC :For all p,q € 2, p = gimplies 75(q) C Tx(p)
It is important to note that the specification of the constraint does not require that the
ordering = actually correspond to the elaboration of structure within the set of assertion
types. Such a correspondence helps explain why the constraint is frequently observed, but

it is not part of the constraint itself.

4.3.6 The condition of weak extensibility
The constraint introduced in context

Weak extensibility is a constraint which supports the usefulness of monotonic extension of
commitment via the successive elaboration of structure. To explain what weak extensibility
is, and to see why it is important, let us consider the following example. Consider a subject

(person/machine/etc.) who is extending their propositional commitments over time, and
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is using a single assertion type drawn from the P(W FF)-language of propositional logic
to represent their current commitments. Say that the current commitments of the subject
are represented at some specific time by the assertion type P = {Aj, A3, A3}. Another
commitment which the subject could express using the P(W FF)-language of propositional
logic would be @ = {A4, As}. With respect to @, it would be useful for the subject to be
able to extend their current commitments in either of two directions. They could choose to
commit to the conjunction of Pand @, or they could choose to commit to the conjunction
of P and the negation of @). Given their processing style, it is desirable for the subject to be
able to express these extended commitments through an elaboration of the structure of the
expression of their current commitments, namely through an elaboration of the structure
of P. It would be a limitation on the usefulness of the language of assertion in use, if in the
process of extending their commitments through successive elaboration, the subject reached
a point where they could not add some expressible commitment (or its negation) to their
currently expressed commitment.

The P(W FF)-language of propositional logic gives the subject various ways to extend
their commitments along paths of successive elaboration of structure. Let us consider how

the P(WFF)-language of propositional logic adapts to our example.

To represent the conjunction of Pand @, the subject need simply form the union of P
and Q. That union, as a subset of WFF, will be an element of P(WFF). Call it R. The
assertion type R = PUQ = { A1, Ay, A3, A4, As} exactly represents the possibilities in which
the conjunction of P and @ would be true, regardless of the interpretations of the sentence
symbols involved. Further, P C R, that is to say, Ris a structural elaboration of P.

To represent the conjunction of P and the negation of @, if @ is finite, the subject
could form the union of P and a singleton containing the negation of the conjunction of
the elements of Q. That union, as a subset of WFF, will be an element of P(WFF). Call
it S. The assertion type S = {A1, Aa, A3, — (A4 A As)} exactly represents the possibilities
in which the conjunction of P and the negation of @ would be true, regardless of the
interpretations of the sentence symbols involved. Further, P C S, that is to say, Sis a

structural elaboration of P.

When @ is an infinite set, the method just described does not work, since we have not
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assumed infinitary expressions. A different method is available to the subject. To represent
the conjunction of P and the negation of ), when @ is infinite, the subject has available
the following set of sets of assertion types I' = {PU{—q} | ¢ € Q}. In the specific case
of our example, I' = {{A1, A2, A3, A4}, {A1, A, A3, As}}. Collectively, that set exactly
represents the possibilities in which the conjunction of P and the negation of @ would
be true, regardless of the interpretation of the sentence symbols involved. Further, P C
{A1, A, A3, A4}, and P C {A1, Ay, A3,—As}. That is to say, each of the elements of T'is
a structural elaboration of P.

The elements of I'give two alternative ways in which the subject could extend the
commitments represented by P, which together exhaust the possibilities in which the con-
junction of P and the negation of () would be true. On the method by which we constructed
T, the subject is not necessarily able to extend their commitments via structural elaboration
to represent in a single assertion type all and only the possibilities in which the conjunction
of P and the negation of Q) would be true. What the subject is guaranteed by this method is
that they will be able to extend their commitments via structural elaboration to represent
any possibility in which the conjunction of P and the negation of @ would be true, and
furthermore, that all possibilities represented by such an extension would be possibilities in
which the conjunction of P and the negation of @ would be true.

We can use these examples to motivate the definitions of two related properties: strong
extensibility and weak extensibility. Both properties are defined relatively to a partially or-
dered set of assertion types (X, <) and a practice of categorization 75, by which the elements
of that set are interpreted. Both properties can be thought of as “richness” constraints... if
met, they mean that the partially ordered set of assertion types is rich enough to permit a

certain kind of extension of commitment to continue without halt.

Strong extensibility

Given a partially ordered set of assertion types (2, <) and a practice of categorization 75, by
which the elements of that set are interpreted, we say that (¥, <)is strongly extensible

with respect to 7y if and only if

145



for every pair of assertion types p,q € %,

(a) there exists some assertion type r € Xsuch that » = pand r > gand r
exactly represents the possibilities in which the conjunction of p and ¢ would be
true (i.e. Tx(r) = Tx(p) N Tx(q)); and

(b) there exists some assertion type s € ¥ such that s > pand sexactly repre-
sents the possibilities in which the conjunction of pand the negation of ¢ would

be true (i.e. Tx(s) = Tx(p) — Tx(q)).

In the examples we considered above, if P = {A;, Az, A3}, and Q = {A4, A5}, are
interpreted as assertion types in the P(W FF)-language of propositional logic, then for P, @,
the member {A1, Ag, As, A4, As} of P(WFF) is an assertion type satisfying part (a) of the
definition of strong extensibility with respect to any acceptable interpretation 7py ppy; and
the member { A1, Ag, A3, = (A4 A As)} of P(WFF)is an assertion type satisfying part (b) of
the definition with respect to any acceptable interpretation 7p(y rp). However, the method
by which {A1, As, A3, — (A4 A As)} was constructed fails in the case where the negated
assertion type is an infinite set of sentences; and therefore that method is insufficient to
show the strong extensibility of the P(W FF)-language of propositional logic.

An example of a partially ordered set of assertion types which is strongly extensible
with respect to the practice of categorization by which it is interpreted is given in Section

5.4.

Notation for talking about ordering relations

Before discussing weak extensibility, let us introduce some notation we will use for talking

about ordering relations.
1 pis the up-set of p with respect to the ordered set (£, <), thatis, T p={z € ¥ | z = p}.

PU is the set of upper bounds of P with respect to the the ordered set (X, <), that is,
P¥={zeX|forallpe€ P,z p}. Note that {p,q}* =1pN T q.

If we need to make clear which ordered set we are referring to, we use a subscript naming

the set ordered, e.g. Tx (p)is the up-set of p with respect to the ordered set (X, <5).
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Weak extensibility

Given a partially ordered set of assertion types (X, <) and a practice of categorization 7Ty
by which the elements of that set are interpreted, we say that (X, <) is weakly extensible

with respect to 7y if and only if

for every pair of assertion types p,q € ¥,

(a) there exists some set of assertion types R C {p, ¢}" such that the members
of R, collectively, exactly represent the possibilities in which the conjunction of
p and gwould be true (i.e.J 7z [R] = T=(p) N Tx(q)); and

(b) there exists some set of assertion types S CT psuch that the members of S,
collectively, exactly represent the possibilities in which the conjunction of p and

the negation of ¢ would be true (i.e. |J7%[S] = T=(p) — T2(q)).

In the examples above, if P = {A;, A2, A3}, and Q = {A4, As}, are interpreted as
assertion types of the P(W FF)-language of propositional logic, then for P,Q, the set R =
{PUQ} = {{A1, A2, A3, A4, A5 }} is an example of a set of assertion types satisfying part (a)
of the definition of weak extensibility with respect to any acceptable interpretation 7pw rry;
and the set S = {{A;1, Aa, A3,—As},{A1, A2, A3, As}} is an example of a set of assertion
types satisfying part (b) of the definition with respect to any acceptable interpretation
Tpwrr)- The methods by which we constructed these sets work in general, and we use

them in a proof to follow (Section 4.8).
To summarise:

Given a partially ordered set of assertion types (X, <) and a practice of categorization Ty
by which the elements of that set are interpreted, we say that (X, <) is weakly extensible
with respect to 7Ty if and only if

Vp,q € ¥ (AR C {p, ¢}* such that |J7x [R] = Tx(p) N Tx(q))and
Vp,q € X (35 C1 p such that 75 [S] = Ts(p) — T=(9))
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4.3.7 Recapitulation: monotonic extension of commitment and weak ex-

tensibility

Let us consider what we have seen to this point. We have presented two conditions:
“monotonic extension of commitment” and “weak extensibility” which are defined in re-
lation to a partially ordered set of assertion types and a practice of categorization which
interprets those types. We have seen reasons why it could be valuable to use languages
of assertion whose assertion types are assumed to satisfy these conditions relative to the
practices of categorization by which they are interpreted. We have seen reasons to expect
(and will prove below in Section 4.8) that the semantic conventions which underlie our use
of a standard language of assertion, the P(W FF)-language of propositional logic, are suffi-
cient to imply that conventional uses of that language satisfy both conditions. That is, if a
practice Tpw rpy interpreting P(W F'F) is assumed to meet the semantic conventions of the
P(W FF)-language of propositional logic, then the partially ordered set (P(WFF),C) sat-
isfies monotonic extension of commitment and weak extensibility with respect to Tpy rp).-
Similar semantic conventions which support this result in the case of the P(W FF)-language
of propositional logic are assumed by many logical languages, and thus, the conventional
applications of those languages can also be shown to satisfy monotonic extension of com-

mitment and weak extensibility.

A property of the assumptions of monotonic extension of commitment and weak

extensibility

One property we should note before continuing. The assumptions of monotonic extension
of commitment and weak extensibility are independent of any of the technique-specific
assumptions we used in the model-theoretic representational techniques. To see that this is
the case, we can recognize that every assumption used in those techniques is dependent on
the set of models, and all are independent of any ordering on the set of assertion types.
On the other hand, both monotonic extension of commitment and weak extensibility are
dependent on some ordering on the set of assertion types, and independent of any set of
models. So one can easily construct cases in which one of the sets of technique-specific

assumptions used by a model-theoretic technique are satisfied, yet monotonic extension of
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commitment and weak extensibility fail; or vice versa.

4.3.8 A complete order-consistency representational technique:

the Set C'Ltechnique

Adding technique-specific assumptions requiring monotonic extension of commitment and
weak extensibility to the incomplete representational technique we had in Section 4.3.3 will
give us a complete order-consistency representational technique, the Set C'L technique. In
order to express monotonic extension of commitment and weak extensibility with respect

to a consistency medium, we introduce some new notation.

Notation for talking about the ordering relation used in consistency media

We will use a slight abbreviation of the notation above for talking about ordering relations
with respect to a consistency medium. Every consistency medium includes an ordered set
(Xp,=<p). In relation to a consistency medium D, we use Tpand Ppin place of 15, and
S

The result of this substitution is as follows:

1p (p) is the up-set of p with respect to medium D (and hence the ordered set (¥p, <p)),
that is, Tp (p) ={z € Xp | =z =p p}

PP is the set of upper bounds of P with respect to medium D (and hence the ordered

set (¥p,=p)), thatis, PE ={z € Xp |forallp € P,z =p p}

The Set CL representational technique

We can now give the full definition of the Set C'L order-consistency representational tech-
nique, an instance of the representational schema. This technique abstracts the key concepts

in the corollary to Lindenbaum’s Lemma.

e Foundational assumptions. The foundational assumptions are the same as for all
of the model-theoretic representational techniques (and are detailed in Section 4.3.1

above).
o Intelligible medium: The consistency medium.
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e Proxy for consequence relation: The relation LLC (the representational version of the

order-consistency condition in the corollary to Lindenbaum’s Lemma.

e Technique-specific assumptions. There are four, and together we call them the Set

CL assumptions

1. Monotonic extension of commitment
We assume that the ordered set (¥, <p) satisfies monotonic extension of com-
mitment with respect to 7yx,,.

D1: (Monotonic extension of commitment) Vp,q € p (p <p gimplies T3, (q) C T, (p))

2. Consistency
We assume that Cp contains all, and only, the elements of ¥ p which are consis-
tent with respect to Tx,.

D2: (Consistency) Vp € £p (p € Cpiff Ty, (p) # @)

3. Weak extensibility
We assume that the ordered set (¥p,=<p)is weakly extensible with respect to
Tsp -
D3: (Weak extensibility)
D3a :V¥p,q € £p (3R C {p,q}] such that |JTs, [R] = Ts,(p) N Tz, (q))
D3b:Vp,q € £p (3S CTp (p) such that |JTs, [S] =T, (p) — Tn,(9))

4. Representational version of Lindenbaum’s Lemma
Every consistent assertion type has a maximal extension.

(LL) Vp € Cp, Ma:l:])(p) % .

As we will show in Section 4.6 below, if a consistency medium D satisfies the Set CL
assumptions with respect to a practice of categorization 7y, , then the proxy for con-
sequence relation LLC is equivalent to the representational conception of logical conse-
quence ALC(ED,TED)' Furthermore, because of the definition of the consistency medium
and technique-specific assumptions, theories of consequence generated using the technique
explain the relation of logical consequence in terms of two simpler concepts: a partial order

representing primitive consequence, and a unary consistency predicate. These results show
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that the Set C'L technique is an instance of the representational schema, and as such, our

first example of an order-consistency representational technique.

An important note

One thing which should be very clear from the above is that this technique does not do with-
out the concepts of conjunction and negation. These concepts are built into the assumption
of weak extensibility. Yet also note that what is required for an interpreted language to
satisfy that assumption is weaker than other possible assumptions based on conjunction

and negation (for example, strong extensibility).

4.4 Creating an order-consistency technique that does not

require maximal extensions: the Set C'G technique

4.4.1 Setting out the question: are maximal extensions necessary for an

order-consistency technique?

We have just completed setting out our first order-consistency technique, the Set C'L technique.
That technique includes the assumption of the representational version of Lindenbaum’s
Lemma (LL). That means that every interpreted set of assertion types to which the Set
CL technique is applied must satisfy assumption LL, that is, it must guarantee that every
consistent assertion type has a maximal extension. Some languages may not have maximal
extensions, and for others, working with maximal extensions may be cumbersome. So, we
here consider the question: is it possible to construct an order-consistency representational
technique that does not require the assumption of the representational version of Linden-
baum’s Lemma (LL)? We will answer this question affirmatively by constructing just such

a technique: the Set CG technique.

4.4.2 Plan for generating a new technique

As we mentioned in the Overview, we are going to construct the Set CG technique in a dif-

ferent way than the various model-theoretic variants we created from the Set E technique.
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There, we created new techniques simply by changing the set of technique-specific assump-
tions. Here, we will create a new technique by changing two elements of the representational
schema, the set of technique-specific assumptions and the proxy for consequence relation.
We are going to create the Set CG technique from the Set CL technique by deleting the
assumption LL (leaving D1, D2, and D3), and replacing the proxy for consequence relation
LLC with a new proxy for consequence relation LC which we will describe below. We will
see that the relation LC has a special relationship to the relation LLC, namely that in
the context of LL, the two are equivalent! This result will enable us to see that the Set
CG technique is a generalization of the Set CL technique.

We will begin by describing the new proxy for consequence relation LC. This in hand,
we can give a definition of the Set C'G technique. We will then prove the relationship
between LC and LLC, and then consider its consequences. The proofs that the Set CG
and CL techniques do indeed make consequence intelligible, and the proofs of the conditions
under which the proxy for consequence relation LLC makes consequence intelligible, will

follow in Sections 4.5, 4.6, and 4.7, respectively.

4.4.3 Defining the proxy for consequence relation LC
Motivation for, and structure of, the definition of LC

The fundamental concept underneath the proxy for consequence relation LC' is the notion

? This is a concept we can model with respect to our representational

of “compossibility.
framework. Given some set of assertion types X interpreted by a practice of categorization
Ts;, we can choose to view two assertion types p, ¢ € 3, as compossible just in case there is
some possibility in which both p and q are true, that is, if 7;(p) N 7x(g) # @. What we are
going to do is build a proxy for consequence (the relation LC') from a “proxy for compossi-
bility” (the relation CP). The key insight is that under certain conditions (which
the technique-specific assumptions D1, D2, and D3 are sufficient to guarantee)
preservation of compossibility across all assertion types will be equivalent to
preservation of truth across all possibilities.

That’s a little dense, so let’s unpack it. Preservation of compossibility across all assertion

types is a relation defined on pairs of assertion types p,q drawn from some set of assertion
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types ¥ interpreted by a practice 7x. A pair p, g of assertion types is in that relation just in
case, for every assertion type x in ¥, if pis compossible with z, then ¢ is compossible with
z. Preservation of truth across all possibilities is just ALC, the representational concept of
logical consequence we have been using all along.

So now let’s begin. First we will define a technique for making the relation of compos-
sibility intelligible. That will involve defining a relation CP on pairs of assertion types in
a consistency medium. CP will be a proxy for compossibility. If a consistency medium
satisfies technique-specific assumptions D1, D2, and D3a with respect to the practice
of categorization by which its assertion types are interpreted, then CP will be equiva-
lent to the relation of compossibility between those types (that is, CP(p,q) just in case
Ts(p) N Tx(q) # 2).

Then we will use this “proxy for compossibility” relation CP to build a relation LC
on assertion types in a consistency medium. LC will be the relation of preservation of CP
across all assertion types. What that means is that a pair of assertion types p, ¢ will be in the
relation LC, just in case, for every assertion type x in the medium, if CP(p, ) then CP(q, z).
By itself, this may not look like much! But above we just saw that if a consistency medium
satisfies technique-specific assumptions D1, D2, and D3a with respect to the practice of
categorization by which its assertion types are interpreted, that C'P was equivalent to
compossibility. So under those conditions, LC' is equivalent to preservation of compossibility
across all assertion types. If we add the condition that the consistency medium in question
satisfies technique-specific assumption D3b with respect to its interpretive practice, then
we can apply the key insight and show that, under those extended conditions, LC will be

equivalent to the representational consequence.

The definition of CP (the “proxy for compossibility”)

Now we are ready to begin the actual definitions. We will begin with definition of CP and
work our way toward LC.

Given an arbitrary consistency medium D, we can define a relation CPp on ¥p X ¥p as
follows:

Vp,q € Xp, CPp(p,q)iff 3y € Cp ((y =p p) and (y =p q) )
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We will prove below, that, for any consistency medium D and practice of categorization
Ts.p, if D satisfies D1, D2, D3a with respect to Ts;,, then Vp,q € Xp, CPp(p, q) iff T, (p) N
Ts,(q) # @ (i.e. p and ¢ are compossible). This proof (Proposition 53) will demonstrate
that under those conditions, the relation CP is a proxy for compossibility.

To see an example, consider the consistency medium P shown in Figure 4-1 on page
136. There, CPp ({1}, {3}) because of {1, 3}; but it is not the case that CPp ({2}, {3}).

The next step on the way to LC is to define a function (CC), which, for any assertion
typep, gives the set of all assertion types to which pbears the relation CP. That is, given
an arbitrary consistency medium D, the function CCp : ¥p — P(Xp) is defined as follows:

Vp € Xp,CCp(p) = {z € Ep | CPp(p,z)}

Since we will use it more often than the relation C'P, we give an expanded form of the
definition of the function C'C below. This is simply plugging the definition of CP into the
definition of CC.

Vp € Xp,CCp(p) ={z € Xp |3y € Cp ((y =zp p) and (y =p z))}

To see an example, consider the consistency medium P shown in Figure 4-1 on page
136. There we see that CCp({1}) = Cp;and CCp({3}) = {2, {1}, {3},{1,3}}.

Given the relationship of CP and CC, we also know that, for any consistency medium
D and practice of categorization Tx,, if D satisfies D1, D2, D3a with respect to 7Ty,
then Vp,q € ¥p, ¢ € CCp(p)iff CPp(p,q) iff Tx,(p) N Tx,(q) # @. So if D satisfies
D1, D2, D3a with respect to 75, then for any p € ¥ p, membership in CCp(p) is equivalent
to compossibility with p.

The relation LC: the Set CG proxy for consequence relation

Recall that we characterized the relation LC as “preservation of C'P across all assertion
types.” What that means is that a pair of assertion types p,q will be in the relation LC,
just in case, for every assertion type xin the medium, if CP(p,z) then CP(q,x).

We formally define the relation LC on ¥p X Xp as follows:

Vp,q € ¥p,LCp(p,q) iff Vz € Zp, (CPp(p,z) — CPp(g,x)).

We define an equivalent form of LC using CCp as follows:

Vp,q € ¥p, LCp(p,q) iff CCp(p) € CCp(q)
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(This latter form is the one we will use in most proofs).

For any consistency medium D and practice of categorization 7s,,, if D satisfies D1, D2, D3a

with respect to 75, then LCp(p, q) is equivalent to preservation of compossibility across all
assertion types. Further, if D satisfies D1, D2, D3 with respect to Ty ,, LCpis equivalent
to ALC<ED,T}3D> (the representational conception of logical consequence). We prove these
results in Section 4.5 below. These proofs demonstrate the suitability of the relation LC as
the proxy for consequence relation for the Set CG technique.

A definition: If, for two assertion types p, ¢ € £¥p, LCp(p,q) then we will say that q is

an LCp-consequence of p.

4.4.4 An order-consistency representational technique that does not re-

quire maximal extensions: the Set CG technique

Now we can define the Set CG technique, an order-consistency representational technique
that does not require maximal extensions. The Set CG technique is an instance of the

representational schema, and as such, has the usual four components.

e Foundational assumptions. The foundational assumptions are the same as for all of
the model-theoretic representational techniques and the Set CL technique (and are

detailed in Section 4.3.1 above).
e Intelligible medium: The consistency medium.
e Proxy for consequence relation: The relation LC.

e Technique-specific assumptions. There are three, and together we call them the Set

CG@G assumptions

1. Monotonic extension of commitment

D1: (Monotonic extension of commitment) Same as for the Set CL technique.

2. Consistency

D2: (Consistency) Same as for the Set CL technique.

3. Weak extensibility
D3: (Weak extensibility) Same as for the Set CL technique.
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As we will show in Section 4.5 below, if a consistency medium D satisfies the Set
CG assumptions with respect to a practice of categorization 7x, , then the proxy for
consequence relation LC' is equivalent to the representational conception of logical con-
sequence ALC (Ep.Ts,)" Furthermore, because of the definition of the consistency medium
and technique-specific assumptions, theories of consequence generated using the technique
explain the relation of logical consequence in terms of two simpler concepts: a partial or-
der representing primitive consequence, and a unary consistency predicate (as with the
Set LC technique). These results show that the Set CG technique is an instance of the

representational schema.

4.4.5 The relationship between the Set CL and Set CG techniques

There is an important relationship between the proxy for consequence relation LLC used
by the Set C'L technique and the proxy for consequence relation LC used by the Set CG
technique. If the representational version of Lindenbaum’s Lemma (the assumption LL)
is true of a consistency medium, then LLC is equivalent to LC. We show this purely
order-theoretic fact below.

What does this relationship mean? If a consistency medium D satisfies assumption Set
CL with respect to the practice of categorization 7y, interpreting its assertion types, then
D satisfies assumption Set CG with respect to 7x,, and further, D satisfies assumption LL.
Under those conditions, the relation LLCp is equivalent to LCp, and LCp is equivalent to

the representational conception of logical consequence ALC ( ) So LLCp is equivalent

¥p,Ts
to the representational conception of logical consequence. This c;)nstitutes a proof that the
Set CL technique makes the representational conception of logical consequence intelligible.
It also shows that the Set C'G technique is a generalization of the Set CL technique, since
every application of the Set C'L technique just is an application of the Set CG technique.
It turns out that the proxy for consequence relation LLC used by the Set C'L technique
is capable of making consequence intelligible in some cases which satisfy Set CG but do

not satisfy LL. It is gives a better understanding of the workings of the LLC relation to

consider these cases (which we do in Section 4.7 below).
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Proposition 42 Given that a consistency medium D satisfies LL, then LCp is equivalent

to LLCD.

The proof takes two parts. First we show that for any consistency medium D, LCp implies
LLCp. Then we show that for any consistency medium D satisfying L L, it is the case that
LLCp implies LCp.

Proposition 43 For any consistency medium D, Vp,q € £p, LCp(p,q) tmplies LLCp(p, q).

—_

. Let p,q be elements of ¥p, such that LCp(p, q), that is, CCp(p) € CCp(q).
2. [Show LLCp(p,q) that is, Mazp(p) C Mazp(q)]
3. Let x € Maxp(p).
4. So x € Mazp and = =p p.
5. [Show z =p q]
6. Note that x € CCp(p), since x € Cp z »p z, and = =p p.
7. So x € CCp(q).
8. So Jy € Cp, such that y »p rand y =p q.
9. Since x € Mazp,Vy € Ep(y =px —y ¢ Cp).
10. Sincey € Cp, y #p .
11. Soy = x.

12. So = =p q.Proposition.

Proposition 44 For any consistency medium D satisfying LL, for any p,q € ¥p, LLCp(p,q)
implies LCp(p,q).

1. Let D be a consistency medium satisfying LL.
2. Let p,q be elements of ¥p,such that LLCp(p,q) that is, Mazp(p) C Mazp(q).
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3. [Show LCp(p,q), that is, CCp(p) C CCp(q)]

4. Let x € CCp(p), i.e. Jy € Cp such that y =p zand y =p p.
5. Since y € Cp, by LL, 32 € Mazp(y).

6. So z € Mazp and z >p y.

7. By transitivity, z >p « and z =p p.

8. So z € Mazxp(p), and therefore, z € Mazp(q).

9. So z € Cpsuch that z >=p z and 2 =p q.

10. So z € CCp(q).MProposition.

4.5 Proof that the Set C'G technique makes consequence in-
telligible

4.5.1 Basic propositions about <, CC,and LC

Proposition 45 For any consistency medium (X, =<,C), for all p,q € X, if p < q, then
CC(q) € CC(p).

By the transitivity of <and the definition of CC.
Note that the converse of this relation is a condition often found in lattice theory: “for
all p,q € L, if p ¥ g, then there exists an r which is compatible with p but incompatible

with ¢.” (in a Boolean logic: 7 = p A —q).

Proposition 46 For any consistency medium (X,=,C), for all p,q € T, if p < q, then
LC(q,p).

Apply the definition of LC to Proposition 45 above.
Proposition 47 For any consistency medium (X, =<,C), forallpe £, p e C — p € CC(p).

By the definition of C'C and reflexivity of <.
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Proposition 48 LC is reflexive.

By the definition of LC and the reflexivity of C .
Proposition 49 LC is transitive.

By the definition of LC and the transitivity of C .

Proposition 50 LC obeys dilution. Dilution can be defined relative to the ordering <.
The intuitive idea we are seeking to model is that increasing commitments in the premise or
decreasing commitments in the conclusion preserves consequence. For arbitrary consistency
medium (X, <, C), we define dilution as follows. If LC(p,q) then for any p* € ¥ such that
p = pt, and for any g~ € ¥ such that g~ < q, LC(p™,q7).

By Proposition 46 and the transitivity of LC.

Proposition 51 For any consistency medium D satisfying assumption Set CG with respect

to practice of categorization Tx,,, for alle, f € ¥p, e <p f and f € Cp implies e € Cp.

This proposition shows that if D satisfies assumption Set C'G with respect to 75, then
consistency is conserved as one moves down the ordering <p.

Proof:

1. Let D be an arbitrary consistency medium satisfying assumption Set CG with respect

to some practice of categorization 7y . Let e, f € ¥p.
2. Assume e <p fand f € Cp.
3. By D1, e <p f implies T, (f) C Tx (e).
4. By D2, f € Cp implies that Ty, (f) # @. So Ts,(e) # 2.
5. By D2, T, (e) # @ implies e € Cp.MProposition.

Proposition 52 For any consistency medium D satisfying assumption Set CG with respect

to practice of categorization Ts,,, for all p,q € ¥p, if p € CCp(q), then p € Cp.

By the definition of CC' and Proposition 51 above.
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4.5.2 Proof of the “intelligibility of compossibility”

Here we show that, under certain conditions, the relation C'Pis a proxy for compossibility.

Proposition 53 For any consistency medium D satisfying assumptions D1, D2, and D3a

with respect to practice of categorization Ty, for all p,q € Yp, CPp(p,q) iff Txy(p) N
Tsp(q) # 2.

This proposition shows that, if consistency medium D satisfies assumptions D1, D2,
and D3a with respect to 7x,,, then the structural relationship expressed by CPp(p,q)is

equivalent to the unintelligible semantic relationship of compossibility expressed by 7., (p)N

TZD(Q) 7é .

1. Let D be an arbitrary consistency medium satisfying assumptions D1, D2, and D3a

with respect to some practice of categorization 7y, .

(=)

1. Let p,q be elements of X p such that CPp(p,q).

2. [Show Tx,(p) NTx,(q) # 2]

3. Since CPp(p,q), 3y € Cp such that y »p p and y >p q.

4. y =p p implies Ts., (y) € Tx, (p), by D1.

5. y =p q implies T, (y) C Tx,(q), by D1.

6. y € Cp implies Ty, (y) # @, by D2.

7. 80 Ty (p) N Tz, (q) # 2. W(—)

(<)

1. Let p,q be elements of Xp such that 7y, (p) N Tx,(q) # 2.
2. [Show CPp(p,q), that is, Jy € Cp such that y »p pand y =p q] .
3. Let z € Ts, (p) N T3, (q).
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4. By D3a, we know that 3R C {p, ¢} 7, such that |J 75, [R] = Tx,(p) N Ts, (q)-

5. So there is an 7 € R such that z € Tg, (7).

6. By D2, r € Cp.

7. Sincer € {p, q}},, we know that r =p pandr >p ¢g. So CPp(p,q).M(—)MProposition.

Corollary 54 For any consistency medium D satisfying assumptions D1, D2, and D3a
with respect to practice of categorization Ty, for all p,q € £p, p € CCp(q) iff T, (p) N

Tsp (q) # 2.

This corollary claims that, if consistency medium D satisfies assumptions D1, D2, and
D3a with respect to 75, then for any assertion type p, membership in CCp(p) is equivalent
to compossibility with p. Immediate from Proposition 53 and the definition of CC.

4.5.3 Proof of the “Intelligibility of Consequence for the Set CG tech-

nique” theorem

Here we prove the intelligibility of consequence theorem for the Set CG technique.

Theorem 55 For any consistency medium D
and practice of categorization Ty, such that D satisfies assumption Set CG with respect to
TED;

it is the case that the proxy for consequence relation LCp is equivalent to the represen-
tational conception of logical consequence ALC(ED,TzD)

(that is, ¥V p,q € ¥p, CCp(p) C CCp(q) iff Tz, (p) C Tx,(q))

Let D be an arbitrary consistency medium satisfying assumption Set CG with respect

to practice of categorization 7y . Let p,q be arbitrary elements of ¥ p.

(=)
1. [Show CCp(p) C CCp(q) implies 75, (p) C Ts,(q).]
2. Assume T5,,(p) € Ts,(q)- [Show CCp(p) € CCp(q).]
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3. So Ju € Tx, (p) — Tz, (9).
4. By D3b, we know 3S CTp (p) such that |J Tz, [S] = Ts, (p) — Tn, (q).

5. So there is some s € S such that u € Tx, (s), further, s >p p, and Ty, (s) C
sz(p) - TED(q)

6. u € T, (s) implies s € Cp (by D2).

7. Since s >=p s (reflexivity of <), s =p p, and s € Cp, we know that s € CCp(p), by
the definition of CC.

8. [Claim: s ¢ CCp(q)]
(a) Assume s € CCp(q). [Show a contradiction.]

(b) By Corollary 54, Ts,,(s) N T, (q) # @.

(c) This contradicts Tx, (s) C T, (p) — T, (). MClaim.
9. So s ¢ CCp(q).M(—)
(<)
1. [Show Ts,,(p) € T (q) implies CCp(p) € CCp(q).]

2. Assume Tx, (p) C Ts,(q).

3. Case 1. Ty, (p) = @.

(a) [Show that CCp(p) = @]

(b) Assume 3z € CCp(p). [Show contradiction.]

(c) Then by the definition of CC, 3y € Cp such that y =p x, and y >p p.
(d) Since y € Cp, and y =p p, then p € Cp by Proposition 51.

(e) Then 75, (p) # @ (by D2). Contradiction.
)

(f) So CCp(p) = @, so CCp(p) C CCp(q) trivially.M(Case 1).

4. Case 2. Ty, (p) # @.
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(a) Let x € CCp(p).
(b) Then T, (x) N Tx, (p) # &, by Corollary 54 above.
(c) Since Tx,(p) € Tx,(q), we know T5;, () N Tx, (q) # @ as well.

(d) Then z € CCp(q) by Corollary 54 above.B(Case 2)M («—) MTheorem.

4.6 Corollary showing that the Set ('L technique makes con-

sequence intelligible

Here we prove the intelligibility of consequence corollary for the Set C'L technique.

Corollary 56 For any consistency medium D
and practice of categorization Ts,, such that D satisfies assumption Set CL with respect to
Ts.,,, 1t 1s the case that the proxy for consequence relation LLCp 1is equivalent to the repre-

sentational conception of logical consequence ALC<2D Ts,)
“Ep

1. Let D be an arbitrary consistency medium satisfying assumption Set C'L with respect

to practice of categorization 7y ;.

2. Then D satisfies assumption Set CG with respect to Ty, and further, D satisfies

assumption LL.

3. Under those conditions, (a) by Proposition 42, the relation LLCp is equivalent to
LCp; and (b) by Theorem 55 LCp is equivalent to the representational conception of

logical consequence ALC (Sp,Ts,)
! D

4. So LLCp is equivalent to ALC ( ) HCorollary.

b 7TED
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4.7 Exploring the cases in which the proxy relation LLC

makes consequence intelligible

4.7.1 Discussion

From Corollary 56, we know that when a consistency medium D satisfies assumption Set
CL with respect to the practice Ty, the proxy for consequence relation LLC is equivalent
to the representational conception of logical consequence. In order to understand LLC more
fully, it is instructive to characterize more accurately the cases in which that equivalence
(between LLC and representational consequence) holds. We carry out that characterization
in this section. We will focus our attention on cases in which the consistency medium under
consideration satisfies assumption Set CG with respect to the practice of categorization in-
terpreting its assertion types, but does not satisfy LL (that is, there are consistent assertion
types without maximal extensions). In all those cases, the Set CG proxy for consequence
relation LC is equivalent to representational consequence. We wish to ask the question: in
which of those cases is the Set CL proxy for consequence relation LLC' also equivalent to
representational consequence?

The key to the characterization is to recognize the interaction between an assertion type
with no maximal extensions and the relation LLC. If an assertion type p has no maximal
extensions, then Mazp(p)will be a subset of Maxp(g)for all ¢ € ¥p. So unless every
assertion type in Xp is a representational consequence (as expressed via ALC(ED,TED>)
of p, the proxy relation LLC will not be equivalent to consequence. We can express this
condition formally as follows:

(LLX) Ve € Cp, Mazp(c) =2 — (Vd € £p, T, (c) C Ty, (d))

It turns out that LLX exactly characterizes the cases in which

1. some consistency medium D satisfies the Set CG assumptions with respect to Ty,
2. D does not satisfy LL, and
3. LLC'is equivalent to consequence (ALC(ED,TED))'

We prove this claim below.
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4.7.2 Propositions

We have already proved the claim that if D satisfies LL, then LLCp = LCp. (Proposition
42).

Now we shall prove the claim:

Given that consistency medium D satisfies CG with respect to practice of categorization

Ts.,, and D does not satisfy LL, LLCp is equivalent to ALC ( ) just in case D satisfies

Zp,Ts,

LLX with respect to 7.

Preparation

In preparation, we take some theorems from modal logic and define and prove their repre-

sentational correspondents.

Interaction of consequence and extension From modal logic: If I'y A and T' C A,
then A by A. This proposition is given as 2.16(b) in Chellas 1980, 47.
We translate this into the following representational correspondent:

If qis a consequence of p, and r extends p, then gis a consequence of 7.
Proposition 57 Vp,q,r € Xp, if LCp(p,q) and p <p r then LCp(r,q)

By Proposition 46, and the transitivity of LC (Proposition 49).

Interaction of consequence and maximal extension From modal logic: Let " be a
Y-maximal set of sentences. Then A € T iff T' -y A. This proposition is given as 2.18.1 in
Chellas 1980, 53.

We translate this into the following representational correspondent.

Let zbe a maximal extension. Then z is a maximal extension of pjust in case p is a

consequence of z.
Proposition 58 Let x € Mazxp. Then p <p ziff LCp(z,p).

The proof of this proposition is found in Section 4.9 at the end of this chapter.
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Proof of scope of LLC

Proposition 59 Given that D satisfies CG with respect to Tx,, and D does not satisfy
LL, LLCp is equivalent to ALC’<2D T >zﬁ°D satisfies LLX with respect to Ty, .
»CHD

The full proof of this proposition is found in Section 4.9 at the end of this chapter.

The left to right direction of the proposition is quick. If D does not satisfy LLX, then
the statement of LLX provides a counterexample to representational consequence.

The right to left direction of the proposition is more involved. We assume LLX, and
then show both directions of the “intelligibility equivalence.”

The left to right direction of the “intelligibility equivalence” uses ideas from the proof
of Theorem 2.20(1) in Chellas 1980, 57. The proof is of the contrapositive, (e.g. assuming
that ¢ is not a representational consequence of p and showing that LLCp(p,q) is false).
The assumption asserts the existence of a possibility in 7s, (p) — Tx,(¢), which by D3b
guarantees an assertion type s whose possibilities are within 75, (p) — 75, (q). Given LLX,
swill have a maximal extension; but that maximal extension cannot extend q.

The right to left direction of the “intelligibility equivalence” is easy, since we know that
D satisfies CG with respect to 7Ty, so ALC(ED,’E:D) is equivalent to LCp which implies
LLCp.

4.8 Proofs that the ordered set (P(W FF), C) satisfies the con-
ditions of monotonic extension of commitment and weak
extensibility with respect to any conventional interpre-

tation of the P(W F F)-language of propositional logic

4.8.1 Overview

We begin this section with a presentation of a series of new concepts: partially ordered
truth media, operators on interpreted truth media, a property of truth media nega-
tion complete with respect to models, and two properties of partially ordered truth

media monotonic extension of commitment with respect to models and weak ex-
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tensibility with respect to models. As a part of the discussion, we will introduce some
general propositions with respect to those concepts. These concepts and propositions
will be generally useful beyond the proofs in this chapter. In particular, we will
use them in the proofs in Part IV. Following presentation of the new concepts and propos-
tions, we will use them in giving the proof that the ordered set (P(WFF), C) satisfies the
conditions of monotonic extension of commitment and weak extensibility with respect to

any conventional interpretation of the P(W FF')-language of propositional logic.

4.8.2 The concept of partially ordered truth media

Above we defined the structure of a truth medium as the triple (X, M, t) where
¥ is a set of assertion types,
M is a set of models, and
tis a function from ¥ to P(M).

We can extend this concept to that of a partially ordered truth medium, which is
a truth medium where the set ¥ of assertion types has a partial order < defined upon it.
For partially ordered truth medium A, we refer to the partial order on ¥4 by <4. (This is

an abbreviation of the more formal <y ).

4.8.3 Operators on interpreted truth media

A unary operator uopon interpreted truth media, is one which takes an arbitrary
truth medium A and the practices 7y, and 77, by which it is interpreted, and from them,

and Ty by which

constructs a new truth medium uop(A), and the practices Ty on(A)

uop(4)
uop(A) is interpreted.

A binary operator bopon interpreted truth media, is one which takes an arbitrary
truth medium A and the practices 7x,, and 7z, by which it is interpreted, and an arbitrary
truth medium B and the practices 7y, and 7Tps, by which it is interpreted, and from them,
constructs a new truth medium bop(A, B) and the practices TS pop(asy 20d TMyopia, 5 DY
which bop(A, B) is interpreted.

We can see that the results of these operators are interpreted truth media as well.

This concept of operators on interpreted media was inspired by the general approach in
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Barwise and Seligman 1997. It will enable us to move relations of consequence from one

context to another.

4.8.4 The operator pow

In this section, we define a unary operator on interpreted truth media pow.

Given an arbitrary truth medium Aused with respect to practices of categorization
75, and Ty,
the operator pow constructs a partially ordered truth medium pow(A),

and derived practices of categorization TEpow 4 and TMPW( 4 defined as follows:

(

Truth medium pow(A):

o Epow(A) = P(EA>
® =pow(4)is defined as the inclusion order on X5y (4)
b Mpow(A) = My

® thow(A) * Zpow(A) = P(Mpow(a)) is defined as follows:
for any S € Xpou(4), tpow(a)(S) = if S = @ then [ Jt4 [E4]else (4 [S]

Derived practices 75, 4 and Ty,

( ow(4)

® 5, uiny * Zpow(a) — P(U)is defined as follows:

for any S € Ypou(a), s (S) =if S = @ then |J Ty, [E4]else N Tx, [S]

pow(A)

L TMP Mpow(A) - P(U) = TMA

ow(A) -
4.8.5 A property of truth media: negation completeness with respect to
models

Negation completeness is a property of truth media. Given an arbitrary truth medium A,

we say that Ais negation complete with respect to models iff Vp € ¥4, IR C ¥4
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such that (Jta [R] = Jta[Z4] — ta(p). Let us explore what this property means. Given a
truth medium A, there is the set | Jt4 [£4]. This set is the set of those models which are
models of some assertion type of A. | Jt4[E4]is a subset of the set My of all models for
the truth medium A. For any particular assertion type p € ¥4, we can form the expression
Uta [24] —ta(p). This is the set of models which are models of some assertion type, but
which are not models of p. What the negation complete with respect to models condition
tells us is that for every assertion type p € ¥ 4, there is a set of assertion types R C ¥4, such
that the models of the elements of R (taken together) are exactly equal to | Jta [Ea] —ta(p).
What that means is that if a disjunction d of the elements of R could be formed, the models
of d and the models of p would be disjoint, and the models of d and the models of p would

together exhaust the set of models in which some assertion type is true.

Example 1: A truth medium which is not negation complete with respect to

models

Consider the truth medium Roll from Section 3.4. In that case:
Y rou = {odd, greaterThanFour, five},
MRoll ={1, 2, 3, 4, 5, 6}, and

trou Was given by the following table:

P € ZRou tRou(P)
odd {1,3,5}
greaterThanFour | {5,6}
five {5}

Roll is not negation complete with respect to models. Consider for example, the assertion
type odd € Y goy. There is no set of assertion types R C gy for which (Jtgoy [R] =
UtRott [ERrou] — ta(odd) = {1,3,5,6} — {1,3,5} = {6}.

Example 2: A truth medium which is negation complete with respect to models

Now let us look at an example of a truth medium that is negation complete with respect to
models. Consider the truth medium R2, defined as follows:

Y ro = {odd, greaterThanFour, five,one,three,six},
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Mgy ={1,2,3,4,5,6}, and
tre is given by the following table:

pE TR tra(Pp)
odd {1,3,5)
greaterThanFour | {5,6}
five {5}
one {1}
three {3}

six {6}

So Utre [ERre] = {1,3,5,6}. Now we can see that, for every element p of Zgo, there is
an R C Xy such that (Jtga [R] = Jtr2 [Zr2] — tra(p)-

P € XRo tre(p) | R € Xgo such that |Jtre [R] = Utr2 [ERr2] — tr2(p)
odd {1,3,5} | {siz}

greaterThanFour | {5,6} {one,three}

five {5} {one, three, siz}

one {1} {three, five, siz}

three {3} {one, five, siz}

Six {6} {one, three, five}

4.8.6 A property of partially ordered truth media: monotonic extension

of commitment with respect to models

We have defined monotonic extension of commitment as a property of an ordered set of
assertion types (X, <) with respect to a practice of categorization 7s. Truth media support
a closely related property which we call “monotonic extension of commitment with
respect to models.” Given a partially ordered truth medium A, Asatisfies monotonic
extension of commitment with respect to models iff Vp,q € ¥4, if p <4 gthent4(q) C ta(p).

Monotonic extension of commitment with respect to models is a property that a truth
medium has independently of its interpretation. There is a proposition which links the
property of monotonic extension of commitment with respect to models with the property

of monotonic extension of commitment.
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Proposition 60 For any partially ordered truth medium A, and practices of categoriza-
tion Tx, and Ty,, such that A satisfies assumption Bl with respect to Ty, and Ty, , if
A satisfies monotonic extension of commitment with respect to models then (X4, =<4) satis-

fies monotonic extension of commitment with respect to Tx,,.

The proof is in Section 4.9 below.

In a way, one can see the property of monotonic extension of commitment for the ordered
set of assertion types in a partially ordered truth medium (considered relative to the practice
of categorization that interprets them) as factored into two aspects: that portion borne by
assumption B1; and another part which we have characterized as monotonic extension of

commitment with respect to models.

4.8.7 The property of weak extensibility with respect to models

We have defined weak extensibility as a property of an ordered set of assertion types
(X, %) with respect to a practice of categorization 7yx.Truth media support a closely re-
lated property which we call “weak extensibility with respect to models.”

A partially ordered truth medium A is weakly extensible with respect to models iff

a) For every p,q € ¥4, 3R C {p, ¢} such that {Jt4 [R] = ta(p) Ntalq)

b) For every p,q € ¥4, 35S C T4 p such that | Jt4 [S] = ta(p) —talq)

Note: {p,q}s = (TapN T4 9)

Weak extensibility with respect to models is a property that a truth medium has in-
dependently of its interpretation. There is a proposition which links the property of weak
extensibility with respect to models with the property of weak extensibility. There are two
lemmas which support the proposition, we present them first. Proofs of the lemmas and

the proposition can be found in Section 4.9.

Lemma 61 Given arbitrary truth medium A, and practices of categorization Ts,, and Ty, ,
if A satisfies assumption Set PP with respect to Ts;, and Ty, , then

for any R C L4, for all p,q € L4, if Jta [R] = ta(p) Ntalqg), then |UTx, [R] = Tx,(p) N
Ts,(q)-
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Lemma 62 Given arbitrary truth medium A, and practices of categorization T, , and Ty, ,
if A satisfies assumption Set PP with respect to Ts;, and Ty, , then

for any § C X4, for all p,q € B4, if Uta[S] = ta(p) —ta(a), then UTs, [S] = Tz ,(p) —
T, (a)-

Proposition 63 Given an arbitrary partially ordered truth medium A and practices of
categorization Ts,, and Ty, , if A satisfies assumption set PP with respect to Ts., and Ty,
then if Ais weakly extensible with respect to models, then the partially ordered set (¥4, <4) is

weakly extensible with respect to Ts; , .

In a way, one can see the property of weak extensibility for the ordered set of assertion
types in a partially ordered truth medium (considered relative to the practice of cate-
gorization that interprets them) as factored into two aspects: that portion borne by the
technique-specific assumptions in Set PP; and another part which we have characterized

as weak extensibility with respect to models.

4.8.8 Constructing partially ordered truth media which satisfy monotonic
extension of commitment and weak extensibility using the operator

pow

These two propositions show how applying the operator pow to an interpreted truth medium,
yields a partially ordered interpreted truth medium which satisfies both monotonic extension

of commitment and weak extensibility.

Proposition 64 For any truth medium A, pow(A) satisfies monotonic extension of com-

mitment with respect to models.

The proof of this proposition can be found in Section 4.9. The proof follows from the

definition of the function tpey.

Proposition 65 Given that A is a truth medium that is negation complete with respect to

models, pow(A) is weakly extensible with respect to models.

The proof of this proposition can be found in Section 4.9. It is detailed, but the essential

ideas are present in the discussion of weak extensibility in Section 4.3.6.
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4.8.9 Proof that the ordered set (P(WFF),C) satisfies the conditions of
monotonic extension of commitment and weak extensibility with
respect to any conventional interpretation of the P(W FF)-language

of propositional logic

Our task in this section is to show the following proposition.

Proposition 66 The ordered set (P(WFF),C) satisfies the conditions of monotonic ex-
tension of commitment and weak extensibility with respect to any conventional interpretation

of the P(WFF)-language of propositional logic.

The proof of this proposition is slightly tricky... but only because of navigating some
terminological details. Most of the work has already been done for us in the concepts and

propositions above.

1. Our first question is: what counts as a “conventional interpretation of the P(WFF)-
language of propositional logic”? You will recall that in Section 3.5.3, when we
were using the Set E technique to model the relation of logical consequence for the
P(WFF)-language of propositional logic, we gave semantic conventions which de-
scribed acceptable pairs of interpretations, one for the elements of P(W FF') and one
for TT A. (See Definition 40). A conventional interpretation of the P(W F'F')-language
of propositional logic just is the P(WFF) portion of those conventions. To be clear,

we state that portion here.

e A practice of categorization Tpwpp) : P(WFF) — P(U)is an acceptable inter-
pretation of P(WFF), provided that

(a) there exists a function f : §S — P(U)that is an acceptable interpretation
of the sentence symbols, and
i. (P(WFF) interpretation conditions)
e There exists an interpretation Ty pp of WFF that satisfies SIM and

COM with respect to f,
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such that VP € P(WFF),
Tpwrr)(P) = (if P = @ then Uelse (" Twrr [P])-

2. The next step is to form a partially ordered truth medium PTO, which is PT with
an inclusion ordering added on the set of assertion types P(WFF). That is, PTO =
((P(WFF)a g) 7TTA7tPT> .

3. Recall that ST = (WFF,TTA,tsr) . (It was defined in Section 3.5.2). We can now
show that PTO = pow(ST).

(a) Applying powto ST (and arbitrary practices of interpretation) we get:

b Epow(ST) = P(WFF)
® =pow(sT) is the inclusion order on P(W FF)

o M

pow(ST) — TTA

® toow(sT) : P(WFF) — P(TTA)is defined as follows:
for any S € P(WFF), tpow(st)(S) = if S = @ then (Jtsr [WF F]else Ntsr [S]

(a) Since|Jtsr [WFF] =TT A (the models of any sentence and its negation together

exhaust the set of total truth assignments, by the definition of F), t,ouw(sT) = tPT

(b) Together the above show that PTO = pow(ST).

4. Now we can apply Proposition 64, and know that pow(ST'), and therefore PTO sat-

isfies monotonic extension of commitment with respect to models.

5. Then we have to show that ST is negation complete with respect to models (in order

to apply Proposition 65).

(a) Claim: The truth medium ST = (WFF,TTA,tsr)as constructed is negation

complete with respect to models.

(b) Since Jtsr [WFF]=TTA, for any arbitrary p, R = {€-(p)} satisfies the nega-

tion completeness condition.
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6.

10.

11.

12.

Then we can apply Proposition 65, and know that pow(ST), and therefore PTO is

weakly extensible with respect to models.

To complete the proof, we want to use Propositions 60 and 63. These propositions
allow us to bridge from a truth medium satisfying properties of monotonic extension
of commitment with respect to models and weak extensibility with respect to models;
to interpreted ordered sets of assertion types satisfying monotonic extension of com-
mitment and weak extensibility proper. But to use those propositions, we need to
show that PTO satisfies Set PP with respect to practices of categorization interpret-
ing both P(WFF) and TTA. As of yet, we have no interpretation of TT A to work
with.

. Here is where we bring in the given practice of categorization 7pw pr). From Tpw rr)

we can create an interpretation 7rr4 such that together the interpretations 7py rr)
and 77T 4 satisfy the conventions for mutually acceptable interpretations of P(W F'F')
and TT A as specified in Definition 40. This construction is obvious...

we just use the interpretations of the sentence-symbol singletons (e.g. {Ap})

in P(WFF) by T’P(WFF) as the basis.

Given that Tpay ppyand Trrasatisfy those conventions, we can apply Proposition

41, and know that truth medium PT satisfies assumption Set E with respect to

Tpwrr)and Trra.

Applying Proposition 13, we know that PT satisfies assumption Set PP with respect
to Tpawrr)and Irr4. Since PTO = PT plus ordering, and nothing in Set PP refers
to ordering, we know that partially ordered truth medium PTO satisfies assumption

Set PP with respect to Tpgy pryand T7r4 as well.

Applying Proposition 60 to PTO, Tpwrryand Trra, we get (P(WFF), C)satisfies

monotonic extension of commitment with respect to Tpw rr)-

Applying Proposition 63 to PTO, Tpw rr)yand Trra,we get (P(WFF),C) is weakly

extensible with respect to Tpy pr).l
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This concludes the linear text of the chapter. The remainder of the material in this

chapter are the proofs of propositions mentioned earlier in the text.

4.9 Proofs of propositions from the text

Proof of Proposition 58:
(Proposition 58) Let z € Maxp. Then p <p ziff LCp(z,p).

Let x € Maxp.

(=)

1. Assume p <p z. Then LC(z,p) by Proposition 46.H (—)

(<)

1. Assume LCp(z,p). [Show p <p z]

2. Assume p Ap z. Show contradiction.

3. Now z € CCp(x)since z € Cp and z =p .

4. [Claim z ¢ CCp(p)]

(a) Assume z € CCp(p). So 3y € Cpsuch that y »=p z and y >=p p.
(b) y # « since otherwise = > p p.

(c) Soy >p z. Since x € Maxp, y ¢ Cp. Contradiction.MClaim.
5. So z ¢ CCp(p). So ~LCp(z,p). Contradiction.M (—) MProposition.

Proof of Proposition 59:
(Proposition 59) Given that D satisfies CG with respect to 7x;,,, and D does not satisfy

LL, LLCpis equivalent to ALC’< iff Dsatisfies LLX with respect to 7s;,.

=0, Tsp)
Let D be a consistency medium, and 75, a practice of categorization, such that D

satisfies CG with respect to 7x,, and D does not satisfy LL.
(=)
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1. Assume that D does not satisfy LLX with respect to 7x,.
2. Then 3c € Cp, such that Mazp(c) = @ and 3d € Tp, Tz, (c) € Tx,(d).
3. Since Mazp(c) = &, then Maxp(c) C Mazp(d), so LLCp(c,d).

4. But ﬁALC(ED’TEDﬂC, d) -(—>)

(<)
This direction of the proof uses ideas from the proof of Theorem 2.20(1) in Chellas 1980,
57.

1. Assume that D satisfies LLX with respect to Tx .

2. | Show that Vp,q € Sp, LLCp(p,q) iff ALC5,, 7. ) (p,q)]

(a) Let p,q € Tp.
(b) (=)
i. Assume ﬂALC’<2D,TZD>(p,q), that is, Ts, (p) € T, (q)-

Show ~LLCp(p,q), that is, Mazp(p) € Mazp(q),
i.e. 3z € Maxp such that z =p p and z ¥p q.
iii. Since Tz, (p) € T2, (9), Top(p) — Top(q) # 2.
iv. Since D satisfies D3b with respect to 7z, 35 CTp (p) such that |y 75, [S] =
Tzp(p) — Tp (0)-
v. Let u € Ty, (p) — Ts, (9)-
vi. Then 3s € Ssuch that u € Ty (s).
vii. Since D satisfies D2 with respect to 7y, s € Cp.
viii. Further, 7., (s) C T, (p) — Tn(q); and Ty, (s) € Tx,(q) since u € Ty (s)
and u ¢ Tx,(q).
ix. Given that D satisfies LLX with respect to Tx,, we know that Mazp(s) =
& = Tuy(s) € T, (@)
x. So Maxp(s) # @.

xi. Let z € Maxp(s). So x € Maxp, and x > p s.
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xii. Since s € S, and S CTp (p), s =p p.
xiii. By transitivity, z =p p.
xiv. So x € Mazxp(p).
xv. [Claim: = ¥#p q]
A. Assume z *p q.
B. By Proposition 58, LCp(z, q).
Since D satisfies Set CG with respect to Ty, T, (z) C Tn,(q).
Recall that z >p s. By Proposition 58, LCp(z, s).

Since D satisfies Set CG with respect to T, Ts, (z) C T, (8).

M H U O

Since x € Mazp, = € Cp; so since D satisfies D2 with respect to 75,

Top(w) # 2.
Let v € Ty, (x).

@

H. Then v € 7, (q) and v € T (s).
I. But T, (s) C Ts,(p) — T2, (q), so v ¢ Tx,(q). Contradiction.MClaim.
xvi. So z %#p q.M(—)
(© (<)
i. {Show ALC<2D;T)3D> (p,q) implies LLCp(p, q)}
ii. Assume ALC<2D,TZD> (p,9q).
iil. Since D satisfies Set CG with respect to 7, LCp(p, q).

iv. By Proposition 43.H (+) MProposition.

Proof of Proposition 60:

(Proposition 60) For any partially ordered truth medium A, and practices of catego-
rization 7y, and Tjz,, such that A satisfies assumption B1 with respect to 7s, and Tpy,,
if Asatisfies monotonic extension of commitment with respect to models then (¥4,=<4)

satisfies monotonic extension of commitment with respect to 7x,.

1. Let A be a partially ordered truth medium A, and 7x, and 7js, practices of cat-
egorization, such that A satisfies assumption B1 with respect to 7y, and Ty, and

A satisfies monotonic extension of commitment with respect to models.
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2. [Show Vp,q € ¥4 if p <4 gthen 75, (q) C 75, (p)]
3. Let p, g be arbitrary elements of ¥4 such that p <4 ¢q.

4. Since A satisfies monotonic extension of commitment with respect to models we know

that t4(q) Cta(p).

5. Since Asatisfies assumption B1 with respect to 75, and 7y,,
we know (U7, [ta(p)] = T, (p)) and (U7, [t4(9)] = T54(9)-

6. Let u € 75, (q).

7. Then there is an m € t4(q) such that u € Ty, (m).
8. Since t4(q) C ta(p), m € ta(p).

9. Sou € Ty [ta(p))-

10. So u € 75, (p).MProposition.

Proof of Lemma 61:

(Lemma 61) Given arbitrary truth medium A, and practices of categorization 75, and
Ty, if A satisfies assumption set PP (i.e.A4, A5, B1) with respect to Ty, and Tjs, , then
for any R C X4, for all p,q € X4, if Jta [R] = ta(p) Ntalg), then JTs, [R] = Ts,(p) N
T54(9)-

1. Let A be an arbitrary truth medium, and 75, and 7)s, practices of categorization,
such that A satisfies assumption set PP (i.e.A4, A5, B1) with respect to 75, and
Tn,- Further, let R C ¥4, and p,q arbitrary elements of ¥ 4, such that | Jt4 [R] =

ta(p) Nta(q). [Show UTz, [R] = T5, (p) N T2, (9)]
2. (©)
(a) Let ue | JTs, [R]-
(b) Then there is some 7 € R such that u € Ty , (7).

(c) Since A satisfies assumption B1 with respect to 7y, and Ty, and r € Xg4,

U7, [ta(r)] = Ts (7). So there is some m € t4(r) such that u € Ty, (m).
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(d) Som e Jtal[R].
(e) Som €ta(p) and m € t4(q)

(f) Since A satisfies assumption B1 with respect to 75, and Tjs,, and p,q € 4, we

have |J 7w, [ta(p)] = Ts,(p) and U7, [ta(g)] = Tz, (q)-
(g) SoueTy,(p) and u € Ty, (q).MC

3. (2)

(a) Let u € Ty, (p) and u € T, (q).

(b) Since A satisfies assumption B1 with respect to 7s,, and 73s,, and p,q € T 4, we
have 7w, [ta(p)] = T, (p) and U T, [t4(9)] = T5,4(9)-

(c) So there exists x € t4(p) such that v € Tpr,(x) and y € t4(q) such that u €
Thia(y)-

(d) Since A satisfies assumption A4 with respect to Typs,, z = y.

(e) Sozets(p)Ntalq).

(

(g) Since A satisfies assumption Bl with respect to 75, and Tjs,, and r € X4,
UTasa [ta(r)] = T, (7).

(h) Since u € Ty, (z) and x € t4(r) we have u € Ty, (7).

)
)

f) So x € t4(r) for some r € R.
)

(i) Sincer € R, u € |J7x, [R].H (D) MLemma.

Proof of Lemma 62:

(Lemma 62) Given arbitrary truth medium A, and practices of categorization 7y, and
Ty, if A satisfies assumption set PP (i.e.A4, A5, B1) with respect to 7s,, and 737, , then
for any S C X4, for all p,q € Xy, if Jta [S] = ta(p) —talq), then YTz, [S] = T5,(p) —
T34(9)-

1. Let A be an arbitrary truth medium, and 7x, and 737, practices of categorization,
such that A satisfies assumption set PP (i.e.A4, A5, B1) with respect to 73, and
Ty

ta(p) —ta(g)- [Show Tz, [S] = Ts,(p) — T54(9)]

Further, let S C X4, and p,q arbitrary elements of X4, such that (Jt4[S] =
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2. (©

(a) Let u e |J7Tx, [S)
(b) Then there is some s € S such that u € 75, (s).
(c) Since A satisfies assumption Bl with respect to 7x, and Tps,, and s € T4,
UTna fEa(s)] = Tz s (s).
(d) So there is some m € t4(s) such that u € Ty, ().
(e) Since s € S, m e Jta[95].
(f) Since Jta[S] =ta(p) —ta(q), m € ta(p) and m & t4(q).
(g) Since A satisfies assumption B1 with respect to 75, and Tpr,, and p € 4, we
have | T, [tA(P)] = Tz, (p).
(h) So u € Ts ,(p).
() [Claim: u ¢ T, (0)]
i. Assume u € 75, (q). [Show contradiction]
ii. Since A satisfies assumption B1 with respect to 7, and 7y, and q € X4,
we have |J 7, [ta(9)] = Tx,(q)-
ili. Then there exists an n € t4(q) such that u € Ty, (n).

iv. Since A satisfies assumption A4 with respect to Ty, , and u € Ty, (m) and

u € Tpr,(n) we know m = n.

v. So m € ta(q). Contradiction.MClaim.

(j) Sou € 7Ts,(p) — 7 ,(q) M(C)
3. (2)

(a) Let u € Tx,(p) and u ¢ Tz, (q).

(b) Since A satisfies assumption Bl with respect to 7x;, and Tjs,, and p,q € X4, we
have |J T, [ta(P)] = T, (p) and UTw, [ta(9)] = T5,(9)-

(c) So there exists « € t4(p) such that u € Ty, ().
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(d) There does not exist a y € t4(q) such that u € Ty, (y), for if there was such a y,
then u € Tx,(q).

(6) So in particular, = ¢ £4(q).

(f) Soz € ta(p) —talg).

(g) Since (Jta [S] =1ta(p) —ta(q), x € Uta[S].
(h) So x € ta(s)for some s € S.

(i) Since A satisfies assumption B1 with respect to 7y, and Tar,, and s € 4, we
have |7, [ta(s)] = T ,(s).
(j) Since u € Tpr,(x) and = € ta(s) we have u € Ty, (s).

(k) Since s € S, we have u € |75, [S].l (D) MLemma.

Now we can present the proposition linking weak extensibility with respect to models
and weak extensibility.

Proof of Proposition 63:

(Proposition 63) Given an arbitrary partially ordered truth medium A and practices
of categorization 7x, and 7jy,, if A satisfies assumption set PP with respect to 7y, and
Tum,, then if Ais weakly extensible with respect to models, then the partially ordered set

(¥4, 24)is weakly extensible with respect to 7y,.

1. Let A be an arbitrary truth medium, and 7y, and 77, practices of categorization,
such that A satisfies assumption set PP (i.e.A4, A5, B1) with respect to 7, and Tz, ,

and Ais weakly extensible with respect to models.

[ Show: ]
(Part a)
2. | Vp,q e ¥4 (3R C {p,q}} such that |J7g, [R] =Ts,(p) N T5,(q))
(Part b)
Vp,q € £4 (35 CTa (p) such that Tz, [S] = T,(p) — Tx,(9))

3. (Part a)

(a) Let p,qbe arbitrary elements of ¥ 4.
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(b) Since A is weakly extensible with respect to models, we know that
3R C {p,q}} such that (Jta [R] = ta(p) Nta(q).
(c) By Lemma 61 we have |75, [R] = 75, (p) N Ts,(q)-

(d) So R satisfies the existential claim for Part a. B(Part a.)

4. (Part b.)

(a) Let p,qbe arbitrary elements of ¥ 4.

(b) Since A is weakly extensible with respect to models, we know that
35 C (14 p) such that Jt4 [S] = ta(p) — ta(q)

(c) By Lemma 62 we have |J 7, [S] = Ts,(p) — Tx,(q)-

(d) So S satisfies the existential claim for Part b. B(Part b.)MProposition.

Proof of Proposition 64:

(Proposition 64) For any truth medium A, pow(A) satisfies monotonic extension of

commitment with respect to models.

Let A be an arbitrary truth medium. Let P,Q be arbitrary elements of ¥,,,,4), such
that P =pua) Q-

[Show tpow(a)(Q) S tpow(a)(P)]

By the definition of <po(4), P C Q.

We split into four cases: 1) P=0,Q =2;2) P=2,Q # @;3) P # 0,Q = @;4) P #

2,Q# 2.
(Case 1) P=2,Q =0

L. tpow(a)(P) = tpow(4) (@) = Uta [24] by the definition of pow.
2. So tpow(A) (Q) - tpow(A) (P).(Ca’se 1)

(Case 2) P=02,Q # &

L. tpow(a)(P) = Uta[X4] by the definition of pow.

2. tpow(4)(Q) = [1ta [Q]by the definition of pow.
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3. Since Q C X4, tpow(A) (@) C tpow(A) (P)H(Case 2)

(Case3) P# 2,Q =@
This case is not possible, since P C QE(Case 3)
(Case 4) P # 2,Q # @

L. tpow(ay(P) = [ta [P]by the definition of pow.
2. tpow(a)(Q) = (ta [@]by the definition of pow.

3. Since P C @, tpow(4)(Q) C tpow(a)(P).M(Case 4)MProposition.

Proof of Proposition 65:
(Proposition 65) Given that A is a truth medium that is negation complete with respect
to models, pow(A) is weakly extensible with respect to models.

Let A be an arbitrary truth medium that is negation complete with respect to models.

(Part a)
Show for every P,Q € Zpou(a),

ar c {P Q}pow(A such that Utpow(A) [F] = tpow(A) (P) N tpow(A)(Q)

Claim: T' = {P U Q} satisfies the existential claim above. Note that P =<,5,4) P U@,
and Q Zpow(a) PUQ, so {PUQ}I C{P,Q},,, 4

[Show tpow(a) (P U Q) = tpow(a)(P) N tpow(a)(Q)]

We split into four cases: 1) P=2,Q =@;2) P=2,Q # @;3) P# 9,Q = &;4) P #

2,Q# 2
(Case 1) P=02,Q =0

L. tpow(a)(P) = tpow(a)(Q) = Uta [E4] by the definition of pow.

2. PUQ = @ 50 tpoua)(PUQ) = Jta[24] by the definition of pow.
3. 80 tpow(a) (P UQ) = tpow(a)(P) N tpow(4)(Q) M(Case 1)

(Case 2) P=02,Q # @

L. tpow(a)(P) = Uta [Z4] by the definition of pow.
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2. tpow(4)(Q) = [t4[Q]by the definition of pow.

3. Since @ C 24 and Q # @, tyow(4)(Q) C tpow(a)(P)

4. 50 tpow(a)(P) N tpow(a) (@) = tpow(a)(Q)

5. Since P=@,PUQR=Q

6. S0 tpow(a) (P U Q) = tpouw(a)(Q) = tpow(a)(P) N tpow(a)(Q)M(Case 2)

(Case 3) P#£ 2,0 =0
Same as Case 2, but with P, @) reversed.l(Case 3)
(Case 4) P# 2,Q # @

L. tpow(a)(P) = [1ta[P]by the definition of pow.
2. tpow(a)(Q) = [ta [@]by the definition of pow.

3. 50 tpow(a) (P) Ntpow(a) (@) = Nta [P U Q] = tpouw(a) (P U Q), since PUQ is non-empty
in this case.M(Case 4)

M(Part a)

(Part b)
Show for every P,Q € Zpou(4),

3A C (Tpow(a) P) such that | tpow(a) [A] = tpow(a) (P) — tpow(a)(Q)
Let P,Q be arbitrary elements of 3,,,,(4). That is, P,Q C X 4.

We split into four cases: 1) P = 0,0 =2;2) P=2,Q # @;3) P # 0,Q = @;4) P #
2,Q# 2
(Case 1) P=02,Q =0

L. tpow(a)(P) = tpow(4)(Q) = Uta [E4] by the definition of pow.

2. So tpow(A)(P) - tpow(A)(Q) =g

3. If we take A = @, then the existential claim for part b is satisfied.l(Case 1)

(Case 2) P=2,Q #©
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- tpow(a)(P) = Uta [X4] by the definition of pow.

[N

- tpow(4) (@) = [t4[Q] by the definition of pow.

3. 50 tpow(a)(P) = tpow(a)(Q) = Uta[Za] —Nta Q]

4. Let Y = {Z € Tpoua) | Uta[Z] = Uta[Za] —ta(q) for some g € Q}

5. Form the set A = {{y} |y e UY}.

6. Note that since P = &, every element of A is in Tpeu(a) P, 50 A C (Tpow(A) P) .
7. [Claim: Utpow(a) [A] = Uta [Za] — Nt4[Q]]

8. Showing this claim will show that A satisfies the existential claim for part b.

9. The claim is identical to: {Claim: U tpowa) {y}) =Uta[Za]l —Nta [Q}}
yelJY

10. Let ybe an arbitrary element of (JY. Then {y} is nonempty. Then #,0,4) ({y}) =

Ntal{y} = ta(y).

11. So the claim is identical to: {Claim: U taly) =UtaZa] - Nta [Q]]
yelvY

12. ()

(a) Let me U ta(y)
yeJY
(b) So there is a y € [JY such that m € t4(y).
(c) So there is a Z € Y such that y € Z.
(d) Z has the property that (Jta [Z] = Uta [Za] — ta (¢) for some g € Q.
(e) Sincey € Z, and m € t4(y), m € Jta [Z].
(f) Som € |Jta [X4], and there is a ¢ € Q such that m ¢ t4(Q).
(g) SomeUta[Za] —Nta[QIM(S)
13. (2)

(a) Let m e Jta[Xa] —(ta Q]
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(b) Som € Jta[Xa] and m ¢ [ta[Q].

(c) Since @ is nonempty in this case (Case 2) there is some ¢ € @ such that m ¢
ta(q)-

(d) Since A is negation complete with respect to models, and ¢ € £ 4, 3R C ¥4 such

that
Uta[R] =Uta[X4] —ta(g). Pick some such R.

(e) SoReY.

(f) Further, m € |Jt4 [R], since m € |Jta [X4] and m & t4(q).
(g) Som € t(r)for some r € R.

(h) Sincer€ Rand ReY,re|JY.

(i) Some |J ta(y)®(2)M(Claim)M(Case 2)
yelJY

(Case ) P# 2,Q =0

L. tpow(a)(P) = ta [P] by the definition of pow.

2. tpow(4)(@) = Uta [X4] by the definition of pow.

3. Since P C ¥4 and P # &, tpow(4)(P)  tpow(a)(Q) 50 tpow(a)(P) = tpow(a)(Q) = 2.
4. If we take A = @, then the existential claim for part b is satisfied.l(Case 3)
(Case 4) P £ 2,Q # @

L. tpow(a)(P) = (ta[P] by the definition of pow.

2. tpow(4)(Q) = Nta[Q] by the definition of pow.

3. 50 tpow(a)(P) = tpow(a) (@) = Nta [P] —Nta[Q].

4. Consider the set Y from Case 2.

5. Form the set A ={PU{y} |y eJY}.

6. Note that for all S € A, PC S,s0 S " pow(A) > 80 S €Tpow(a) P, s0 A CTpow(a) P-
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7. [Claim: Jtpou 4) [A] =N ta[P] —Nta[Q]] . By showing this claim, we show that A

satisfies the existential claim for part b.

8. Let S be an arbitrary element of A. Since § = P U {y} for some y € |JY, we know

that S is nonempty.
9. S0 tpow(a)(S) = (1t4[S] by the definition of pow.

10. [Clairn restated: |J (Nta[S]) =NtalP] —NtalQ]

SeA

11. (Q)

(a) Let me |J (NtalS)).

SeA
(b) So there is an S € A such that, for every s € S, m € t4(s).

(c) Since S € A, we know P C S (by definition of A).

(d) So for every p € P, m € ta(p).

(e) Since P # &, m € (\ta[P].

(f) Since S € A, there is some y € | JY, such that y € S.

(g) Som € ta(y)-

(h) Further, there is a Z € Y such that y € Z.

(i) Zhas the property that | Jt4 [Z] = Jta [2a] — ta(q) for some ¢ € Q.
(j) Sincey € Z and m € t4(y), m € Jta[Z]

(k) So there is a ¢ € @ such that m ¢ t4(q). B(C)
12. (D)

(a) Let m € Nta[P] —Nta Q)
(b) So for every p € P, m € t4(p); and for some ¢ € Q, m ¢ ta(g). Recall that
Q@ # @ in this case (Case 4).

(c) Pick some p € P. We know one exists since P is nonempty in this case (Case 4).

(d) Since P C 34, p € Ea.
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(e) Som e Jta [Za] —Nta Q]

(f) By argument in Case 2, D, we know that m € |J ta(y).
yel Y

(g) So there is a y € |JY such that m € t4(y).

(h) So there is an S € A specifically S = P U {y}, such that m € [t4 [S]. W (D)
B(Case 4)M(Part b)MProposition.
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Chapter 5

Applications of Order-consistency

Representational Techniques

5.1 Introduction

In this dissertation we explore the application of order-consistency representational tech-
niques to four different interpreted languages: two simple languages meant to illustrate the
basic concepts involved; the language of propositional logic; and languages in which feature
structures are considered as assertions in their own right. We present, as we did in the
case of model-theoretic techniques, a general methodology for applying either of the defined
order-consistency representational techniques. Our next step will be to give a high-level
overview of the example applications to be presented. For each application, we will explain
(1) what the language(s) in question are; (2) which techniques we plan to use in building
theories of consequence for those languages; and (3) why those applications are of interest.
We will then proceed to apply the techniques. We will carry out complete applications in
the case of the simple examples and the language of propositional logic; and sketch the ap-
plication in the case of languages in which feature structures are considered as assertions in
their own right. (Note that the application in the case of propostional logic will be deferred
to the end of Chapter 6, as it will take advantage of the results of the proofs presented
there).

As a postscript to the chapter, and in preparation for the proof in Chapter 6, we will
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consider issues related to the applicability of order-consistency techniques in general.

5.2 A general methodology for applying order-consistency

representational techniques

In Section 1.5.1, we introduced a general methodology for applying instances of the rep-
resentational schema. We can now specialize that methodology in the context of order-
consistency techniques.

As of now, we have defined two such techniques: the Set C'L technique, and the Set
CG technique. These techniques vary in terms of the proxy for consequence relation and
the set of technique-specific assumptions which they employ. Since the intelligible proxy
for consequence relation is only used once an application of a representational technique
is complete, the only salient difference between the techniques for our purposes here is
in the sets of technique-specific assumptions used. This means that we can, as we did
in the model-theoretic case, describe a common methodology for applying either of these
techniques. (Remember that these “steps” are really “aspects” and can be thought of as
occurring simultaneously.)

Given a selected technique,

Step 1: Identify a set of assertion types for the language.

Step 2: Form a consistency medium by supplementing the set of assertion types with a
partial order, and a subset of the original set of assertion types considered consistent.

Step 3: We have only one kind of representative element in a consistency medium: the
set of assertion types. Define semantic conventions describing acceptable interpretations for
the assertion types.

Step 4: Prove that if a practice of categorization for the assertion types satisfies the
semantic conventions described for it in Step 3, then the consistency medium we have con-
structed in Step 2 satisfies the technique-specific assumptions with respect to that practice.

Given that proof, we know that for every acceptable interpretation of the set of assertion
types, the proxy relation used by the selected technique is equivalent to the representational

conception of logical consequence (preservation of truth across all possibilities). Further,
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because of the technique used, we know that the theory so constructed explains the con-
sequence relation between assertion types in terms of two simpler concepts: a partial order

representing primitive consequence, and a unary consistency predicate.

5.3 Overview of the applications

5.3.1 First simple application: the “odd and even” language OF

In this section we build a model of the relation of logical consequence for a simple language
which we call OF. This example, like the one presented in Section 3.4 concerns a primitive
language used to describe the numerical value of a roll of a single six-sided die. This language
will have four assertion types: odd, even, oddOr Even, and oddAndFven.

There are several objectives from this example. The simplicity of the example will let us
make a tutorial pass through the methodology of applying an order-consistency technique,
and help us to see some of its key features, in particular, the relative roles of semantic con-
ventions and technique-specific assumptions. We will be able to give a concrete presentation
of the conditions of monotonic extension of commitment and weak extensibility.

We will use the Set C'L technique in this case. Since every application of Set C'Lis also
an application of Set CG, this is also an application of Set CG. We will see how both the
Set CL and Set CG proxy relations (LLC and LC) work in this case.

5.3.2 Second simple application: the “powerset of odd and even” language

POE

We build the language of this section from the language of the previous section. The method
of construction is simple. The set of assertion types for the language of this section (which
we call POE) is the powerset of the set of consistent assertion types from the language OF
of the previous example. The relationship between OF and POE, is similar to that between
the two versions of the language of propositional logic WFF and P(WFF) which we have
considered previously. The relationship is not exactly the same, but the difference will be
noted.

Applying the representational schema to the task of modelling the relation of logical

192



consequence for POFE will enable us to see several important ideas in action. POE is an
example of structural definition (POEF is defined by the powerset operator) and an ordering
corresponding to structural elaboration (in that the assertion types of POE are ordered by
set inclusion). We will also see that it is possible for one consistency medium to be capable
of modelling the consequence relation of another. This aspect of the example will set up

our discussion of minimal media in Chapter 9.

We will use the Set C'L technique in this case. Since every application of Set CL is also
an application of Set C'G, this is also an application of Set C(. As in the case of the OF
language, we will see how both the Set CL and Set CG proxy relations (LLC and LC) work

in this case.

5.3.3 The language of propositional logic

An important example we consider is the language of propositional logic. In carrying out
the application of order-consistency techniques to the language of propositional logic we
demonstrate an example of a language which is capable of having its consequence relation
modelled from the perspectives of multiple techniques. That the consequence relation of
propositional logic is capable of both model-theoretic and order-consistency understanding
was already known (that understanding is embedded in the corollary to Lindenbaum’s
Lemma). This example will show how that knowledge fits into the framework defined by

the representational schema.

This example will be deferred until Section 6.11. There we will be able to show how the
application can be carried out as an instance of the general methodology for constructing
applications of the Set CG technique from applications of the Set PP technique. That will
show that we can model the representational relation of logical consequence for propositional
logic using the Set CG technique. In Chapter 7, we will show that every application
generated by the methodology of Chapter 6 is in fact an application of the Set CL technique
as well. So we will have shown that the Set C'L technique is also capable of modelling the

relation of logical consequence for propositional logic.
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5.3.4 Languages in which feature structures are considered as assertions

in their own right

We have introduced and discussed feature structures in the context of feature logics (Section
3.6). There feature structures were considered as the models for the sentential language of
a feature logic. But the role of feature structures is not limited to being models for some
other language. Feature structures can be used as assertion types in their own right (and
are, in many computing systems). For example, expressions in the language X M L, which
is a relatively new standard for carrying information on the Internet, can be assimilated to
the mathematical model of feature structures.

The way to see this additional role is to take the representational perspective. On
the representational view, the models in a model-theoretic semantics are full-fledged repre-
sentations; making propositional claims, and assumed to have a practice of categorization
relating them to the possibilities they represent in the same way that assertion types do.
Given that view, it should not be surprising that we can take the feature structures out of
their role as models, and treat them as assertion types on their own.

But there is something important and special to consider here. What differentiates
models from assertion types is not that one bears propositional content and the other does
not. The difference is in terms of the complexity or simplicity of the logical consequence
relation between members of the set (assertion types or models). The set of assertion types
may have a logically complex relation of consequence, but the set of models must be logically
simple. As we saw above, there are degrees to this logical simplicity of models, but the key
point is that if a model-theoretic account of logical consequence for a set of assertion types
is to be explanatory, the relation of logical consequence for the models must be simpler than
the relation of logical consequence for the assertion types.

In our discussion of Section 3.6 we discussed the potential use of the Set BF technique
to of model the consequence relation for feature logics. If we are able to complete that
application, we will in doing so show that the set of feature structures used as models
satisfies assumption A7 with respect to the practice which interprets it, and as such is
logically simple, in that the subsumption ordering implies, and is implied by, the relation

of logical consequence between feature structures.
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A language with a logically simple consequence relation is useful as a set of models,
but as a language of assertion it leaves something to be desired. This is the key point:
when feature structures play the role of assertion types rather than models, their relation
of logical consequence is no longer assumed to be simple. There will be consequences which
are not subsumptions. Logical complexity (and the inferential benefits which attend it) is
made possible by the presence of nontrivial patterns of inconsistency.

Consider the example feature structures from Section 3.6. As a model for a feature
logic, a feature structure which had s (a Male) as the value of mother for some other
element would be consistent (taken to represent a relevant possibility). But if those feature
structures were being used as assertion types to represent our world in a common-sense
way (with elements corresponding to people, Male and Female corresponding to gender,
mother corresponding to motherhood, etc.), that feature structure would be inconsistent.
The fact that no feature structure with a male mother is consistent together with the fact
that every consistent feature structure is extensible (via subsumption) to a structure in
which every element is either Maleor Female (but not both!), enables the inference from
a feature structure in which x is the mother of y, to a feature structure in which z is
Female. Explaining exactly why such inference works... calls for an application of the
representational schema. In our detailed discussion below, we will outline how we would go
about applying order-consistency techniques to the task of defining the relation of logical

consequence between feature structures considered as assertion types.

5.4 First simple application: the “odd and even” language

OF

5.4.1 Introduction to the example

In this section we apply an order-consistency technique to model the relation of logical
consequence for a simple language. This example, like the one presented in Section 3.4
concerns a primitive language used to describe the numerical value of a roll of a single
six-sided die. This language will have four assertion types: odd,even,oddOrEven, and

odd AndFEven. The practice of categorization by which these assertion types are interpreted
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oddAndEven

odd even

oddOrEven

Figure 5-1: Hasse diagram of the ordered set (¥og, <oE)

coincides with the ordinary English meanings of their names, applied as predicates to the
number of dots on the side of the die facing upwards after a roll. For example, if a die is rolled
such that the side with five dots is facing up, the assertion types odd and oddOr Even would
be assessed true by the practice, and the other types even and oddAndEwven would be
assessed false. Whereas, if a die is rolled such that the side with six dots is facing up, the
assertion types even and oddOrFven would be assessed true, and the assertion types odd

and oddAndFEven would be assessed false.

5.4.2 Details of the application
Technique selection

We initially apply the Set C'L technique.

The consistency medium OF

We define a consistency medium OF = (Xog, <0Eg, CoE) -
We are given the set Log = {odd, even, oddOr Even, odd AndEven}.
We define the ordering <pg as shown the Hasse diagram in Figure 5-1.

We define the set Cog as: Cog = Yog — {oddAndEven}.
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oddAndEven

odd even

oddOrEven

Figure 5-2: A modified Hasse diagram showing declarative medium OF

We indicate our assumptions of consistency on the ordering diagram by filling in the

circles of the assertion types in C. (See Figure 5-2).

Semantic conventions for interpretations of OEX

Given some experience with the usage of the simple language described, we might be willing
to make the following assumptions about the practice of categorization interpreting the
assertion types. (In this example, there is one specific practice of categorization, not a

family of acceptable practices.)
e (X1) There is some possibility in which oddis true.
e (X2) There is some possibility in which evenis true.

e (X3a) Every possibility in which oddis true, is one in which oddOrEvenis true.

(X3b) Every possibility in which evenis true, is one in which oddOrEven is true.

(X 3c) Every possibility in which oddOrEvenis true, is such that either odd or even

is true.
e (X4) There is no possibility in which odd and even are both true.
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e (X5) oddAndEvenis true in just those possibilities where odd is true and even is true.

Call the set of all these assumptions OFEX.

We take the set U to be possible rolls of the die as in the Roll truth medium example
(Section 3.4.2), and call the given practice of categorization interpreting OF, Ty, .

We can now formalize our expression of the assumptions in the set OEX. We express
those assumptions relative to the given practice of categorization 7y, ,. These conditions

partially characterize Ty, .

e (X1) Ts,, (0dd) # @.

o (X2) Ts, (even) # @.

e (X3a) Ty, (0dd) C Ts,, (0ddOrEven) .

e (X3b) Ty, (even) C Ts,, (0ddOrEven) .

e (X3c)Ts, (0ddOrEven) C (Ts,, (0dd) U s, (even)).
o (X4) Tz, (0dd) N Tx,, (even) = @.

e (X5)Ts,y (oddAndEven) = Ts,, (odd) N T, (even) .
The following claims follow from the assumptions in the set OEX.

e (Y1) From X4and X5, we have Ty, (oddAndEven) = @.
e (Y2)From X 3a, X3b, and X 3c, we have Ty, (oddOr Even) = Ty, (odd)UTs,,, (even) .
e (Y3a) From Y2 and X4, we have Ty, (0ddOrEven) — Ts,,, (odd) = Ts,,, (even) .
e (Y3b) From Y2 and X4, we have Ty, , (oddOrEven) — Ts,, (even) = Ts,,, (odd) .

e (Y4) From X1 and X 3a, we have Ty, (0oddOrEven) # @.
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Proof of the correctness of the application.

We now show that if 7y, satisfies the semantic conventions OF X, then the consistency

medium OF satisfies the technique-specific assumptions for Set CL. (Remember that Set

CL consists of assumptions D1, D2, D3, and LL.)

Proposition 67 If the practice of categorization Tx,, satisfies the semantic conventions
OEX ,
then OF satisfies Set CL with respect to Ts,, -

Assume that 7y, satisfies the semantic conventions OEX .

[Show D1]

From Y1, we know that 75, (oddAndEven) = @.

. So Ty, (oddAndEven) C Ts,, , (odd) and Ty, , (oddAndEven) C Tx, , (even).

. From X3a, we know that 75, (odd) C Ts,,, (oddOrEven) .

From X 3b, we know that Ty, (even) C 75, (0ddOrEven) .

. From these facts, and the reflexivity and transitivity of < and C, we can observe that

OF satisfies D1 with respect to 7y, by looking at the Hasse diagram in Figure5-
2.H(D1)

[Show D2]

1.

2.

From X1 we know that 7y, , (odd) # @.

From X2we know that 7y, (even) # @.

. From Y4, we know that 75, (oddOrEven) # @.

. From Y1 we know that T, (oddAndEven) = @.

These facts enable us to verify that OF satisfies D2 with respect to 7yx,,. The
assertion types odd, even, and oddOrEven are elements of Cpog, and the assertion

type oddAndFEven is not.
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[Show D3a]

This is slightly more involved. We create a table, which shows, for every combination of
elements p,q of ¥pE, the set R that satisfies the condition expressed by assumption D3a,
that is, a set of assertion types such that R C {p,q}% 5 and U Ts 5 [R] = Txps (0) NTxp 5 (9)-

Following each set, is a number indicating the proof of that case below.

We split the table for typographical reasons.
R q
odd AndFEven odd

oddAndEven || {oddAndEven},1 | -
p | odd {oddAndEven},1 | {odd},2
even {oddAndFEven},1 | {oddAndEven},3
oddOrEven | {oddAndFven},1 | {odd},4

R q
even oddOrEven
oddAndEven | - -
p | odd - -
even {even},2 | -
oddOrEven | {even},5 | {oddOrEven},2
Proofs:

First note that we only have to fill in half the table, as the entries are symmetric across
the main left-right diagonal.

(1) From Y1, we know that Ty, (oddAndEven) = @&. So Tz, ,(p) N Txpp(q) = @ in
this case. And |7y, [{oddAndEven}| = Ts,, (oddAndEven) = @. Also Vp,q € LoE
({oddAndEven} C {p,q}}g)-

(2) For any clement pof Som, Toop(®) N Tsos(®) = Toop(®) = UTsos [{p}]- Also
Vp € Zor ({p} C {p}dE) -

(3) From X 4 we know that Ty, , (odd)NTs,, , (even) = @, and | Tx,, , [{oddAndEven}] =
@. Also {oddAndEven} C {odd,even}yy.

(4) From X 3awe know that Ty, (odd) C T5,,(0oddOrEven),
so Ty, (0dd) N Ty, (0ddOrEven) = Ty, (odd) = | Tx, 5 [{odd}] .
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Also {odd} C {odd, oddOrEven}¥ .

(5) Like 4, with evensubstituted for odd, and X 3bfor X 3a.

Together the table shows that OF satisfies assumption D3a with respect to the practice
of categorization 7x,, ,.M(D3a)

[Show D3b]

We create a table, which shows, for every combination of elements p, ¢ of Lpg, the set S
that satisfies the condition D3b, that is, a set of assertion types such that S Clog (p) and
U7Tsog (8] = Tsop(P) — Trog(q). Following each set, is a number indicating the proof of
that case below. (We divide the table in two for typographical reasons).

S q
odd AndEven odd
oddAndEven | {oddAndEven},1 | {oddAndEven},1
p | odd {odd},2 {oddAndEven},3
even {even},2 {even},5
oddOrEven | {oddOrEven},2 | {even},6
S q
even oddOr Even
oddAndEven || {oddAndEven},1 | {oddAndEven},1
p | odd {odd},4 {oddAndEven},8
even {oddAndFEven},3 | {oddAndEven},9
oddOrEven || {odd},7 {oddAndEven},3
Proofs:

(1) From Y1, we know that 75, (oddAndEven) = &. So Ts, 5 (p) — T 5(q) = @ in this
case. And | Tz, [{oddAndEven}] = &. Also note {oddAndEven} Clog (oddAndEven).

(2) From Y'1, we know that 75, (oddAndEven) = @. So Ts, (p)—Tso 5 (@) = Tsop(p) in
this case. And |7z, [{P}] = Toop (p)- Also note: Vp € Zor ({p} CTor (p)) -

(3) For any element pof Yog, Tsps (P) — Toor (P) = @ = U T p [{0ddAndEven}] . Also
note oddAndEven =og p for any element pof Xpg , s0 Vp € o ({oddAndEven} Clog (p)) -

(4) From X 4, we know that Ty, (odd)—Ts, 5 (even) = Ty, (odd) = |J Tx, [{odd}] . Also
note: {odd} Clog (odd).
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(5) Like (4) but with odd and even exchanged.

(6) From Y 3a, we know that Tx,, , (oddOrEven)—Ts,, 5 (0dd) = T, (even) = | Ts, [{even}].
Also note: {even} CTog (oddOrEven).

(7) Like (6), but with odd and even exchanged, and Y 3b for Y 3a.

(8) From X 3a, we know that Tx,, , (odd) C Ts,, (oddOrEven), so Ts,, , (odd)—Ts,, 5 (0ddOr Even) =
& = Tsop [{oddAndEven}] . Also note oddAndEven > p for any element pof Zog, so
Vp € Xor ({oddAndEven} CTog (p)) .

(9) Like (8) but with even for odd, and X3bfor X 3a.

Together the table shows that OF satisfies assumption D3b with respect to the practice
of categorization T, .M(D3b)MProof.

Note that since every entry in the tables for D3a and D3b is a singleton, we have also
proved that (¥og, =oE) is strongly extensible with respect to Ts, .

[Show LL]

We see from Figure 5-2 that Mazog = {odd, even}; and that

P EXoE Mazog(p)
odd {odd}
even {even}

oddOrEven | {odd,even}
oddAndEven | &

We can observe that OF satisfies LL.

Summary of the proof

Given that the practice of categorization 75, satisfies the semantic conventions OEX,
it is the case that truth medium OF satisfies assumption Set CL with respect to 7Ty, ,.
As a result, the relation LLCpogp makes the representational relation of logical conse-
quence ALC< OB Tsy ) explanatorily intelligible. This completes the application of the Set
C L technique.

If truth medium OF satisfies assumption Set CL with respect to 7y, then truth
medium OF satisfies assumption Set CG with respect to 75, (since Set CG = {D1, D2, D3}
is included within Set C'L).
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So we have also shown that if the practice of categorization 7y, satisfies the semantic
conventions OEX, it is the case that truth medium OF satisfies assumption Set CG with
respect to Tx,,. As a result, the medium OF is an application of the Set CG technique as
well, and the relation LCpfg also makes the representational relation of logical consequence
ALC (0B Ts ) explanatorily intelligible.

We present both relations below.
The intelligible proxies for logical consequence

The Set CL proxy for logical consequence: LLC We gave the extension of Mazxog
above (in the proof that OF satisfies LL).

Given that extension of Maxog, we find that the extension of LLCpg is as follows:

LLCoE(p,q) q
oddOrEven | odd | even | oddAndEven
oddOrEven || true false | false | false
P odd true true | false | false
even true false | true | false
oddAndFEven || true true | true | true

Given that we accept that the practice 7y, satisfies all of the assumptions in the

set OE X, then the table above makes the representational relation of logical consequence

ALC (OB Ts,,) intelligible.

The Set CG proxy for logical consequence: LC Given our definition of OF, we

find that the extension of CCog is as follows:

pE€ Xog CCok(p)
odd {odd, 0ddOrEven}
even {even, oddOr Even}

oddOrFEven | {odd, even, oddOrEven}
oddAndEven | &
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Given that extension of CCpg, the extension of LCpgis the same as the extension of

LLCog above.

5.5 Second simple application: the “powerset of odd and

even” language POFE

5.5.1 Introduction to the example

In this section we apply an order-consistency technique to model the relation of logical
consequence for a language with slightly more structure than the previous example. This
example, like the ones presented in Section 3.4, and the previous section (Section 5.4)
concerns a simple language used to describe the numerical value of a roll of a single six-
sided die. This example will differ in that we shall use a different method to define the
set of assertion types. In those earlier examples, we simply enumerated the set of assertion
types. In this case, we will define the set of assertion types structurally, using the powerset
operator. The relation between the languages OF and POE, is analogous to that between
the WFF- and P(WFF)-languages of propositional logic. Note carefully however, that
our treatment of the assertion type @ will be different for the POFE language than for the
P(W FF)-language of propositional logic.

Our construction will begin with the set of consistent assertion types from the previous
example, namely Cog = {odd, even, oddOrEven}. We will assume these types are inter-
preted by the same practice of categorization as before, namely 7s,,,. We will then apply
the powerset operator to obtain our new set of assertion types. Let us call that new set Zpog
(as we will call the consistency medium we form around it POE). So Xpog = P(CoE).

We intend that the assertion types in X pog be interpreted as follows. If P € Xpog is
nonempty, we intend that P be interpreted as the conjunction of the claims made by the
elements of P as interpreted by the practice Tx,,. If P € Xpog is empty, we intend that P
be true in just those cases where any element of Cogr would be true as interpreted by the
practice Ts, -

We can capture those intentions via the following definition:

(POE1)For all P € Xpog, Tspop(P) = if P = @then |JTs,, [Cor] else N Tsyp [P
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Notice the subtle shift from the discussion of the semantic conventions of the P(W FF)-
language of propositional logic in Section 3.5. Those conventions ensured that the empty
set was interpreted as true in every possibility, that is, as a logical truth. Here we limit the
interpretation of the empty set to those possibilities in which some assertion type from the
base medium is true. Note that in the case of the P(W F F)-language of propositional logic,
the semantic conventions (which imply the law of excluded middle), imply that the set of
those possibilities in which some assertion type from the set WFF is true via the practice
Twrr just is the set of all possibilities U.

Our task is to apply an order-consistency technique to model the representational rela-

tion of logical consequence between the assertion types in ¥ pog as interpreted by 7Ty, -

5.5.2 Details of the application
Technique selection

We initially apply the Set C'L technique.

The consistency medium POFE

We seek to define a consistency medium POFE = (X£pog, <roE, CPoE) -
We have already defined that Y pog = P(Cog) above.
We define the set Cpog as: Cpor = Lpor — {{0dd, even}, {oddOrEven, odd, even}}
We define the ordering <pog as the inclusion order on ¥pog. This is the same formu-
lation we used in modelling the P(W F'F')-language of propositional logic.
The complete consistency medium POF is shown the modified Hasse diagram in Figure

9-3.

Semantic conventions

We assume that Ty, and Ty, satisfy POE1, and that Ty, satisfies OEX.In the fol-
lowing, when we say Tx,,, and Tx,, satisfy the semantic conventions, we mean 75, and

s, satisfy POE1, and Tx,,, satisfies OFX.
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{odd,even,oddOrEven}

{odd,0ddOrEven} {odd even}

{even,0ddOrEven}

{oddOrEven} {even}

Figure 5-3: Modified Hasse diagram showing the declarative medium POE.

Proof of the correctness of the application

In this section, we prove that if Ty, and 75, satisfy the semantic conventions, then
POE satisfies Set C'L with respect to s, -
We begin by noting some equivalences. The proofs of these Lemmas can be found at

the end of the chapter.

Lemma 68 IfTx ., and Tx,, satisfy the semantic conventions, the following equivalences

hold.

o (Z1) Ty, ({odd, even, oddOr Even}) = T, ({odd, even}) = Ts,, ,(oddAnd Even).

o (Z22)Ts,,5({0dd,0ddOrEven}) = Trp, , ({0dd}) = Ts, (0dd).
o (Z3) Tspop({even,oddOrEven}) = Tsp, p ({even}) = Ts,, , (even).

o (Z4) Tsp o5 (9) = Tspo iy ({0ddOrEven}) = Ts,, , (0ddOr Even).
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We now identify some background lemmas before proceeding to the main proof.

Lemma 69 If Ts,,, and Ts,, satisfy the semantic conventions, it is the case that for

every P € ¥pog, that Tspp 5 (P) C Tspop(2).

Lemma 70 If T, and Ts,, satisfy the semantic conventions, it is the case that:

For any P,Q € Xpog; Tspop(P) N Topop(Q) = Topop(PUQ).

Lemma 71 If Ts,,, and Ts,, satisfy the semantic conventions, it is the case that:

For any P,Q € XpoE, TEPOE (P) - TEPOE(Q) = TEPOE(P) N (TEPOE (g) —Tspor (Q))

Lemma 72 If Ts,,, and Ts,,, satisfy the semantic conventions, it is the case that:

For any P € Zpog, there is a Q € Epog such that Tspp 5 (Q) = Tspp (@) — Tspog (P)-
We are now ready to show the correctness of the application.

Proposition 73 If Ts,,,, and Ts,, satisfy the semantic conventions, then POE satisfies

Set C'L with respect to Tsp, -

Assume that Ty, and 75, satisfy the semantic conventions.

[Show that POE satisfies D1 with respect to 75, 5]
1. That is, [Show that VP,Q € Xpog, P <por Q implies 75, ,(Q) C Tspp 5 (P)]

Follows from the interaction of POE1 and Ts,,,. Details are found at the end of the
chapter.

[Show that POE satisfies D2 with respect to 7s,, ]

That is, [Show that VP € Lpog, that P € Cpog iff T, (P) # @ |

We enumerate the elements of X pog,and state for each whether or not the set of possi-

bilities it represents is empty, and the assumptions which support that claim.

1. Ts,p0, (@) # @, by Z4, and Y4.
2. Tspop({odd}) # @, by Z2 and X1.
3. Tspop({even}) # @, by Z3 and X2.
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4. Ts o5 ({0ddOrEven}) # @, by Z4 and Y4.

5. Tspop({0dd, 0ddOrEven}) # @, by Z2 and X1.
6. Ts,po; ({even,oddOrEven}) # &, by Z3 and X2.
7. Tspop({0dd,even}) = &, by Z1 and Y1.

8. Txpop({odd, even,oddOrEven}) = &, by Z1 and Y'1.

Comparing these results with the definition of Cpog indicates that POF satisfies D2
with respect to Ts,, ..l (D2)
[Show that POEF satisfies D3a with respect to Tx ]

ar C {P,Q}¥ h that
1. That is, [Show vp,QegPOE( C {P,Q}%0psuch tha ﬂ

UZsror [T] = Tspor (P)n Tspor (@)

2. Let P, be arbitrary elements of Xpog.
3. [Claim: " = { P U @} satisfies the existential claim for D3a.|
(a) PUQ =pogp P,and PUQ =por @, so {PUQ} C {P,Q}}ok-

(b) UTEPOE {PU Q}] = TEPOE (PUQ).

(c) By Lemma 70, Ts,,, (PUQ) = Tsppp (P) N Toppp (Q) MClaim. M(D3a)

[Show that POE satisfies D3b with respect to s,

JA CTpog P such that
1. That is, |Show VP,Q € X pPoE
U’];:POE [A] = ,BDPOE (P) - EPOE(Q)

2. Let P, be arbitrary elements of Xpog.

3. Let Rbe an element of Xpog such that Tx,,,(R) = Topop (@) — Tspex(Q). By

Lemma 72 we know that some such R exists.
4. By Lemma 71, Tsp0 5 (P) = T5po5(Q) = Tspor (P) N Tspox (R).
5. By Lemma 70, Tx 05 (P) N Txpog(R) = Topoy (PUR).
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6. [Claim: A = {P U R} satisfies the existential claim for D3b.]

(a) PUR >pog P, so {PUR} QTPOE P.

(b) UTEPOE [{P U R}] = TEPOE (P U R) = TEPOE(P) - TEPOE (Q)-EClaim.
B (D3b) MProposition.

Note that our proof shows that given that 7x,,, and 75, satisfy the semantic con-
ventions, then (¥pog, <pog) is also strongly extensible with respect to Tspop- This is
a consequence of the fact that for both parts a and b, the witness which was used to
demonstrate the existential claim was a singleton.

[Show that POE satisfies LL]

We can see from Figure 5-3 that Mazpog = {{odd, 0ddOrEven},{even, oddOrEven}}.

By inspecting Figure 5-3, we find that the extension of the function Mazpogis as

follows:
P e Xpor Maxpog(P)
& or {oddOrEven} {{odd, 0ddOrEven},{even, oddOr Even}}
{odd} or {odd, 0ddOrEven} {{odd, 0ddOrEven}}
{even} or {even, oddOrEven} {{even, oddOrEven}}
{odd, even} or {odd,even, oddOrEven} | &

We see from this table that POF satisfies LL.

Summary of the proof

Given that 7y,,,and Tx,, satisfy the semantic conventions, it is the case that truth
medium POF satisfies assumption Set C'L with respect to 7s,,,. As a result, the relation
LLCpog makes the representational relation of logical consequence ALC’< POE.T: )
“EpoE
explanatorily intelligible. This completes the application of the Set C'L technique.
If truth medium POFE satisfies assumption Set CL with respect to Tx,,,, then truth
medium POE satisfies assumption Set CG with respect to 7x,,, (since Set CG is included
within Set CL). So we have also shown that if 75, and Ty, satisfy the semantic con-

ventions, it is the case that truth medium POF satisfies assumption Set CG with respect
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to Tsppp- As a result, the medium POFE'is an application of the Set C'G technique as well,
and the relation LCpog also makes the representational relation of logical consequence
ALC( POE,Ts ) explanatorily intelligible.

We present both relations below.
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The intelligible proxy for logical consequence

The Set CL proxy for logical consequence: LLC We gave the extension of
Mazpog above (in the proof that POFE satisfies LL).

Given that extension of Maxpog, we find that the extension of LLCppg is as follows:

(note that we split the table in half due to formatting restrictions).

Q
{odd} or
9 or
LLCpor(P,Q) {odd,
{oddOrEven}
oddOrEven}
g or
true false
{oddOrEven}
{odd}or
P {odd, true true
oddOrEven}
{even}or
{even, true false
oddOrEven}
{odd,
or
even}
{odd, true true
even,
oddOrEven}
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Q
{odd,
or
{even}or even}
LLCpor(P,Q) {even, {odd,
oddOrEven} even,
oddOrEven}
< or
false false
{oddOrEven}
{odd}or
p {odd, false false
oddOrEven}
{even}or
{even, true false
oddOrFven}
{odd,
or
even}
{odd, true true
even,
oddOrEven}

Given that we accept that 75, and Tx,, satisfy the semantic conventions, then the
table above makes the representational relation of logical consequence ALC< POE Ty )
“ZpoE

intelligible.

The Set CG proxy for logical consequence: LC Given our definition of POE, we

find that the extension of CCppgis as follows:

212



Pe EPOE C'C'POE(P)

{2,
{oddOrEven},
{odd),

{odd, 0oddOrEven},

& or {oddOrFEven}

{even},

{even, oddOrEven}}
{2,

{oddOr Even},
{odd},

{odd, oddOr Even}}
{2,

{oddOr Even},

{odd} or {odd, oddOrEven}

{even} or {even, oddOrEven}
{even},

{even, oddOr Even}}
{odd, even} or {odd,even,oddOrEven} | &

Given the extension of CCpog, we find that the extension of LCpog is the same as the

extension of LLCpog above.

Using one consistency medium to model the consequence relation of another.

Compare the chart of LLCpog with the chart of LLCog on page 203 . Notice that it is pos-
sible to define a function h from Ypog to Xog such that VP, Q € Xpog, LLCpor(P,Q)iff
LLCoEg (h(P),h(Q)). This shows that it is possible to model the assumed consequence re-
lation on ¥por X Lpog using a different consistency medium (in this case one with a set of
assumption types with a smaller cardinality.) The concept of using one consistency medium
to model the consequence relation of another will be useful in a later proof (in Chapter 9)

when we discuss minimal consistency media.
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5.6 Propositional logic example

We defer this example until the Section 6.11.

5.7 Languages in which feature structures are considered as

assertions in their own right

5.7.1 Introduction

In this section, we are going to consider the application of order-consistency techniques to
languages in which feature structures are considered as assertions in their own right. We
have already discussed feature structures twice. First, we talked about their use as models
in a feature logic (in Section 3.6). Remember that there, the models were considered to
be feature structure/distinguished element pairs. Then, we had the chance to introduce
the concept of feature structures as assertions in their own right earlier in this chapter (in
Section 5.3.4). Our plan for this section is as follows.

We will begin by setting up a preliminary idea of what a language of feature structure
assertion types might look like (including a concept of subsumption that we might apply to
them). We will then outline the application of order-consistency techniques to languages in

which feature structures are used as assertions in their own right.

5.7.2 A language of feature structure assertion types

There are many different approaches to feature structures discussed in the literature. For
our purposes in this section, we will take a simple approach. When we thought of feature
structures as models, it was necessary to consider them as feature structure/distinguished
element pairs, since the sentences of feature logic languages are interpreted modally from
the point of view of some element within a structure. It does not seem that the extra
structure of a distinguished element would be necessary for a language of feature structures
used as assertion types. So let us consider a language made up of the set of all feature
structures of a particular signature (Call it F'S).

We would like to be able to define a concept of subsumption between the elements of
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F'S. As it stands, our concept of subsumption is defined on feature structure/element pairs.
Let us define a form of subsumption for feature structures (without a specified distinguished

element) as follows.

Given two feature structures A and B, say that A subsumes (in the feature
structure form of subsumption) B just in case 3d € D such that P(d) = A,
and Je € D® such that P(e) = B, such that (A,d) subsumes (in the feature

structure/element form of subsumption) (B, e).

Since A and B are feature structures (not feature systems), we know that there exist
d € D* and e € DBsuch that P(d) = A, P(e) = B. That means that from dwe can reach
(via a path of features) every element in A, and from e we can reach (via a path of features)
every element in B. So if (A,d) subsumes (B,e) (in the feature structure/element way),
then all the attributes (features and subdomains) of each element in A can be mapped onto
the attributes (features and subdomains) of some corresponding element in B. For example,
feature structure C (in Figure 3-3 on page 106) subsumes (in the feature structure way) the
feature structure P(s) (in Figure 3-2 on page 104), since (C,s) subsumes (P(s), s) (in the

feature structure/element way).

5.7.3 Semantic conventions for a language of feature structure assertion

types

Here we switch our usual order and discuss semantic conventions before describing the
consistency medium itself. We know that since we will be using a consistency medium,
the medium will have one kind of representative element: the feature structures. So the
semantic conventions for a language of feature structure assertion types will constrain the
practices of categorization interpreting those feature structures. Such semantic conventions
would be defined to take feature structure signatures as a parameter.

There are several things our discussion so far should lead us to expect about these
conventions. One is that the semantic conventions for interpretations of feature structures as
assertions should be expected to imply that, for all feature structures A and B, if A subsumes

B, then the possibilities represented by B are a subset of the possibilities represented by A.
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This rule is at the heart of the way in which we intend to interpret feature structures in
general. (We intend subsumption to correspond to informativeness).

We should also expect that in the general case, not all consequences will be subsump-
tions. That is, in general, the converse of the rule just stated will not hold. The consequence
relation will, in general, be more complex; and the source of this complexity will be that,
with respect to certain acceptable practices of categorization interpreting the feature struc-
tures, certain feature structures will be interpreted as inconsistent. This means that the
semantic conventions for interpretations of feature structures as assertion types will be

different than the semantic conventions for feature structures as models.

5.7.4 The consistency medium

Now we can describe the consistency medium we could use to model logical consequence for
a language of feature structure assertion types. Like any consistency medium, there will be
three components: the set of assertion types, a partial order, and a subset of the assertion
types taken to be consistent. In the case of a language of feature structure assertion types,
the set of assertion types could be the set F'S of feature structures. We could use the
subsumption order as the partial order. And then we would need to specify the consistent
subset.

How would we carry this out? The basic idea is that we would specify the set of
consistent feature structures using a set of of constraints written in the language of some
feature logic. A feature structure would be deemed consistent if it had some extension
(via the subsumption relation) which satisfied all the constraints at every element in the
structure.

So for instance, consider the constraints on consistency expressed in the example in
Section 5.3.4. No male can be a mother. And every person is either male or female (but not
both). We could express these constraints using a three-valued feature logic following the
standard Kleene evaluation scheme (Rounds 1997, 490; Dawar and Vijay-Shanker 1991) as
follows:

mother : “Male

(MaleV Female) A ~(Male A Female)
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Let us consider some of the attributes of this proposal.

1. Modality. The work in feature logics has shown that it is natural to specify and eval-
uate constraints from the perspective of elements within a structure. The semantics

of feature logic sentences were designed for this very purpose.

2. Involvement of the subsumption ordering. Our specification of consistency has an
element of complexity, in that we bring the subsumption relation into the picture.
We don’t say simply: we deem consistent those feature structures that satisfy every
constraint at every element. This is because feature structures are inherently partial.
Given that partiality, there may not be enough information in some structure to permit
the determinate evaluation of a constraint. For example, if no gender is specified for
an element in a structure from our example, then the value of “Male V Female” for
that element (on a three-valued logical scheme) would be unknown. Because of the
subsumption ordering (and its property that if A subsumes B, then the possibilities
represented by B are a subset of the possibilities represented by A), we know that if Bis
consistent, then any A that subsumes B, that is, any A for which Bis an extension on
the subsumption ordering, must also be consistent. So we can express the constraints

relative to those feature structures for which they would be determinate.

3. Maximality. Our approach to specifying consistency does not require maximal exten-

sions, just extensions that are rich enough to show that all constraints are satisfied.

We will see a simple example of this approach to specifying consistency in the proof
in Chapter 6, showing that the range of applicability of the Set PP technique is included
within that of the Set CG technique.

A possible extension

We can consider an extension to the general approach to specifying consistency above. We
could shift our focus from simple feature structures to typed feature structures (of the kind
discussed in Carpenter 1992), where the elements of the structure are typed (and the types

have an ordering of their own). In that case, constraints could be specified on a type-by-type
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basis; and the definition of consistency could be extended as follows: A feature structure
would be deemed consistent if it had some extension (via the subsumption relation) which
satisfied, at every element of the structure, all the constraints defined for that type of
element. This would enable the distribution of the specification of consistency across the

different types of element used in the feature structure.

5.7.5 What is required to complete this application?

There are two major tasks required to complete this application. First, the semantic conven-
tions for interpretations of feature structures as assertion types would need to be specified.
As we have discussed, these conventions would share some things in common with the
semantic conventions for feature structures as models (like subsumption implying conse-
quence), but would also have some differences (in that consistency of all feature structures
would not be assumed).

The second major task would be to give proofs that showing that if the semantic con-
ventions are satisfied, then the technique-specific assumptions for Set C'G are satisfied.
This would justify the usage of the Set CG proxy for consequence relation LC'. If a set of
feature structures further satisfied LL, that is, it had a maximal extension for every consis-
tent structure, then the usage of the Set C'L proxy for consequence relation LLC would be

justified as well (and its extension would be equivalent to LC).

5.8 Considering the applicability of order-consistency tech-

niques

5.8.1 Can we, in general, define an appropriate ordering <on the set of

assertion types 7

We have now presented several examples of the application of order-consistency representa-
tive techniques. One thing should be very obvious from these examples and the discussion
which preceded them. In order to apply these techniques, we need to identify an ordering
<y on the set of assertion types ¥, such that we would be willing to assume that (3, <s)

satisfies monotonic extension of commitment with respect to 7x, and further, that (X, <x)
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is weakly extensible with respect to 7x;. We have seen that for some common languages
of assertion, like the P(W FF)-language of propositional logic, such orderings can in fact
be identified. This raises an important question: can we in general, define an appropriate
ordering <yxon a set of assertion types X as interpreted by a practice of categorization 7?7

The quick answer is “no, we can’t.” Consider the example from Section 3.4. Given the
set of assertion types in ¥ oy and the practice of categorization Ty, ,, it is easy to see that
no ordering =<s, ,0n Yoy can satisfy weak extensibility with respect to Ty, ,. Look at
the pair of assertion types odd and five. There is no set of assertion types S, such that
the possibilities collectively represented by the members of S (that is, | Ts,,, [S]) equals
the difference between the possibilities represented by odd and the possibilities represented
by five (that is, 75, , (0odd) — T, (five)). Given the absence of such assertion types it
is impossible to consfruct some order =y, .on the existing types so that (Xprou, <sx.,)

satisfies weak extensibility with respect to 7s,_,,.

5.8.2 The possibility of completions

As we have just seen, we cannot in general define an ordering <y, on a set of assertion types
¥ as interpreted by a practice of categorization 7y, such that (X, <y) satisfies monotonic
extension of commitment with respect to Ty, and (X, <x) is weakly extensible with respect
to Tx.. But that is not the whole story. Completions, analogous to the Dedekind-MacNeille
completion in lattice theory (Davey and Priestley 1990, 41ff), are possible.

If we are given an application of the Set PP technique (that is, a truth medium A and
practices of categorization 7y, and 7pz,) such that A satisfies assumption Set PP with
respect to Ty, and 7Tpz,, we can define an operator comp which takes A, Ty, and Tyy,,
as arguments, and constructs from them a partially ordered truth medium comp(A) and

practices of categorization 75 and Ty such that

mp(A) mp(A)?

1. (Ecomp( A)s Scomp( A)> satisfies monotonic extension of commitment with respect to
'Z'anmp(A)’

2. <Zcomp( A)» Scomp( A)> is weakly extensible with respect to TEcomp( A

3. comp(A) satisfies assumption Set PP with respect to practices of categorization
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Ts: and Ty

comp(A)?

therefore, by the Corollary to the Intelligibility of Conse-

comp(A)

quence Theorem for Truth media (Corollary 14),

MCcomp(a) makes the assumed relation of logical consequence

ALC < > intelligible,

Z:canzp(A) :TzcomP(A)

. An image of ALC<2A7T2A>, the representational relation of logical consequence which

the given application of the

Set PP technique makes intelligible, is embedded within ALC
< comp(A) ’TEcomp(A) >

(that is, there is a function h: ¥4 — X omp(4) such that

Vp,q € ¥4 (ALC@A,TEA) (p,q) iff ALC'<ECW(A)’TEW(A)> (h(p), h(q)))).

As a result, M Ceomp(a) makes ALC<2A’T2A> intelligible as well.

To see this, realize that it is the case that

ALC(s, 7, ) (p,q) iff

) (h(p), h(q)) iff
comp(A)

MCCWIP(A) (h(p), h(q))

Vp,q € ¥4 ALC<

Ez:om.p(,‘l);TE

We will see the application of this concept of completions in the proof in the next

chapter. In our presentation there, we split the functionality of the operator comp across

two operators on truth media and associated practices, namely, negcompand pow. This

division will enable us to handle varying initial conditions more elegantly.

This concludes the linear text of the chapter. The remainder of the material in this

chapter are the proofs of propositions mentioned earlier in the text.

5.9 Proofs of propositions from the text

Proof of Lemma 68:

(Lemma 68): If Ty, , and Tx,,, satisfy the semantic conventions, the following equiva-

lences hold.

o (Z1) Typpp ({0dd, even, oddOr Even}) = Ty, ({0dd, even}) = Ts,, , (oddAnd Even).

1. By POE1, T, ({odd, even}) = s, ,(0odd) N Ts, , (even).
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2. By X4, Ty, ,(0odd) N Tx, , (even) = @.
3. By Y1, Ty, ,(0ddAndEven) = @.

4. By POEL1, Ts ., ({odd, even,oddOrEven}) =
T (0dd) N Ts, , (even) N Tx, , (0ddOr Even) = &. M (Z1)

o (Z22) Tsppp({odd, 0ddOrEven}) = Tsp, , ({odd}) = T, ;(0dd).

1. By POEL, Tz, ({odd, oddOrEven}) = Ts, ,(0dd) N Ts,, , (0ddOr Even).
2. By X3a, T, (0dd) C Ts,, , (oddOrEven).
3. S0 Tsppp({0dd, 0ddOrEven}) = Ts, ,(0dd).

4. By POEL, T, ({odd}) = Ts, ,(odd). B (Z2)

o (Z3) Tspo i ({even,oddOrEven}) = Ts, . ({even}) = Tx, , (even).
Like (Z2)but with even substituted for odd, and X3b for X 3a.M(Z3)

o (Z4) Ty poy (B) = Tspop ({0ddOrEven}) = Ts,, ,(0ddOr Even).

1. By POE1, TEPOE(Z) = UTEOE [COE] =
Tso5(0dd) U Ts, o (even) U Ts, , (0ddOr Even).

2. By X3a, Ts,,(0dd) C Ts,, (oddOr Even).
3. By X3b, T, (even) C Ts, , (oddOrEven).
4. S0 Ts o5 (D) = Txy (0ddOr Even).

5. By POEL, Ts,,,({0ddOrEven}) = Ty, ,(0ddOrEven) B (Z4)

Proof of Lemma 69:
(Lemma 69): If s, and 75, satisfy the semantic conventions, it is the case that for

every P € Lpog, that Ts g (P)C Tspor (92).

1. Assume that the set of assertion types Xog satisfies the assumptions in OFX with

respect to the practice of categorization 7y, .
2. Let P be an arbitrary element of ¥poE.
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3. Case 1.P = @.
(2) Tspop(P) = Tspog(9), s0 Tspor(P) € Tepog(@). M(Case 1).
4. Case 2. P # .

(a) By POEL, %POE(P) = m,TEOE [P]
(b) By POE1, TEPOE(Q) = UTEOE [COE]'
(c) Since P € Xpog, P C Cog by the definition of Xpog.

(d) So Tsppg(P) C Tspop (2). M(Case 2).MLemma.

Proof of Lemma 70:

(Lemma 70): If 75, and Tx,, satisfy the semantic conventions, it is the case that:

For any P,Q € £pog; Tspop (P)n Tsror @) = Tspos (PUQ).

1. Assume that the set of assertion types Yo satisfies the assumptions in OEX with

respect to the practice of categorization Ty, .
2. Let P,Q be arbitrary elements of Xpog.
3. Casel. (P=2,Q=0)
(@) P = Q 50 Tepop(P) = Tpop(Q) 50 Topop(P) N Topop(Q) = Topos(P) =

TEPOE (g)

(b) PUQ=2,s0 TEPOE (P U Q) = IZEPOE (@) = TEPOE (P) n TEPOE (Q)-.(Case 1)-
4. Case2. (P =@, Q + o)

(a) By POEL, Ty pop(P) = UTs0z [Corl -

(b) By POEL, Tspo5(Q) =N Ts0s(Ql-

(c) Since Q € Spor, Q C Cow, by the definition of Lpop.
(d) S0 T5por(Q) € Topox (P)-

(6) 80 T (P) N Topos (Q) = T (Q)-
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(fl) PUQ=Q.
(g) S0 Tspog (PU Q) = Tsror Q) = TEPOE (P) NTspor (Q)-.(Case 2)'

5. Case 3. (P # @, Q = 2)
(a) Same as Case 2, with P and @ reversed.l(Case 3)
6. Case 4. (P# 0, Q # 9)

(a) By POEL, Tspop(P) = (1 Tzos [P-

(b) By POEL, Tspos(Q) = N Tos(@)-

(€) S0 Tspop(P) N Tspop(Q) = N Ts0s P U Q-
(d) In this case (Case 4), PUQ # @.

(e) So by POEL, Tspp, (PUQ) = NTsop P U Q] = Tspop (P) N Tspp; (Q)M(Case
4)E@Lemma.

Proof of Lemma 71:

(Lemma 71): If Ts,,, and 75, satisfy the semantic conventions, it is the case that:

For any P,Q € LpoE; Tspop(P) = Tspop(Q) = Topop(P) N (Tspor (9) — TEPOE (@))-

1. Assume that the set of assertion types Yo satisfies all of the assumptions in OE X with

respect to the practice of categorization 7y, .
2. Let P, be arbitrary elements of Xpog.
3. (C)

(a) Let u € Txpop(P) — Tpop(@)-

(b) Sou € Tspop(P) and u ¢ Ts 5 (Q)-
(c) By Lemma 69, 75,05 (P) C Tspop (D).
)

(d) So u € Tspp (D), and therefore u € Tspo 1y (P) N (Txpo (D) — Txpox(Q)) M (C)

e)
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(a) Let u € Topop(P) N (Topop(9) — Trpop(@)) -
(b) Sou € 7;313013 (P) and u € (TZPOE (@) - 733POE (Q)) .

(¢) Sou ¢ Tnpop(Q)-
(d) Sou € Ty pop (P) — Trpog (Q).M (2) MLemma.

Proof of Lemma 72:
(Lemma 72): If Ty, and Ty, , satisfy the semantic conventions, it is the case that:

For any P € XpoE, there is a Q € Epog such that T, (Q) = Txpor (D) — Tspos (P)-

1. Assume that the set of assertion types Ypp satisfies the assumptions in OEX with

respect to the practice of categorization 75, .
2. By Z4, Tsp0 5 (@) = Trpp(0ddOrEven).

3. Consider the following cases:

(a) Case 1. P = {odd,even}or P = {odd,even,oddOrEven}

i. By Z1, Tspop (P) = Tspp (0dd AndEven).
ii. By Y1, 75, (oddAndEven) = @.
ili. So by POE1, @ = {oddOrEven} satisfies the existential claim.
B(Case 1.)

(b) Case 2. P = {odd, oddOrEven}or P = {odd}
i. By 22, T o5 (P) = Ty (0dd).

ii. By Y3a and POE1, we see that @ = {even} satisfies the existential claim.
M(Case 2.)

(c) Case 3. P = {even, oddOrEven} or P = {even}

i. By Z3, Tspop (P) = Tspp (even).
ii. By Y3b and POFE1, we see that Q = {odd} satisfies the existential claim.
BM(Case 3.)

(d) Case 4. P = @or P = {oddOrEven}
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i. By Z4, Ty 1o (P) = T (0ddOr Even).
ii. By Z1,Y1, we see that @ = {odd, even} satisfies the existential claim.
B(Case 4.)MLemma.

Proof of Proposition 73:

(Proposition 73): If Tx,,, and s, satisfy the semantic conventions, then POF sat-
isfles Set C'L with respect to Ts ., .

(Part of Proposition 73)
proof that POE satisfies D1 with respect to 7x,,,.

1. Let P,@ be arbitrary elements of ¥pof.
2. Assume P <pog @. So P C @by the definition of <ppE .
3. Case 1. (P=2,Q=09)
(@) Toros(P) = T5pop (@) 50 T5p05(Q) € Topop(P) M(Case 1).
4. Case 2. (P =2, Q # 2)

(a) By POE1, we have Ts,,,(P) = JTs,; [CoE] -
(b) By POE1, we have Ts,,,(Q) = (705 Q)

(c) Since @ € Epog, Q@ € Cok 50 Tspop(Q) € Trpor (P)-M(Case 2).
5. Case 3. (P # 2, Q = @)

(a) This case is not possible since P C QE(Case 3)
6. Case 4. (P £ 2, Q # @)

(a) By POFE1, we have Ts, ., (P) = (Tspz [ P]-
(b) By POE1, we have Ts,,,(Q) = Tsox Q)

(c) Since P C @, we have 75,5 (Q) C Txpp(P).M(Case 4)M(D1).
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Part IV

Comparing the Ranges of
Applicability of the
Representational Techniques

Presented

227



228



In this Part, we demonstrate additional results about the relative ranges of applicability
of the representational techniques we have presented. We already know that the range
of applicability of the Set E technique is a subset of the range of applicability of the Set
PP technique, i.e. ra(Set F) C ra(Set PP), and that the range of applicability of the Set
CL technique is a subset of the range of applicability of the Set CG technique, i.e. ra(Set
CL) C ra(Set CQG).

e Chapter 6. We will show that the range of applicability of the Set PP technique is
a subset of the range of applicability of the Set C'G technique, i.e. ra(Set PP) C
ra (Set CG). This proof will present a methodology for transforming an application
of the Set PP technique into an application of the Set CG technique, such that the
constructed application of the Set CG technique makes intelligible the relation of
consequence which was made intelligible by the original application of the Set PP

technique.

e Chapter 7. We will use the methodology presented in the proof of Chapter 6, to show
that the range of applicability of the Set PP technique is a subset of the range of
applicability of the Set C'L technique, i.e. ra(Set PP) C ra(Set CL). This proof will
consist in showing that the applications of the Set CG technique constructed by the
methodology presented in Chapter 6, not only satisfy the Set CG technique-specific
assumptions, but satisfy assumption LL (the representational version of Lindenbaum’s

Lemma) as well.

e Chapter 8. We will show that the range of applicability of the Set CG technique is
a subset of the range of applicability of the Set BE technique, i.e. ra(Set CG) C
ra ( Set BE). This proof will present a methodology for transforming an application
of the Set C'G technique into an application of the Set BE technique, such that the
constructed application of the Set BE technique makes intelligible the relation of
consequence which was made intelligible by the original application of the Set CG

technique.

In virtue of the results described above (and presented below!), we will know:

ra(Set E) C ra(Set PP) C ra(Set CL) C ra(Set CG) C ra(Set BE).
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In this Part, we will also present the following result:

e Chapter 9. We give a canonical method for constructing a minimal equivalent for any
application of the order-consistency technique CG. The result is minimal with respect
to the cardinality of the set of assertion types used. We will make use of the concepts

introduced in Chapter 8.
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Chapter 6

Demonstrating that the Range of
the Set PP Technique is a Subset
of the Range of the Set CG

Technique

6.1 Introduction

In this chapter, we will demonstrate that any interpreted set of assertion types in the
range of applicability of the Set PP technique is in the range of applicability of the Set CG
technique. Intuitively, this result means that any interpreted set of assertion types for which
we can make the representational concept of logical consequence explanatorily intelligible
by an application of the Set PP technique, is one for which we can do the same with the
Set CG technique. This result is one element of the more global picture we have developed
organizing all the techniques under consideration into a linear order on the basis of their
relative ranges of applicability.

Here is the structure of the chapter. In the initial section, we will examine in detail just
what the claim to be proven means, and what constitutes the desired result. We will then

describe the structure of a proof realizing that result. The central concept in the proof will
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be a methodology for taking the elements of an application of the Set PP technique and
constructing from them an application of the Set CG technique, such that the constructed
application of the Set C'G technique makes intelligible the relation of consequence which
was made intelligible by the given application of the Set PP technique. This methodology
will take the form of a collection of operators on interpreted truth media. These operators
will serve to “move” the relation of consequence from its initial context in the application
of the Set PP technique, through a sequence of intermediate contexts, into the context of
an application of the Set C'G technique. This movement from context to context is similar
in spirit to the way in which Barwise and Seligman move relations of consequence from
one local logic to another (Barwise and Seligman 1997). The structural overview will be
followed an organized presentation of the elements of the proof.

We will conclude the chapter by applying the methodology of the chapter to the task of
constructing an application of the Set CG technique for the P(W F F')-language of proposi-
tional logic. We have already constructed an application of the Set E technique (and hence
an application of the Set PP technique) for this language, so it will serve as an instructive
example to run that application through the methodology of the chapter in order to create

the desired application of the Set C'G technique.

6.2 Definition of the desired result

6.2.1 Introducing a condition sufficient to show the result

Let us consider what is required to demonstrate the claim expressed in the chapter title.

We can show that ra (Set PP) C ra(Set CG) if we can show that:

(PP — CG@) Given any application of the Set PP technique, we can construct
an application of the Set CG technique such that the representational rela-
tion of logical consequence which was made intelligible by the given application
of the Set PP technique is embedded within the representational relation of
logical consequence made intelligible by the constructed application of the Set

CG@ technique.
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Let’s unpack the elements of the condition (PP — CG).

e An application of the Set PP technique consists in a truth medium A and practices
of categorization 7x, and 73, interpreting the assertion types and models of A, such
that Asatisfies the Set PP technique-specific assumptions with respect to 75, and
Tu, - Such an application makes the representational relation of logical consequence

ALC(EA,’T):A ) intelligible (via the proxy relation MCly).

e An application of the Set CG technique consists in a consistency medium D and a prac-
tice of categorization Ty, interpreting the assertion types of D, such that D satisfies
the Set CG technique-specific assumptions with respect to 7x,,. Such an application
makes the representational relation of logical consequence ALC<ED,T>:D ) intelligible

(via the proxy relation LCp).

. ALC<EA Ts,) is embedded within ALC’<2D Top) just in case there is a function k :
] A ) D
Sa — Spsuch that ¥p,q € Ta, (ALC,5,, 7 y(0,0) ) iff (ALCs 7 1(k(p),k(a)) ) -

6.2.2 Showing that the condition is sufficient

Now we can see that (PP — CGQG)is sufficient to show that ra (Set PP) C ra (Set CG).
We will be given an interpreted set of assertion types (¥, 7x)in the range of applicability
of the Set PP model-theoretic technique. We want to show that (3,7x) is in the range of

applicability of the Set C'G order-consistency technique.

1. Applying the general definition of “range of applicability” from Section 1.7.2 to the
Set PP technique tells us that:
(3, Ty) is in the range of applicability of the Set PP technique exactly when
there is a truth medium A and practices of categorization 7x,, and 7y, interpreting
the assertion types and models of A, such that Asatisfies the Set PP technique-
specific assumptions with respect to 7, and 73z, , and the representational relation of
logical consequence for ¥ as interpreted by 7s (i.e. ALC(x, 7)) is embedded (via some
function j) in the representational relation of logical consequence for the assertion

types of medium A (i.e. £4) as interpreted by Ts;, (i.e. ALC(EA,TEA))'
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2. Applying the same definition to the Set CG technique, we find that
(2, Ts) is in the range of applicability of the Set CG technique exactly when
there is a consistency medium D and a practice of categorization 7x,,, interpreting the
assertion types of D, such that D satisfies the Set CG technique-specific assumptions
with respect to 7x,,, and the representational relation of logical consequence for ¥ as
interpreted by Ts, (i.e. ALC(s, 1) is embedded (via some function 4) in the represen-
tational relation of logical consequence for the assertion types of medium D (i.e. ¥p)

as interpreted by Ts, (i.e. ALC’<2D T >)
4Zp

3. So if an interpreted set of assertion types (X,7x) € ra(Set PP), then there is an
application of the Set PP technique (a truth medium A and practices of categorization
75, and 7T)s, interpreting the assertion types and models of A, such that Asatisfies
the Set PP technique-specific assumptions with respect to 7x;, and Tjs,) such that

ALCs, 1,y is embedded (via some function j) in ALC(ZA,TEA)'

4. By (PP — CQ), we know that there is application of the Set CG technique (a consis-
tency medium D and a practice of categorization Ty, interpreting the assertion types
of D, such that D satisfies the Set C'G technique-specific assumptions with respect to
Ts.,,) such that ALC (BaTs,) is embedded (via some function k) within ALC (Sp,Tnp)*

5. So ALC's, 73 is embedded (via the composition £ o j) within ALC’(ED Tn,)-
) 143 p

6. So (2, 7x)is in the range of applicability of the Set CG technique.

' 6.2.3 Summary

By the argument above, we see that we can demonstrate the primary claim for the chapter
(that ra (Set PP) C ra(Set CQG)), if we can show that the condition (PP — CG) is true.
To demonstrate (PP — CG), we shall describe a methodology which, given any application
of the Set PP technique (a truth medium A and practices of categorization 7s;, and Ty,
interpreting the assertion types and models of A, such that Asatisfies the Set PP technique-
specific assumptions with respect to Ty, and 7y, ), constructs from it an application of the

Set C G technique (a consistency medium D and a practice of categorization 7y, interpreting
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the assertion types of D, such that Dsatisfies the Set CG technique-specific assumptions
with respect to 7s, ), and a function h embedding ALC(EA,TEA) in ALC(SD,TED)'

6.3 Structure of the proof

6.3.1 First, an extension of an existing concept
Operators on truth media and their associated practices

In order to discuss the proof, we need to extend the existing concept of operators on in-
terpreted truth media. As we have presented them so far, operators take one or more
interpreted truth media as arguments, and construct an interpreted truth medium as a re-
sult. We extend the concept of these operators so that while some operators may construct
an interpreted truth medium, others may alternatively construct an interpreted consistency
medium. We give the new definitions below.

A unary operator uopon interpreted truth media, is one which takes a arbitrary truth
medium Aand the practices 7y, and 7ps, by which it is interpreted, and from them,
constructs a new medium uop(A), and the practice(s) by which uwop(A) is interpreted.
Some unary operators will construct a truth medium and its associated practices. Other
unary operators will construct a consistency medium and its associated practice. If the
and

new medium uop(A)is a truth medium, then uopwill construct the practices 7y

Tu,

uop(A)
op(ay DY Which uop(A) is interpreted. If the new medium uop(A) is a consistency medium,
then wop will construct the practice T‘Euop( 4 by which uop(A) is interpreted.

A binary operator bop on interpreted truth media, is one which takes an arbitrary truth
medium A and the practices 7y;, and 7y, by which it is interpreted, and an arbitrary truth
medium B and the practices 75, and 7ps, by which it is interpreted, and from them, con-
structs a new medium bop(A, B), and the practice(s) by which bop(A, B) is interpreted. As
with unary operators, some binary operators will construct a truth medium and its asso-
ciated practices, while other binary operators will construct a consistency medium and its
associated practice. (NB: in this dissertation, we will not have need for binary operators

which construct consistency media.) If the new medium bop(A, B) is a truth medium, then

bop will construct the practices Ty, , 5 and Tns,,,, 5, by which bop(A, B) is interpreted.
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If the new medium bop(A, B) is a consistency medium, then bop will construct the practice
T5y,p(a,5) by which bop(A4, B) is interpreted.
We see that the results of applying these operators are interpreted intelligibility media

themselves.

6.3.2 Top level structure of the proof

We carry out the proof in three stages.

1. In the first stage, we show how to carry out the construction for those applications
of the Set PP technique where the truth medium used in the application satisfies
monotonic extension of commitment with respect to models, and is weakly extensible

with respect to models.

2. In the second stage, we show how to carry out the construction for those applications
of the Set PP technique where the truth medium used in the application is negation
complete with respect to models. This construction utilizes the results of the first

stage.

3. In the third stage, we show how to carry out the construction for arbitrary applications

of the Set PP technique. This construction utilizes the results of the first two stages.

6.3.3 Stage 1: The construction in the case where the truth medium used
in the application satisfies monotonic extension of commitment with

respect to models and is weakly extensible with respect to models
Reviewing the given

We are given an application of the Set PP technique. This consists of a truth medium
A = (¥4,Ma,ts) and practices of categorization 7x,, and 7y, for which it is assumed
that A satisfies assumption set PP (B1, A4, A5) with respect to 7s;, and 7;s,. We further
assume that A is partially ordered, and that A satisfies monotonic extension of commitment

with respect to models and that Ais weakly extensible with respect to models.
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Looking ahead to the end result

Our goal is to define an operator dm which given a partially ordered truth medium A
and practicesof categorization 7y, and 7Tjs, such that A satisfies assumption set PP
(B1, A4, A5) with respect to Tx, and Tpr, and Asatisfies monotonic extension of commit-
ment with respect to models and A is weakly extensible with respect to models, constructs
a consistency medium dm(A)and a practice of categorization T, ,, interpreting dm(A),

such that

7

1. i A i b ithi

an image of LC<EA)T}]A> is embedded within ALC' <Edm(A), TEdm(A)>
that is, there is a function h : ¥4 — ¥4(4) such that
Vp,qg € Xa

(ALC@A,TEA)(I)’Q) iff ALC< > (h(p), h(q))); and

de(A)’TEdm(A)
2. consistency medium dm(A) satisfies assumption Set CG (D1, D2, D3) with respect to

TEdm(A) :

Preparing the way

We have found such an operator dm. The key to understanding our construction of dm is
to think about a property of assertion types, namely our assumed concept of consistency.
Consistency of assertion types is implicitly characterized within each application of the
Set PP technique. We can describe this implicit characterization simply. Given that a
truth medium A satisfies the assumptions in Set PP with respect to 7y, and 7Tj,, for
every assertion type p € X4, pis consistent (that is, according to our assumed concept

of consistency, Tx,(p) # @) just in case the set of models of p is non-empty (that is,

ta(p) # 9).

Proposition 74 Given that a truth medium A satisfies the assumptions in Set PP with
respect to Ty, and Ty, for every assertion type p € ¥4,Ts,, () # @ iff ta(p) # @.

Let pbe an arbitrary element of X 4.
(=)
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1. Assume Tz, (p) # @. By B1,|J 7w, [ta(p)] # @. So there exists an m € t4(p), such
that TMA(TI’L) #* ol (—))

(=)

1. Assume t4(p) # @. So there exists an m € My such that m € t4(p).

2. Since A satisfies assumption A5 with respect to Tps,, we know Tpr, (m) # @.
3. Let u € Tpy, (m). Since m € ta(p), u € U T, [ta(p)].

4. By B1, Ty, (p) # @.M (—) MProposition.

In line with how we have thought about consequence, we could say the following. In
addition to making the assumed relation of logical consequence intelligible, an application
of the Set PP technique makes the assumed property of consistency intelligible as well.
With respect to some truth medium A and assertion type p € ¥4, the Set PP technique
provides the intelligible property t4(p) # & as a proxy for the unintelligible, but assumed,
property of consistency 7y ,(p) # @.

The discussion above shows how the intelligible proxy for consistency is defined in terms
of a relationship between two forms of representation: the logically simple (Etchemendy
would say “logically transparent”) models; and the (usually) logically complex assertion
types. The relation of truth-in-a-model (captured in our formalization of the model-theoretic
techniques by the function t) links the two forms of representation and is the basis for the
intelligible proxy for consistency.

We have set ourselves a task. Given a relation of consequence which is made intelligible
by the Set PP technique, we wish to construct an application of the Set CG technique that
makes that relation intelligible. The key step in that task will be to transfer the property of
consistency from the truth medium given to the consistency medium we construct. We face
an immediate challenge. While the Set PP technique has two forms of representation at its
disposal (the assertion types and the models in any truth medium), the Set C'G technique
has only one (the assertion types in any consistency medium). This way of framing the

problem suggests a route to a possible solution. One way to enable the transfer of the
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property of consistency from the context of the Set PP technique to the context of the
Set CG technique is to bring the two forms of representation in the given truth medium
together into a single form for use as the set of assertion types in the consistency medium

being constructed; and then to specify consistency in terms of that new form.

An obvious way to start carrying this out would be to form the Cartesian product of the
set of assertion types and the set of models from the given truth medium. In our case, given
the truth medium A, this product would be the set of ordered pairs ¥ 4 x M 4. Each member
of this set would have the form (p,m) where pis an assertion type from the truth medium
A and mis a model from A. Take this set X4 x M4 as our provisional definition of Xy, (4)-
(We will see we have need to adjust it slightly in a moment). So each pair (p,m) € X4 x M4
would be an assertion type of Xgn,(4). As assertion types, they would need some practice of
categorization of possibility by which they would be interpreted. To construct that practice,
we have available to us the practices by which ¥4 and M4 were interpreted in the context of
the truth medium A, namely, 75;, and 7js,. Let us choose to interpret the elements of our
provisional g 4) as follows: for all (p,m) € Zym(a), Tsyma) (P M) = Ts, (P) N T, (M).
That is, we consider each pair (p,m) to be true just in case both of its individual components

would have been true in their original interpretations.

The definition we have proposed for ¥;,(4) does bring together assertion types and
models into a single form of representation. But it has a potential limitation. Looking ahead,
we are going to want to map the elements of X 4 into elements of X4,,(4) in such a way as to
be able to embed the assumed relationship of consequence ALC<EAyTEA> within the assumed

relationship of consequence ALC < > A natural way to make this happen will

Bam(4) T2 gn( 4)
be to have a function h : 54 — Dgm(aysuch that for all p € X4, Tx,(p) = Tx,,, 4 (h(P))-
In that case, we would have

Vp,q € Xa (ALC(EA,TEA>(p’ q) iff ALC<

definition of ALC.

> (h(p), h(q))) by application of the

Bam(4) T84 m( )

This is where the limitation of our development of ¥4,(4)appears. As specified so
far, it is not guaranteed that given some p € ¥4, we can identify an m € M4 such that
(p,m) when interpreted as an element of Ly, 4) via Ts,,, 4, Will have the property that

T54(p) = Ts4,04)((p,m)). Given our construction so far, it is possible that for every m €
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My, the combination (p,m) carries strictly more information than p alone, that is, that
T gyuay ((Psm)) (which we have defined as Ts, (p) N Zar, (m)) is a proper subset of Ts, (p).
This condition would block our ability to define a function A : £4 — g, 4) such that for
all p € By, Ts, (p) = Txypy (R(P))-

We can remove this limitation. The technique we will employ will be to supplement the
set M4 with a special element (call it 1) not already in My, such that we will take Lgp,4)
to be ¥4 x (M4 U {L}) and redefine 75, , insuch a way that Vp € B4, Tx,,,,((p,m)) =
if m = L thenTs, (p) else T, (p) N Zu, (m). Then h: ¥4 — By 4 is defined so that for
all p € X4, h(p) = (p, L) ensures that for all p € 24, Tx, (p) = Tz, (R(P)). The symbol

1 can be understood as representing “no information with respect to models.”

Given our preparations so far, we can now describe how we will identify those assertion
types in g, (4) which are consistent, that is, are members of the set
{(p, m) € Zam(A) | T gpmay (P m)) # Z}. Note that this set will be Cyp(4) in our construc-
tion. The assertion types in ¥4, (4) can be divided into two disjoint subsets; those for which
the second component is L and those for which it isn’t (in which case the second component

is a member of My).

First, let us consider the case where an element of 4,4y has the form (p, L). In this
case, we know that Ts;, . ., ((p, L)) = Tx,(p). So (p, L) will be consistent with respect to
Ts am(ay JUSt In case p is consistent with respect to 7x,,. And we know that in the given
truth medium A interpreted according to the practice 75, (with respect to which it satisfies
assumption Set PP), an element p of ¥4 is consistent (75, (p) # @) just in case p has a
model (i.e. t4(p) # @). Further, we know that every combination of p and a model m of
M exists in Xy, 4). So we can define the consistency condition for elements of the form
(p, L) as follows. For all (p,m) € Lyma), if m =1, then Ty,  ,,((p,m)) # @ just in case
there exists a (p,m’) € Lgm(a) such that m’ € ta(p).

Now we can consider the case where an element of ¥g,(4) has the form (p, m) such that
m #L . In this case, Ts,,, o, ((P,m)) = T, (P) N T, (m). So Ty, 4y ((p,m)) # Djust in
case Ty, (p) N Tar, (M) # &. We show below that given the assumption that A satisfies Set
PP with respect to T5;, and 7Tar,, we know that Tx, (p) N Ty, (m) # Diff m € ta(p). So

we can define the consistency condition for elements of the form (p, m)such that m #.L as
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follows. For all (p,m) € Xgm(a), if m #L, then Ty, ,, ((p,m)) # @ just in case m € ta(p).

Proposition 75 For arbitrary truth medium A and practices of categorization Ty, and

Tm,, if A satisfies Set PP with respect to Ts,, and Ty,, then for allp € ¥4 and m € My,
Ts, (p) N Tar, (M) # Diff m € ta(p).

The proof can be found at the end of the chapter.

The structure of the plan

We have now laid the foundation for our construction of dm(A) and the proofs of its
adequacy. We will take Xgm(4) to be Ba x (MaU{L})', and define 73, ,, such that for
all (p,m) € Zym(a), TS ymea)({P,m)) = if m =L then Ty, (p) else Tz, (p) N Tas, (m). Those
definitions will permit the definition of an ordering =<gm(4) such that (Sgm(a), Zam(a)) will
satisfy monotonic extension of commitment and weak extensibility with respect to 7y dm(4)
(thus dm(A) will satisfy D1 and D3with respect to Tg,, ,,). We will define Cyp ) as
described in the previous section, which will assure that dm(A) satisfies D2 with respect to
Ts rm(4)° Our construction of Ly, 4) and Tx m(a) €DSUre that there is a function h: 34 —
) (o). h(0)).

We could try and define the operator dm and give the proofs of its adequacy in one

L iff AL

Edm(A) such that Vp,q € ¥4 (A C(EA,T2A>(p7Q) ift C<de(A)vTEdm(A)
go. However, that would be more complex than we would like. Instead, we will factor the
construction, and the proofs, using a number of operators on interpreted truth media. We

will use the following three operators:

1. models; a unary operator on interpreted truth media which yields an interpreted

partially ordered truth medium as a result (definition in Section 6.6.1);

2. +; a binary operator on interpreted partially ordered truth media which yields a

interpreted partially ordered truth medium as a result (definition in Section 6.7.1);

In actuality, we will take Tgm(a) to be T4 X ((Jta [E4]U{L}). That is, instead of using the set M4 of
all models, we use the set | Jt4 [X4] of those models which are models of some assertion type. We exclude
those members of M4 which are not models of any assertion type. As shown in the proofs to follow, this
does not affect the sufficiency of our definition of Cyy(4).
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3. dm; a unary operator on interpreted partially ordered truth media which yields an

interpreted consistency medium as a result (definition in Section 6.5.1).

The detailed definitions of these operators and proofs of their properties are given later

in this chapter. The overall plan of construction and proof can be described as follows.

1. The construction begins with the partially ordered truth medium A and practices of
categorization 75, and Tjps, such that A satisfies assumption set PP (B1, A4, A5)
with respect to 7y, and 7p, and Asatisfies monotonic extension of commitment

with respect to models and A is weakly extensible with respect to models.

2. Given the preceding, and the definitions of models, and + as found in Sections 6.6.1,
and 6.7.1, respectively, the partially ordered truth medium A + models(A) and as-
sociated practices of categorization Ty, dela(A) and Tar,, ... se1s(ayl1ave the following

properties:

(a) EA+models(A) =X4 X (U ta [Z"A} U {J-}) :

(b) A+ models(A)satisfies assumption set PP with respect to 75, ;.4 20d

TMA+models(A) (Proposition 90).

(€) (Z Atmodels(A)» = Atmodels( 4)) satisfies monotonic extension of commitment with
respect 10 Ts,,\ ouera(a)-
(Proposition 91).

(d) <2 Admodels(A)> =X Atmodels( A)> is weakly extensible with respect to Ts,, uuiua)
(Proposition 92).

(e) The function h : ¥4 — X Aimodels(a) > defined for p € ¥4 as h(p) = (p, 1),
is such that for all p € ¥4, Ts, (P) = T5,, mogerscay (R(P)) (Proposition 93).
Applying the definition of ALC), this implies: for all p,q € 24, ALC(EA,’B:A> (p,9)
iff ALC‘< (), M(a))-

(h
EA+models(A)»T2A+models(A)>

3. Given the preceding, the definition of dm as found in Section 6.5.1 implies that the
consistency medium dm(A) and associated practice of categorization Ty im(4) BT€ COI-

structed as follows:
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(a) Edm(A) is taken to be 2A+models(A)'
(b) jdm(A) is taken to be '_<A+models(A)-
(c) ngm(A) is taken to be TEA+modezs(A)'

(d) Camya) is defined as described earlier in this section.

4. Given the preceding, and the definition of dm as found in Section 6.5.1, the consistency
medium dm(A) and associated practice of categorization 7y am(4) ave the following

properties:

(a) <Edm( A)s Sdm( A)> satisfies monotonic extension of commitment with respect to
75 4meay- This is equivalent to saying that dm(A)satisfies D1 with respect to
T5 4m(ay (Proposition 80).

(b) dm(A)satisfies D2 with respect to Ty, ,, (Proposition 81).

(©) (Zdam(a)s Zdam(a)) is weakly extensible with respect to Ts, -
This is equivalent to saying that dm(A)satisfies D3 with respect to 7y dm(A)
(Proposition 82).

(d) The function h : X4 — g4 defined for p € 34 as h(p) = (p, 1), is such that
for all p € ¥4, 75, (p) = Tz, (R(p)) (Proposition 83).
Applying the definition of ALC, this implies:

for all p,q € 24, ALC(EA,TEA)(p’ q) iff ALC’< > (h(p), h(q)).

Zam(4) T8y )

Proving the above claims will demonstrate that dm as defined, takes an application of
the Set PP technique (for which the truth medium in that application is assumed to satisfy
monotonic extension of commitment with respect to models and to be weakly extensible
with respect to models) and constructs an application of the Set C'G technique such that
the relation of logical consequence made intelligible by the original application of the Set
PP technique is made intelligible by the constructed application of the Set CG technique.

In effect, what we see in the above is the “movement” of the assumed relation of conse-
quence ALC<EA,TEA> from the context of the initial truth medium A and its practices 7,
and 7jr,, through a sequence of intermediate contexts, into the context of the consistency

medium dm(A) and its practice Ty, , -
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6.3.4 Stage 2: The construction in the case where the truth medium used

in the application is negation complete with respect to models
Reviewing the given

We are given an application of the Set PP technique. This consists of a truth medium
A = (¥4, M4y,t4) and practices of categorization 75, and T, for which it is assumed that
A satisfies assumption set PP (B1, A4, A5) with respect to Ty, and Tj,, and that A is

negation complete with respect to models.

Reviewing the goal

Our goal is to construct a consistency medium D and a practice of categorization 7y,

interpreting D, such that

1. an image of ALC<EA,TZA> is embedded within ALC’<ED,T2D>,

that is, there is a function h : ¥4 — Xpsuch that

Vp,q € Ba (ALC(y;, 7, y(p,0) iff ALC(s, 7.y (h(p), k(@) ); and

2. consistency medium D satisfies assumption Set CG (D1, D2, D3) with respect to 75 .

The approach

Given the approach we have worked out above, we can now consider the case where the
truth medium used in the application of the Set PP technique is known to be negation
complete with respect to models (but may not be known to satisfy monotonic extension of
commitment with respect to models, nor be known to be weakly extensible with respect to
models). Our approach uses the unary operator pow on interpreted truth media which yields
an interpreted partially ordered truth medium as a result. We introduced this operator in
Section 4.8.4 in the context of applying the Set E technique to the P(W FF)-language of
propositional logic.

The overall plan of construction can be described as follows.

1. The construction begins with the truth medium A and practices of categorization 7x; ,

and 7z, such that A satisfies assumption set PP (B1, A4, A5) with respect to 7y,
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and 737, and Ais negation complete with respect to models.

2. Given the preceding, and the definition of pow as found in Section 4.8.4, the partially
ordered truth medium pow(A) and associated practices of categorization 75 4 and

TMPW (ayhave the following properties:

(a) pow(A)is a partially ordered truth medium satisfying assumption set PP with
respect to Ty, 4, and Ty, 4, (Proposition 94).

(b) pow(A) satisfies monotonic extension of commitment with respect to models
(Proposition 64).

(c) pow(A)is weakly extensible with respect to models (Proposition 65).

(d) The function f: X4 — Xpgy4) defined for p € ¥4 as f(p) = {p}, is such that
Vp € X4, Tn,(p) = Ts,p4 (f(p)) (Proposition 95). Therefore, we know that
V.0 € S (ALC(s, 7, ) (ra) i ALC, ) (F@). (@) ) by appi

cation of the definition of ALC.

pow(A) ’szow(A)

3. Given the above, pow(A) and its practices T3 o 4 and TMPW( 4 Can then be submitted
to the procedure outlined in Section 6.3.3 (Stage 1). The result will be a consistency
medium D), practice of categorization 7y, and function g : ¥,04) — Ep such
that Vp,q € Zpow(a) (ALC@W(A),TEW(A) >(p, q) iff ALCiz 7. (g(p),g(q))>; and

D satisfies D1, D2, and D3 with respect to Tx,.

4, We can form h = go f, and we have h : ¥4 — X psuch that
Vp,q € Sa (ALC(s, 7 y(9,0) iff ALC(s, .y (h(P), h(@)))

6.3.5 Stage 3: The construction in the case where an arbitrary truth

medium is used in the application
Reviewing the given

We are given an application of the Set PP technique. This consists of a truth medium
A= (X4, Ma,ta) and practices of categorization Ty, and Tjs, for which it is assumed that

A satisfies assumption set PP (B1, A4, A5) with respect to 7y, and Tjz,.
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Reviewing the goal

Our goal is to construct a consistency medium D and a practice of categorization 7y,

interpreting D, such that

1. an image of ALC< ) is embedded within ALC<

EA,TEA ZDyTED> ’

that is, there is a function h : ¥4 — X psuch that

¥p,q € Su (ALC(5, 75, y(,0) it ALC(5, 7. (h(p),h(g))); and

2. consistency medium D satisfies assumption Set CG (D1, D2, D3)with respect to
Tsp-

The approach

Given the approaches we have worked out above, we can now consider the case where
the truth medium used in the application of the Set PP technique is not known to be
negation complete with respect to models. Our approach uses a unary operator negcomp

on interpreted truth media which yields an interpreted truth medium.

1. The construction begins with the truth medium A and practices of categorization 75,
and 7j, such that A satisfies assumption set PP (B1, A4, A5) with respect to 75,

and TMA-

2. Given the definition of the operator negcomp (see Section 6.10.1), the truth medium

and TM

negcomp(A) and associated practices of categorization Ty negeomp(A)

negcomp(A)

have the following properties:

(a) negcomp(A) is negation complete with respect to models (Proposition 96).

and TM

negcomp(A)

(b) negcomp(A) satisfies assumption set PP with respect to 7,

negcomp(A)

(Proposition 97).

(¢) The function f: X4 — Zpegeomp(a), defined for p € £4 as f(p) = (1,p), is such
that
Vp € B4, T5,4(P) = 75, epcompiay (f(P)). (Proposition 98). Therefore, applying the
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definition of ALC, we have

VP, € B, ALCs;, 7 3(p:q) iff ALC’< ) (f(p), f(@)

z"‘1'1.egc0'rnp(A) ’Tznegcomp(A)

and Ty can then

3. Given the above, negcomp(A) and its practices Ty negeomp(A)

negcomp(A)
be submitted to the procedure outlined in Section 6.3.4 (Stage 2). The result will be
a consistency medium D, practice of categorization 7y, and function

9 Tnegeomp(A) — 2p such that

ALC (p,q) iff
Vp, q € Enegcomp(A) <Ene9C°mP(A) 7T2negcomp(A) > :

ALC s, 7.,y (9(p), 9(q))
and D satisfies D1, D2, and D3 with respect to Tx,.
4. We can form h = g o f, and we have h : 34 — X psuch that
Vp,qg € X4 (ALC@A,TEA)(p,q) iff ALC(s,, 73, y (A(P), h(fJ))) :
6.3.6 Presentation of the proof

Our presentation of the proofs needed to fill out the structure above, appear in the following

order.
1. The top level proofs that yield the theorems for this chapter (Section 6.4);
2. The definition of the operator dm and the proofs of its properties (Section 6.5);
3. The definition of the operator models and the proofs of its properties (Section 6.6);
4. The definition of the operator + and the proofs of its properties (Section 6.7);

5. Properties of A+ models(A) with respect t0 75, 10y 804 Thry 040104y Siven that
A satisfies assumption set PP with respect to 7x;, and 77, and A satisfies monotonic
extension of commitment with respect to models and is weakly extensible with respect

to models (Section 6.8);

6. Proofs of additional properties of the operator pow (Section 6.9), note that the defini-
tion of the operator pow and proofs of certain properties have already been presented

in Sections 4.8.4and 4.8.8);

7. The definition of the operator negcomp and the proofs of its properties (Section 6.10);
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6.4 The canonical construction of an application of the Set
CG technique given an application of the Set PP tech-
nique

6.4.1 The canonical construction of an application of the Set C'G technique
given an application of the Set PP technique constructed using a
partially ordered truth medium which satisfies monotonic extension
of commitment with respect to models and is weakly extensible with

respect to models (Stage 1)

Theorem 76 Given a partially ordered truth medium A and practices of categorization
Ts, and Ty, if A satisfies monotonic extension of commitment with respect to mod-
els and A is weakly extensible with respect to models, and A satisfies assumption set PP
(B1, A4, A5) with respect to Ty, and Ty,

then there is a consistency medium D and an associated practice of categorization Ty, , derived
from A, Ts,, and Ty, such that D satisfies D1, D2, D3 with respect to Ty, and there is a
function h from ¥ 4 to X p such that

Vp,q € Sa (ALC(s,, 7, y(,9) il ALC(5,, 7,y (h(p),h(4)))

We will show that the consistency medium dm(A), its associated practice of categoriza-
tion Tx;,,, 4> and the function b : £4 — Eyp(a) defined for p € ¥4 as b (p) = (p, L) satisfy

the above claim.

1. Assume we have an arbitrary partially ordered truth medium A and practices of
categorization 75;, and Tjz, such that A satisfies monotonic extension of commitment
with respect to models and A is weakly extensible with respect to models, and A

satisfies assumption set PP (B1, A4, A5) with respect to 7x, and Tz, .

2. Applying Proposition 79, we know that the consistency medium dm(A) satisfies as-

i

sumptions D1, D2, D3 with respect to derived practice of categorization Ty, ;.

3. By Proposition 83, we know the function h : ¥4 — Xgna) , defined for p € ¥4
as h(p) = (p, 1), is such that for all p € B4, Tx,(p) = T, (A(p)). Apply-
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ing the definition of ALC, this implies: for all p,q € 24, ALC<2A’TEA>(p, q) iff

ALC<2dm( A)'Tzdm(A)> (h(p),h(q)) MTheorem.

6.4.2 The canonical construction of an application of the Set CG technique
given an application of the Set PP technique constructed using a
truth medium which is negation complete with respect to models

(Stage 2)

Theorem 77 Given a truth medium A and practices of categorization Ts;, and Ty, if A
satisfies assumption set PP (B1, A4, A5) with respect to Ts, and Ty, , and A is negation
complete with respect to models, then there is a consistency medium D and an associ-
ated practice of categorization T, derived from A, Ts, and Tpr,, such that D satisfies

D1, D2, D3 with respect to Ts,,,, and there is a function h from ¥4 to £p such that
Vp,q € Ta (ALC@A,TEA) (p,q) of ALC 5, 7.,y (R(p), h(q))) :

1. Let A be a truth medium, and 75, and 7js, practices of categorization such that
A satisfies assumption set PP (B1, A4, A5) with respect to 7, and 7j4,, and A is

negation complete with respect to models.

2. Apply the operation pow to A , 7s;, and 7z, forming the truth medium pow(A) and

the practices of categorization Ts; 4, and Tas,,,, 4)-

3. Applying Proposition 94, we know that pow(A) is a partially ordered truth medium
satisfying assumption set PP (B1, A4, A5) with respect to practices of categorization

Tg and TMp

pow(A) ow(A) "

4. By Proposition 64, we know that pow(A) satisfies monotonic extension of commitment

with respect to models.
5. By Proposition 65, we know that pow(A) is weakly extensible with respect to models.

6. If we apply Theorem 76 to pow(A), Ts, and Ty, 4, then there is a consistency

ow(A)

medium D and an associated practice of categorization 7y, derived from pow(A),

Ts: and 7; My, such that D satisfies D1, D2, D3 with respect to 7Ty,, and

pow(A) w(A)?
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10.

there is a function g from ¥, 4) to Xp such that

Vp,q € Epow(A) (ALC<E >(p’ Q) iff ALC(ED’TED> (g(p)ag(q))>

pow(A) ’szow(A)

Consider the function f: ¥4 — Xp,4,4) defined so that for all p € 4, f(p) = {p}.

By Proposition 95, we have
Vp € ¥4, Ts ,(p) = 75 sy (f(P)). Applying the definition of ALC, this implies
Vp,q € Ta, ALC 5, 7. 1(p,q) iff ALC@ ) (f(p), f(a))-

pow(A) ’szow(A)

Let h=go f.

Then A is a function from X 4 to X p such that
Vp,q € L4, ALC<EA,TEA>(p, q) iff ALC(ED,TED) (h(p), h(q)) MTheorem.

6.4.3 The canonical construction of an application of the Set CG technique

given an application of the Set PP technique constructed using an

arbitrary truth medium (Stage 3)

Theorem 78 Given a truth medium A and practices of categorization Ty, and Tp,, if A

satisfies assumption set PP (B1, A4, A5) with respect to Ts;, and Ty, ,

then there is a consistency medium D and an associated practice of categorization Ty, derived

rom A, Ts;, and Tz, , such that D satisfies D1, D2, D3 with respect to Ts;,,, and there is a
A A D

function h from ¥4 to Xp such that
Vp,q € X4 (ALC@A,TEA)(P,Q) iff ALC s, 1,y (h(p), h(Q)))

1.

2.

3.

Let A be a truth medium, and 75, and 77, practices of categorization such that A

satisfies assumption set PP (B1, A4, A5) with respect to T3, and Tjy,.

Apply the operation negcomp to A , Ty, and Ty, forming the truth medium
and T

negcomp(A) and the practices of categorization 75 negeomp(A)*

negcomp(A)

Applying Proposition 97, we know that negcomp(A) satisfies assumption set

PP (B1, A4, A5) with respect to practices of categorization T, ..., and
T

negcomp(A) "
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4. By Proposition 96, we know that negcomp(A) is negation complete with respect to

models.

and Ty then there

negcomp(A)?

5. If we apply Theorem 77 to negcomp(A), Ty,

negcomp(A)

is a consistency medium D and an associated practice of categorization 7y, derived

and Tas such that D satisfies D1, D2, D3 with

negcomp(A)?

from negcomp(A), Ts

negcomp(A)

respect to 7y, and there is a function g from ¥cgcomp(a) to X p such that

0.0 € Bnegumptaty (ALC @D AL, ) (0(0).9(0))

negcomP(A)’TEnegcump
6. Consider the function f : ¥4 — E,egcomp(a) defined so that for all p € X4, f(p) =

7. By Proposition 98, we have Vp € ¥4, T, (p) = T3, eompeay (F(P))-
Applying the definition of ALC, this implies

Vp,q € B4, ALC 5, 1, (P q) iff ALC< ) (f(p), f(q)) -

E'negm;»mp(A) ’Tz'negcomp(A)

8. Let h=go f.

9. Then Vp,q € ¥4, ALO<EA7T)3A> (p,q) iff ALC(ED,TED) (h(p), h(q)) MTheorem.

6.5 The operator dm

6.5.1 dmdefined

Given an arbitrary partially ordered truth medium Aused with respect to practices of
categorization 7y, and Ty,
the operator dm() constructs a consistency medium dm(A), and derived practice of

categorization 7s,,, ,, defined as follows:

Consistency medium dm(A):
® Yim(A) = L Atmodels(A)

b jdm(A): jA+models(A)

251



(p,m) € Zam(ay |
o Caminy = m =1 and there exists a (p,m’) € Ly 4) o
such that m’ € ¢t4(p)

(m #L and m € t4(p))

Derived practice ngm(A) :

® TS ymiay © Zdm(a) — P(U)is defined as follows:

TEdm(A) = IZiZA-#models(A)

6.5.2 The dm Set C'G assumptions proposition

Proposition 79 Given arbitrary partially ordered truth medium A, and practices of cate-
gorization Ts , and Ty,
if A satisfies monotonic extension of commitment with respect to models, and Ais weakly
extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5 B1) with
respect to Ty, and Ty,
then the consistency medium dm(A) satisfies assumptions D1, D2, and D3 with respect to

derived practice of categorization Ty, dm(A)"

The proof is presented in three sections below, one for each of the assumptions D1, D2, D3

(Propositions 80, 81, 82 respectively).

6.5.3 Monotonic extension of commitment (D1) portion of the dm Set CG

assumptions proposition

Proposition 80 Given arbitrary partially ordered truth medium A, and practices of cate-
gorization Ty, , and Ty, ,

if A satisfies monotonic extension of commitment with respect to models, and Ais weakly
extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5, B1) with
respect to Tx, and Ty, , then the consistency medium dm(A) satisfies D1with respect to

derived practice of categorization Ty dm(A)"
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1. Let A be an arbitrary partially ordered truth medium, and 75, and Tjs, practices
of categorization, such that A satisfies monotonic extension of commitment with re-
spect to models, and Ais weakly extensible with respect to models, and A satisfies

assumption set PP (i.e.A4, A5, B1) with respect to 75, and Ty, .

2. From Proposition 91 we know that <E Atmodels(A)> = A+models( A)> satisfies monotonic

extension of commitment with respect to 7Ty, dels(A)"

3. Since XA tmodels(4) = Ldm(A)r S A+models(4)==dm(4)> a0d T, 1.4y = Tsyniay bY
the definition of dm, we know that <Edm( A)» Sdm( A)> satisfies monotonic extension of
commitment with respect to Tz, ,,- This is equivalent to saying that dm(A) satisfies

D1 with respect to Ty im(4) - IPTOpOSition.

6.5.4 Consistency (D2) portion of the dm Set CG assumptions proposition

Proposition 81 Given arbitrary partially ordered truth medium A, and practices of cate-
gorization Ts,, and Ty,

if A satisfies monotonic extension of commitment with respect to models, and Ais weakly
extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5, B1) with
respect to Ts,, and Tpr,, then the consistency medium dm(A) satisfies D2 (consistency)

with respect to the derived practice of categorization Ty, im(4)"

Let A be a partially ordered truth medium, and 7s;, and 73, practices of categorization,
such that A satisfies monotonic extension of commitment with respect to models, and Ais
weakly extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5, B1)

with respect to s, and Tjy,.

1. [Show ¥ (p,m) € Sam(a) (P, m) € Camay 1 Ty (0, ) # 2) |

2. By Proposition 80, we know that the consistency medium dm(A) satisfies assump-
tion D1 (monotonic extension of commitment) with respect to derived practice of

categorization Ty, -

3. Let (p,m) be an arbitrary element of ¥ ;,4).
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4. Then p € ¥4, and m € (Jt4 [X4] U {L}, by the definition of dm.
5. We split into cases on the value of m.

6. Case 1: (m=.1)

(8) [Show (p, L) € Cum(ay iff T (P, 1) # 2]
(b) (=)
i. Assume (p, L) € Cym(a)-
ii. Then there exists a (p, m') € Lgm(4) such that m’ € t4(p).
. Ty (0s1)) = Top sy (2r)) = Ty () N Ty (0
iv. Since m’ € ta(p), we know m’ #L.
V. 50 T,y () = Tagy (),
. 80 Tz, (p)) = T (0) N Ta ().
vil. By Proposition 75, we know that 75, ,, ({(p,m')) # @.
viil. By the definition of dm, we know that (p, L) <gma) (p, m').
ix. Since dm(A) satisfies D1 (monotonic extension of commitment) with respect
t0 I5 0y (s L) Zama) (P, m/) implies that TS gy (P, m")) C TS gy (P, L))
x. 80 Ts 4y (0, 1) # 2. M ()
(©) (<)
i. Assume Ty, ,, ((p, 1)) # 2.
ii. [Show that there exists a (p,m’) € Sgm(a) such that m’ € t4(p).]
i Ty (91 1)) = Ty (1)
iv. By Proposition 93, we know that Ts,,__,..c4 (P, L)) = T5,(p)-
v. So Ts,(p) # @.
vi. Let v € Tx, (p).

vii. Since A satisfies Assumption B1 with respect to 75, , and Tar,, | T, [ta(p)] =
Ts 4 (p)-

viili. So there exists an m’ € t4(p) such that u € Tar, (m/).

ix. Since m’ € t4(p), M’ € Jta[Z4].
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x. Som! € Emodels(A)-
xi. So (p,m’) € Lgm(a)-
xii. So (p, L) € Cypa)-M (+) MCase 1.

7. Case 2: (m #.1)

() [Show (p,m) € Cam() i Ty () # 2]
(b) (=)
i. Assume (p,m) € Cym(4)-
ii. Som € ta(p).
ili. By Proposition 75, 75, (p) N Tar, (M) # @
iv. By the definition of dm, T, ,, ({(p,m)) = T5, (p) N Tar, (m).
v. S0 Tz, 4 ((Pym) # 2. M (=)

i. Assume 7Ty, ., ((p,m)) # @.
ii. By the definition of dm, Ty, , ((p,m)) = Ts,(p) N Tar, (m).
iii. By Proposition 75, m € ¢t 4(p).
iv. Som € Jta[E4].
v. S0 m € Xnodels(A)-
vi. So (p,m) € Lgm(a)-
vii. So (p,m) € Cym(a)-M () BCase 2.MProposition.

6.5.5 Weak extensibility (D3) portion of the dm Set CG assumptions

proposition

Proposition 82 Given arbitrary partially ordered truth medium A, and practices of cate-
gorization Ts,, and Ty, ,

if A satisfies monotonic extension of commitment with respect to models, and Ais weakly
extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5, B1) with
respect to Ty, , and Ty, , then the consistency medium dm(A) satisfies assumption D3 (weak

extensibility) with respect to derived practice of categorization Ty im(A)
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1. Let A be an arbitrary partially ordered truth medium, and 7y, and Ty, practices
of categorization, such that A satisfies monotonic extension of commitment with re-
spect to models, and Ais weakly extensible with respect to models, and A satisfies

assumption set PP (i.e.A4, A5, B1) with respect to 75, and Ty, .

2. By Proposition 92, <E Atmodels(A)s = At+models( A)> is weakly extensible with respect to

TEA-}-models(A) °

3. Since 34 imodels(4) = Ldm(A)s S At+models(A)= Zdm(A) A Ts 4, ogersay = TSamiays OY
the definition of dm, we know that <de( A)s Ddm( A)> is weakly extensible with respect
to Tg dm(A)"

This is equivalent to saying that dm(A) satisfies D3 with respect to Ty, ,,-BProposition.

This completes the proof of the dm Set CG assumptions proposition (Proposition 79).

6.5.6 Proposition demonstrating the embedding of ALC’<EA Ts,)

Proposition 83 Given arbitrary partially ordered truth medium A, and practices Ts,, and
Ty, if A satisfies assumption B1 with respect to Ts;, and Tp,, then the function h: ¥4 —
Yam(A), defined for p € X4 as h(p) = (p, L), is such that

for allp € B a, T, (p) = Tx 4 ay (R(P))-

This is immediate via Proposition 93, since g4y = T atmodels(4), and Tx imA) =

T5 4 4 modets(ay DY the definition of dm.MProposition.

6.6 The operator models

6.6.1 models defined

Given an arbitrary truth medium A used with respect to practices of categorization 7y, , and
Tn,, the operator models() constructs a partially ordered truth medium models(A), and

and Ty, defined as follows:

derived practices of categorization 7y odela(A)

models(A)
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Truth medium models(A):

® Ynodets(4) = Jta [Z4] U {L}, such that L¢ My

(note: L will be used for “no information with respect to models”)
hd jmodels(A) is defined as follows: for all p,q € z:models(A): p jmodels(A) qiffp=gqor p=1
b Mmodels(A) =My

b tmodels(A) : ZJ'models(A) - 7)(]\4models(A)) is defined as follows:

for any o € z:model.s'(A), tmodels(A)(U) =if 0 =1 then UtA [ZA} else {U}

Derived practices Ty and Ty,

models(A) models(A) "

® T3 oders 4 © Smodels(A) = P(U) is defined as follows:

for any o € Zmodeis(A)r Tomoaersay (7) = U Tty [tmodeis(4) ()] =
if o =1 then (JTpm, [Uta [Za4]] else Tpr, (o)

. TMmodels(A) : MmodeZS(A) — PU) = Ty

6.6.2 models Set PP assumption preservation proposition

Proposition 84 For all truth media A,

if A satisfies assumption Set PP (i.e. B1, A4, A5)

with respect to practices of categorization Ty, , and Ty,

then models(A) is a partially ordered truth medium satisfying assumption set PP

with respect to practices of categorization Ts, and Ty

odels(A) odels(A) "

Proof is at the end of the chapter.

6.6.3 Monotonic extension of commitment of models proposition

Proposition 85 For any truth medium A, models(A) satisfies monotonic extension of

commitment with respect to models.

Proof is at the end of the chapter.

257



6.6.4 'Weak extensibility of models proposition

Proposition 86 For arbitrary truth medium A, models(A) is weakly extensible with respect

to models.

Proof is at the end of the chapter.

6.7 The operator +

6.7.1 + defined

Given a partially ordered truth medium A, interpreted by practices of categorization 75,
and 7z, , and a partially ordered truth medium B, interpreted by practices of categorization

75, and Tpz,, such that A and B have identical sets of models (i.e. M4 = Mp) interpreted

B

identically (i.e. Tpr, = Thry), the operator + constructs a partially ordered truth medium

A+ B, and derived practices of categorization 7s,, ; and Ty, , zdefined as follows:

Truth medium A 4+ B:

e Y p=X4XXp

e <4 pis defined as follows:

for all <a1561> ) <a2752> € EA+Ba <a17ﬂ1> —_<A+B <a27/82> iﬂ:al jA Qg and 51 —_<B 182
o Marp =My = Mg

o tarp:XarB — P(Maysp)is defined as follows:

for any (o, B) € X a4B, tars((a,B)) = ta(a) Ntp(H)

Derived practices Ts,, ; and Ty, 5:

o Tx,.5 : La+B — P(U)is defined as follows:

for any (o, 8) € La+B, Teapp (. 8)) = T, () N Tz (B)
© Tary 5 Marp — PU) =Ty, = Ty
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6.7.2 + Set PP assumption preservation proposition

Proposition 87 Given a partially ordered truth medium A, interpreted by practices of
categorization Ts;, and Tpr,, and a partially ordered truth medium B, interpreted by prac-
tices of categorization Ts, and Ty, such that A and B have identical sets of models (i.e.
M4 = Mp) interpreted identically (i.e. Tar, = Ty ),

if A satisfies assumption Set PP (i.e. B1, A4, Ab) with respect to practices of categorization
Ts,, and Tpr,, and B satisfies assumption Set PP with respect to practices of categorization
Tsp and Tary, then A+ B is a partially ordered truth medium satisfying assumption Set PP

with respect to practices of categorization Ts,, , and Tpr,, -
Proof is at the end of the chapter.

6.7.3 + Monotonic extension of commitment preservation proposition

Proposition 88 For all partially ordered truth media A, B,with identical sets of mod-
els (i.e. Mg = Mp), if A satisfies monotonic extension of commitment with respect to
models and B satisfies monotonic extension of commitment with respect to models, then

A + B satisfies monotonic extension of commitment with respect to models.

Proof is at the end of the chapter.

6.7.4 + Weak extensibility preservation proposition

Proposition 89 For all partially ordered truth media A, B,with identical sets of models
(i.e. Mg = Mpg), if A is weakly extensible with respect to models, and B is weakly extensible

with respect to models, then A+ B is weakly extensible with respect to models.

Proof is at the end of the chapter.

6.8 Properties of A+models(A)

6.8.1 A+ models(A) Set PP assumption preservation proposition

259



Proposition 90 For any partially ordered truth medium A, and practices of categorization
T, and Ty, if A satisfies assumption Set PP (i.e. Bl, A4, A5) with respect to Ts,, and
Ty

then A+ models(A) is a partially ordered truth medium satisfying assumption Set PP with

respect to practices of categorization Ty, deta(a) N0 TMppmo deta(A)*

Proof is at the end of the chapter.

6.8.2 Monotonic extension of commitment

Proposition 91 Given arbitrary partially ordered truth medium A, and practices of cate-
gorization Ty, , and Ty,

if A satisfies monotonic extension of commitment with respect to models, and A is weakly
extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5 B1) with
respect to Ts,, and Ty, , then <ZA+models(A)a fA+models(A)> satisfies monotonic extension of

commitment with respect to Ts, dels(A)"

Proof is at the end of the chapter.

6.8.3 Weak extensibility

Proposition 92 Given arbitrary partially ordered truth medium A, and practices of cate-
gorization Ts;, and Ty, if A satisfies monotonic extension of commitment with respect to
models,

and A is weakly extensible with respect to models, and A satisfies assumption set PP
(i.e.A4, A5, B1) with respect to Ty, and Tpr,, then (5 aimodets(A)> = Atmodels(4)) 15 weakly

extensible with respect to Ts, . dels(A)"

Proof is at the end of the chapter.

6.8.4 Proposition demonstrating the embedding of ALC<2A T,
! A

Proposition 93 Given a partially ordered truth medium A and practices of categoriza-

tion Ts,, and Tpr,, if A satisfies assumption Bl with respect to Tx, and Tp,, then Vp €

a4, Ts, (p) = 733A+modezs(,4) ((p, 1)) -
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Proof is at the end of the chapter.

6.9 The operator pow

6.9.1 pow defined

See Section 4.8.4.

6.9.2 pow Set PP assumption preservation proposition

Proposition 94 For all truth media A,

if A satisfies assumption set PP (i.e. Bl, A4, A5)

with respect to practices of categorization T, and Ty,

then pow(A) is a partially ordered truth medium satisfying assumption set PP

with respect to practices of categorization Ts; 4 and Ty,

( ow(A)*

Proof is at the end of the chapter.

6.9.3 Proposition demonstrating the embedding of ALC<2A T,
4By

Proposition 95 Given a truth medium A and practices of categorization T, and Ty,
the function h: X4 — Ypoya) , defined for allp € X4 as h(p) = {p}, is such that
Vp € 4, TZA (p) = TEPOW(A)(h(p))'

1. Let pbe an arbitrary element of 3. 4.
2. h(p) = {p} is an element of Xy, (4)-

3. By the definition of pow, Ts,,,,, ., ({P}) = N Tz, [{p}] = 7, (p). WProposition.

6.10 The operator negcomp

The goal is to define an operator which is going to take a truth medium A and produce a

truth medium negcomp(A) such that.

1. negcomp(A) is negation complete with respect to models;
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2. negcomp(A) preserves assumption set PP, that is, if A satisfies assumption set PP
with respect to practices of categorization 7y, and 7j,, then negcomp(A) satis-

fies assumption set PP with respect to practices of categorization 7y d

negcomp(A) an

Mnegcomp(A) )

3. megcomp(A) preserves the assumed consequence relation. That is, there is some func-
tion h: X4 — Yregeomp(a) > Such that

ALC(s, 7, y(p,q) iff ALC< > (h(p), h(q)).

Znegccvmp(A) ’Tznegcomp(A)

6.10.1 negcomp defined

Given arbitrary truth medium A, used with respect to practices of categorization 7y, and
Tm,, we define the truth medium negcomp(A) and derived practices of categorization

and T as follows:

TEnegcomp(A) negcomp(A)

Truth medium negcomp(A):
i Emagco'rnp(,/fl) = {1> _1} X X4
i Mnegcomp(A) = My

® tnegeomp(A) ¢ Snegeomp(A) — P (Mnpegeomp(4)) is defined as follows:
for any <'i,04> € Z‘magco'rnp(A); tnegcomp(A)“i’a)) =if ¢ =1 then tA(OZ) else UtA [EA] -
ta(a)

and Ty

Derived practices 7x negeomp(4)

negcomp(A)

® T3, rcompay © Snegeomp(a) — P(U)is defined as follows:
for any (4, &) € Znegeomp(A) TS negeompiay (@) =if i = 1 then Ty , () else U Tx, [Ea]-
Ts4(a)

.TM

negcomp(A) °

Mnegcomp(A) - P(U) = 7}MA
6.10.2 Sufficiency of negcomp proposition
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Proposition 96 Given any truth medium A, the truth medium negcomp(A)is negation

complete with respect to models.

Proof is at the end of the chapter.

6.10.3 negcomp Set PP assumption preservation proposition

Proposition 97 For all truth media A, if A satisfies assumption set PP (i.e. B1, A4, A5)
with respect to practices of categorization Ts;, and Tpr,, then negcomp(A) is a truth
medium satisfying assumption set PP with respect to practices of categorization

and Ty

2negcornp(A) negcomp(A)*

6.10.4 Proposition demonstrating the embedding of ALC’<2A Ts,)
’ A

Proposition 98 Given arbitrary truth medium A, and practices Ts., and Ty ,, the function
h:%A = Ypegeomp(a) » defined forp € £ 4 as h(p) = (1,p), is such that
vp € ZA’ TEA (p) = TEnegcomp(A) (h(p))'

1. Let pbe an arbitrary element of X 4.
2. So h(p) = (1,p) is an element of ¥ gcomp(A)-

3. By the definition of negcomp, Ts,, . mmp(a)y (M(P)) = T5,(p) .WProposition.

6.11 Applying the methodology described in this chapter:
Applying the Set CG technique to theP(W F F)-language

of propositional logic

6.11.1 Statement of the goal

Our task in this section is to construct an application of the Set CG technique for the
P(W FF)-language of propositional logic. We have already shown how to apply the Set £
technique to the P(W FF)-language of propositional logic. Since every application of the

Set E technique is an application of the Set PP technique, we have also already shown
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how to apply the Set PP technique to the P(W FF)-language of propositional logic. We
will take that application, and run it through the methodology of this chapter, in order to
create the desired application of the Set C'G technique.

6.11.2 The application proper

We will be given a practice of categorization Tpy rr)assumed to be an conventioﬁal in-
terpretation of the set of assertion types P(WF'F); that is, Tpwrp)is assumed to satisfy
the semantic conventions for interpretations of P(W F'F). We have already seen (in Section
4.8.9 and the proof of Proposition 66) how, given a conventional interpretation Tpwrr)of
P(WFF), we can form a partially ordered truth medium PT'O and practice of interpreta-

tion for models Tr74, such that

1. PTO satisfies monotonic extension of commitment with respect to models;
2. PTO is weakly extensible with respect to models;

3. PTO satisfies assumption Set PP with respect to Tpw pr) and Trra;

Applying Theorem 76, we know that there is a consistency medium D and an associated
practice of categorization 7, derived from PTO, Tpwrr) and TrT4, such that D satisfies
D1, D2, D3 with respect to Ty, and there is a function h from P(WFF)to Xpsuch that
¥p,q € PWFF) (ALC (£ o) P20) E ALC(5, 1y (h(P),h(g))

Thus, an image of the representational relation of logical consequence for the P(W F'F)-
language of propositional logic as interpreted by 7pw rr) (ALC’<P(W F F):TP(WFF)>> is em-
bedded within the representational relation of logical consequence ALC(ED,TED) made

intelligible by an application of the Set C'G technique.

6.11.3 Details of the application

It will be interesting for us to look at the particular consistency medium, practice of catego-
rization, and function constructed by Theorem 76 in the process of showing the existential

claim.
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Consistency medium

The consistency medium constructed is dm(PTQ). Let us consider its components one at

a time.

The set of assertion types: X4, pr0)
Unpacking the definitions involved, X, pro)y = PT0+models(PTO) =
PWFF) x (Utpr [POVFF)] U {L}).
It is easy to show that | Jtpr [P(WFF)] = TTA, since for any p € WFF, the models
of {p}and {€.(p)} exhaust TTA.
So Xgmproy = P(IWFF) x (TTAU{1}).

The ordering relation: =g, pow(sT))
Unpacking the definitions involved, =4m(pT0)==PT0+models(PT0) Which is defined as

follows:

For all (S1,m1) , (S2,m2) € Xprotmodels(PTO)s
(81,M1) 2PTO+models(PTO) (S2,m2) iff S1 Xpro S2and M1 =moders(PT0O) M2;
which is equivalent to:

For all (S1,m1),(S2,mg) € X

dm(PTO)"

<Sl,m1) jdm(PTo) (Sg,mz) iff §1 € Sy and (m1 = M9 Or My :J_) .

The set of consistent assertion types: Cyypro)y Unpacking the definitions involved,

4 \
(S’ m) € de(PTO) |

m =1 and there exists a (S,m') € Zgm(pro)

Cam(PTO) = 1

such that m’ € tpr(S)

(m #L and m € tpp(S))

\ /

Given that S C WFF, and m € (TTAU {L}), when is it the case that m is an element

of tpr(S)? There are two cases.

Case 1: S = @. In this case, tpr(S) = TTA.So m € tpr(S) iff m € TTA.
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Case 2: S # @. In this case, tpr(S) = tsr [S].
So m € tpr(S) iff
m € (tsr [S]iff
for every s € S, m € tgr(s) iff
m € TTA and for every s € S, m = s.

We can combine the two cases and say: m € tpr(S)just in casem € TT A and for every
se€S, mEs.
So the description of Cgy,pro) above can be rewritten as:
( (S,m) € Zgm(pro) | \
m =1 and there exists a (S,m') € Xgn(pro)

such that m' e TTAand Vs € S, m' = s

(m#Land Vs €S, m = s)

~

Cam(PTO) = 1

Practice of categorization

The practice of categorization constructed is Ty, m(PTO)"
Unpacking definitions, 75, »ro) = 75pro ymoders(proy> Which is defined as follows:
for any (S,m) € E1:’TO+77wdelS(PTO)’ TEPTOerodels(PTO) ((S,m)) = Tspro (S)HTEmodels(PTO) (m).

Now Tspro = Tpwrr), and Tnpro = TrTA-

There are two cases for the value of Tx, ..., pro) (M) -

(Case 1) m =L. Inthiscase, Ty, .10 proy (M) = UTrTa [Uter [P(WFF)]] = UTrra [TTA] =
U (this last equivalence is implied by the semantic conventions of the P(W FF’)-language

of propositional logic).

(Case 2) m #L. In this case, Ty, ,,.\.pro) (M) = TrTa(m).

So T, ((S,m)) = if m = Lthen TP(WFF)(S) else T’P(WFF)(S) NTrra(m).

dm(PTO)
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Function A

The function h constructed is h : P(WFF) — Ygnproy defined for V P € P(WFF) as
h(P)=(P,1).

6.11.4 Discussion of the application

The core of the application is the definition of the set of consistent assertion types:
¢ 3
(Sa m) € Edm(PTO) |
m =1 and there exists a (S,m’) € Eyn(pro)
such that m’ €e TTA and Vs € S, m' |= s
\ (m#Land Vs€ S, ms)

The relation of truth-in-a-model (}=) from the standard model-theoretic semantic ac-

Cam(PTO) =

7/

count plays the central role in this definition. As seen here (and as we discussed in the
development of the proof - see Section 6.3.3), our construction directly imports the stan-
dard model-theoretic means of making consistency intelligible (consistency is equivalent to
the existence of a model).

It is interesting to compare the structure of this definition to the approach we proposed
for defining consistency for feature structures as assertion types in Section 5.7.4. There
we proposed that a feature structure would be deemed consistent if it had some extension
(via the subsumption relation) which satisfied all the constraints at every element in the
structure. If we think of truth-in-a-model as a constraint between a model and a set
of sentences; this definition can be seen as an instance of that general idea. A structure
(S,m) € Bgm(pro) is consistent iff there exists an extension (S’, m') of (S, m) on the ordering
=am(pTO)SUch that m’ € TT A, and Vs € §', m' = s.

This concludes the linear text of the chapter. The remainder of the material in this

chapter are the proofs of propositions mentioned earlier in the text.

6.12 Proofs of propositions from the text

Proof of Proposition 75:

(Proposition 75): For arbitrary truth medium A and practices of categorization 75, and
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Ty, if A satisfies Set PP with respect to Tx;, and Ty, then for all p € ¥4 and m € My,
T2, (p) N Ta, (M) # Diff m € t4(p).

Let A be an arbitrary truth medium, and 7y, and 73, practices of categorization, such
that A satisfies Set PP with respect to 7x;, and 7Ty, .

Let pbe an arbitrary element of ¥ 4, and m an arbitrary element of M 4.

[Show that 75, (p) N Tar, (M) # Diff m € t4(p)]
(—)

1. Assume 75, (p) N T, (M) # @.
2. Then there is a u € U such that u € Ty, (p) and u € Tpr, (m).

3. Since A satisfies assumption B1 with respect to 7y, and 7y,

we know that |J T, [ta(p)] = T, (p)-
4. So there exists an n € t4(p) such that u € Ty, (n).
5. Since Asatisfies assumption A4 with respect to Tas,, m = n.
6. Som € ta(p).M(—)
(<)
1. Assume m € t4(p).

2. Since A satisfies assumption A5 with respect to 7az,,

we know that there exists a u € U such that u € Tpz, (m).

3. Since A satisfies assumption B1 with respect to 7Tx, and Ty,

we know that T, [ta(P)] = Tx, (p)-
4. So u € Ts ,(p).
5. So u € Ts, (p) N Tar, (m).M () WProposition.

Proof of Proposition 84:
(Proposition 84): For all truth media A,
if A satisfies assumption set PP (i.e. B1, A4, Ab5)
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with respect to practices of categorization Tx;, and Ty,
then models(A) is a partially ordered truth medium satisfying assumption set PP

with respect to practices of categorization 75 () and T,

odels models(A)*

Showing that models(A) is a truth medium.

models(A) has the structure of a truth medium. We need to show that X, o4e1504) and
Mmodels(A) are non-empty. X,o4e15(4) is non-empty because L€ Yinogers(a): Mmodels(a) 18
non-empty because M,,4e154) = M4, and My is non-empty since A is a truth medium.
tmodels() 18 a function Ero4e1s(4) — P(Mpmodels(a)) by definition.

Showing that models(A)is a partially ordered truth medium.

Smodels(4) 18 a partial order, since <Emodels( A)» Smodels( A)> is (m)l’ that is,
Jta [Z4] made into an antichain and then “lifted”. See Davey and Priestley, p. 16.

Showing that models(A) satisfies assumptions A4, A5 with respect to practice
of categorization Ty dela(A)”

This is immediate since Mp,o4e154) = Ma and Ty, = Tp, by the definition of

odels(A)
models. Substituting these equivalences into statements of A4 and A5 expressed relatively

to models(A) and Ty, X yields A4 and A5 expressed relatively to A and 7jy,, which

odels(A
was assumed.
Showing that models(A) satisfies assumption Bl with respect to practices of

and TM

categorization 7y, models(A) "

models(A)
Formally, [Show 0" € Zmadets() (U Totasaracny [tmodets() ()] = Ty (@) )|
From the definition of models, we know T, ... 4y = T4, and
Vo € Smodets(4)r Tomogerscay (0) = U Tty [Emodets(ay (7)]-
So the above becomes
[Show Vo € Srmogers(ay (UTnsa [tmodets(4)(0)] = U Tasy [tmodets(a)(@)])]
which is immediate.
Proof of Proposition 85:
(Proposition 85): For any truth medium A, models(A) satisfies monotonic extension of
commitment with respect to models.

Let A be an arbitrary truth medium. Let p, g be arbitrary elements of ¥,,54¢15(4), such

that p jmodels(A) q.
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[ShOW tmodels(A) (Q) - tmodels(A) (p)]
1. By the definition of models, either p =q or p =1.

2. (Case )p=gq

(a) tmodels(A)(p) = tmodels(A) (q).Case 1.

3. (Case2) p=l,and p#¢q

(a) tmodels(A) (p) - UtA [ZA] :
(b) Since p # q, g #L; 50 tmodes(4)(9) = {a}-

(c) Since ¢ € Uta [Za]; tmodets(4)(@)  tmodeis(a) (). MCase 2.MProposition.

Proof of Proposition 86:

(Proposition 86): For arbitrary truth medium A, models(A)is weakly extensible with
respect to models.

In this proof, we will use the notation z Vp y (’x join y’) to indicate the least upper
bound of « and y in the ordered set P. (See Davey and Priestley, p. 28)

Let A be an arbitrary truth medium.

(Part a.)

Show: For every p,q € Zpogels(4)s

IR C {p,q };Lnodezs(A) such that {J tmodets(a) [R] = tmodets(a)(P) N tmodels(4)(7)
Let p,q be arbitrary elements of ¥,,4015(4)-

[Claim: R=if p Vmodels(4) 4 €Xists, then {p Vyogers(a) q} else @]

Note: if PVimodels(a) q €xists, then pVonoders(a) 4 € {Ps Thmodets(4)-
We consider four cases: 1) p=1,g=1,2)p=1,9g#L,3)p#L,g=1,4)p#L,qg#L
(Case 1) p=1,g=1

L. tmodels(A) (p) = UtA [EA] :
2. tmodels(A) (Q) = U ta [EA] :

3. tmodels(A) (p) N tmodels(/—l) (Q) = U ta [EA] .
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4. pvmodels(A) g=1.
5. Let R={1}.
6. Utmodels(A) [R] = tmodels(A) (—L) = UtA [EA] .(Ca’se 1)

(Case 2) p=1,q#L

L. tmodets(a)(P) = Uta[Z4] -

2. tmodets(4)(9) = {q}-

3. g € Uta[Z4], since g € Bpnogers(a) and g #L.
4. 50 tmodeis(A)(P) N tmodets(4)(9) = {gq}-

9. PVinodels(A) 4 = G-

6. Let R = {q}.

7. Utmodels(4) [B] = tmodets(4)(q) = {q} M(Case 2)

(Case 3) p#L,q=1
Same as Case 2, but with p and q exchanged . B(Case 3)
(Case ) p#L,q#L

1. tmodels(A) (p) = {p}

2. tmodels(A) (Q) = {Q}

3. (Case da) p=q¢q

(a') tmodels(A) (p) N tmodels(A) (q) = {p}
(b) pvmodels(A) q=Dp.
(c) Let R = {p}.

(d) U t'models(A) [R] = tmodels(A) (p) = {p}l(Case 4&)

4. (Case 4b) p#gq
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(a) tmodels(A) (p) N tmodels(A) (Q) = J.
(B) PVimodels(4) 9 does not exist.
(c) Let R=o.

(d) Utmodeis(a) [R] = &.M(Case 4b)B(Case 4)M(Part a.)

(Part b.)
Show: For every p,q € Trodels(4)s

35 ngodels(A) p such that Utmodels(A) [S] = tmodels(A) (p) - tmodels(A) (q)
Let p,q be arbitrary elements of ¥,,,4e15(4)-

[Claim: S = tmodels(4)(P) — tmodels(A)(q)]
We consider four cases: 1) p=1,g=1,2)p=1,g#L,3)p#L,g=1,4)p#L,q#L
(Case 1) p=l,g=1

L. tmodels(a)(P) = Uta [Za].

2. tmoders(a)(q) = Uta [Z4] -

3. tmodels(A)(P) = tmodeis(a)(q) = D.
4. Let S=2.

5. S Clmodels(a) P trivially.

6. Utmodels(A) [S] = 2.M(Case 1)

(Case 2) p=L,q#L

L. tmodeis(4)(P) = Uta[24] -

2. tmodets(4)(9) = {q}-

3. tmodeis(4)(P) — tmodets(a)(@) = Uta [Ea] — {g}-

4. Let S =Jta[2a] — {q}-

5. Since p =1, every s € S is such that s =moedeis(4) P- S0 S CTmoders(4) P-
6. For each member s € S, s #.1, 80 tmogels(a)(8) = {s}-
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7. So Utmodels(A) [S] = S.(Case 2)
(Case 3) p#L,g=1

L. tmodels A)( ) {p}

e

tmodels(A) (q) = U ta [ZA] :

o

. Since pe UtA [ZA], tmodels(A) (p) - 75models(A)(Q) =
4. Let S = 2.

5. S Clmodels(a) P trivially.

o

' Utmodels(A) [S] = Q..(Case 3)
(Case4) p#L,g#L

L. tmodeis(a)(P) = {P}-
2. tmodels(4)(@) = {g}-
3. (Caseda)p=gq
(3) tmodets(4)(P) — tmodets(4)(q) = @
(b) Let S = 2.
(c) S STimodets(a) P trivially.
(d) Utmodets(ay [S] = 2.M(Case 4a)

4. (Case 4b) p # ¢

() tmodels(A)(P) = tmodels(4)(2) = {P}.

(b) Let S = {p}.

(¢) S Clmodels(A) P SiNCe =rmoders(a) is reflexive.

(d) Utmodets(a) [S] = tmodeis(4)(p) = {p}.M(Case 4b)
B(Case 4)M(Part b.)MProposition.
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Proof of Proposition 87:

(Proposition 87): Given a partially ordered truth medium A, interpreted by practices
of categorization 7yx;, and 7js,, and a partially ordered truth medium B, interpreted by
practices of categorization Ty, and 7Tjs,, such that A and B have identical sets of models
(i.e. M4 = Mp) interpreted identically (i.e. Tar, = Tmp),
if A satisfies assumption Set PP (i.e. B1, A4, A5) with respect to practices of categorization
Ts,, and Ty, , and B satisfies assumption Set PP with respect to practices of categorization
Txp and Typ,, then A + B is a partially ordered truth medium satisfying assumption Set
PP with respect to practices of categorization Ty ,, ; and Ty, , -

Showing that A + B is a truth medium.

A+ B has the structure of a truth medium. We need to show that ¥4, 5 and M4, p are
non-empty. We know that ¥4 and ¥ g are non-empty since A and B are truth media. So we
know that ¥ 4, p is non-empty since ¥ 445 = ¥4 xXp. We know that M4 is non-empty since
A is a truth medium. So we know that M4, p is non-empty because M4,p = My = Mp.
ta+p is a function from ¥ 44p to P(M44p) by definition.

Showing that A + B is a partially ordered truth medium.

The ordered set (¥44p, =a+B) is the product of ¥4 and ¥p with the coordinate-
wise order imposed. Given that (¥4, <4) and (¥p,=p) were partially ordered sets, so is
(¥4+B, =4+B). See Davey and Priestley, p. 18.

Showing that A 4+ B satisfies assumptions A4, A5 with respect to practices of
categorization Ty, ,and Tz, ;-

This is immediate since My = M4 and Ty, 5, = Ta, by the definition of A + B.
Substituting these equivalences into statements of A4 and A5 expressed relatively to A+ B
and Tz, 5, yields A4 and A5 expressed relatively to Aand 7as,, which was assumed.

Showing that A + B satisfies assumption Bl with respect to practices of
categorization Tx, ,and Ty, ;-

Formally, [Show V (a,8) € La1B (UTmu, 5 [ta+B({, 8))] = TEA+B(<aa/6>))]

1. Let (o, 5) be an arbitrary element of ¥ 44 p.

2. Apply the definitions of A+ B, i.e. Tary, 5 = Ty, Tpyp (0 B)) = Tx , () N T4 (),
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and t44B((a, B)) = ta(a) Ntp(6).
3. [Show 7w, [ta(a) NtB(B)] = Tx, (o) N Tz, (B)]

4. Since A satisfies assumption B1 with respect to 7x, and 77,, we have Ty, (o) =

U7, [ta(e)]. Similarly, T, (8) = U 7w, [t2(8)] -
5. So [Show J T, [ta(a) Nta(B)] = UTa, [ta(a)] VU T [t2(6)]]

6. Apply the assumed equivalence that Tp7, = T,

7. S0 [Show U7Tn, [ta(e) NtB(B)] = UTm, [ta(a)] VU T, [t (B)]]

8. (S)

(a) Let u € |JTum, [ta(a) Ntp(B)].

(b) Then there is some m € t4(a) Ntp(B) such that u € Tpr, (mM).

(c) Souel|JTmy, [tala)] and v € |J Ty, [tr(5)] . M(Q)
9. (2)

(a) Let u € T, [ta(e)] NU7n, [88(6))-

(b) Sou € |JTum, [ta(e)] and u € |J T, [tB(B))-

(c) So there exists an m € ta(c) such that u € Tpr,(m), and an n € tg(B), such
that u € Tpr,(n). Since tp : ¥p — P(Mp), and My = Mp, n € My. Since
u € Ty, (m) and u € Tpr,(n), and m,n € My, and A satisfies A4 with respect
to Tp,, we know that m = n.

(d) So m € ta(a) and an m € tp(f).

(&) Sowe UThr, [tal@) Ns(5) M(2)

Proof of Proposition 88:

(Proposition 88): For all partially ordered truth media A, B, with identical sets of models
(i.e. M4 = Mp), if A satisfies monotonic extension of commitment with respect to models
and B satisfies monotonic extension of commitment with respect to models, then A +

B satisfies monotonic extension of commitment with respect to models.
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Let A, B be arbitrary partially ordered truth media with identical sets of models (i.e.
M4 = Mp), such that A satisfies monotonic extension of commitment with respect to

models and B satisfies monotonic extension of commitment with respect to models.

1. Let (a1, B4) , (a2, Bs) be arbitrary elements of X 445, such that (a1, 1) <a+5 (a2, [s)
2. So a1 =24 az and B; =p (B, by the definition of +.

3. Since A satisfies monotonic extension of commitment with respect to models, Vo, ag €

Y4, if a1 <4 azthen t4(az) Cta(ar).

4. Since B satisfies monotonic extension of commitment with respect to models, V3,, 3, €

¥p, if B =B By then t5(B;) C tp(6).
5. So tg(ag) Cta(ar) and tp(By) C tp(B)-
6. So ta(ae) Ntp(Bs) C taler) Ntp(By)

7. So tays({ag, B)) C tar({ai,B;)) by the definition of t 4. EMProposition.

Proof of Proposition 89:

(Proposition 89): For all partially ordered truth media A, B,with identical sets of
models (i.e. My = Mp), if A is weakly extensible with respect to models, and B is weakly
extensible with respect to models, then A+ B is weakly extensible with respect to models.

Let A, B be partially ordered truth media with identical sets of models (i.e. M4 = Mp)
such that A is weakly extensible with respect to models, and B is weakly extensible with
respect to models.

[Show that A + B is weakly extensible with respect to models.|

(Part a.)
For every <a17ﬁ1> > <a2n@2> € Ya+B;

Show iR g {<a17181> ’ <a27162>}1:1+B
such that (Jt a5 [R] = ta+p((01, 81)) Ntars ({02, B2))

1. Let (a1,0:), (a2, 8) be arbitrary elements of ¥ 44 5.
2. So tarp({e1,B1)) =ta(ar) Ntp(By), and tays({az, B2)) = talaz) Nta(B,).
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3. Since A is weakly extensible with respect to models, and a1, as € X4, we know that

JR4 C {ou,az}y such that | Jta [Ra] = ta(an) Nta(ag).

4. Similarly, since B is weakly extensible with respect to models, and 3,8, € g, we

know that 3Rp C {1,085} such that | Jtg [Re] = ts(81) Nts(Bs).

5. Consider R = R4 X Rp.
6. (Claim al)[R4 x Rp C {(a1,81) , (a2, B2)}a1 5]

(a) Let (a3,03) € Ra x Rp.

(b) So a3 € Ry, and 3 € Rp.

(c) So az =4 a1, and ag =4 ag since R4 C {a1,a9}y

(d) And B3 =p B3, and B3 =p B, since Rg C {81,052} 5 -

(e) So (as,B3) Za+p (a1,01) and (a3, B83) =4+ (@2, ;) by definition +.

(f) So (as,ps) € {{c1,081), <a2,52>}1fq+3 B(Claim al.)
7. (Claim a2)[Jta+B [R] = tasB({0a1,81)) Ntars({as, Bs))]

(a) Utasp[Rax Rpl= U  tapp(@B)= U  ta(a)Nip(h).

{(a,B)ER4AXRB {(a,f)ER4XRp
(b) tays({a1,B1)) Ntayp({az,Bs)) = ta(ca) Ntp(Br) Ntalaz) Ntp(Bs).

(©) (S)
i. Let m € U tala) Ntp(B).
(a.B)€RAXRB
ii. So thereis an @ € R4 and a 3 € Rp such that m € t4(a) and m € tp(f).
iii. Since @ € Rg and m € ta(a) we know m € |Jta[Ra], and hence that
m € talay) Nta(az).
iv. Since 8 € Rgand m € tg(f) we know m € |Jtp[Rp], and hence that
m € tp(B;) Ntp(B,) M(C)
@ (2)
i. Let m € ta(on) Ntp(By) Ntalaz) Ntp(Bs).

ii. Som € |Jta[Ra] and m € |Jtp[Rp].
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ili. So there is an o € Rgsuch that m € t4(a), and a 8 € Rp such that
m € tp(f).

iv. So there is an (@, 3) € R4 x Rp such that m € t4(a)and m € tg(5).H (D)
H(Claim a2).M(Part a)

(Part b.)
Show: For every (a1, ), (as,3s) € Tats,
Show 3S Cla+s (a1,B)

such that Jta+p[S] = tars({a1,B1)) — tars((az,Bs))

1. Let {(0q,B:), (a2, Bs) be arbitrary elements of ¥ 44 p.

2. So tarp({a1,B1)) = ta(ar) Ntp(By), and tayp((az, Bs)) = ta(as) Ntp(Bs).

3. Since A is weakly extensible with respect to models, and a;,ag € ¥4, we know that

354 C (T4 a1) such that |Jt4 [Sa] =ta(on) —ta(as).

4. Similarly, since B is weakly extensible with respect to models, and 3,,8, € Xp, we

know that 3Sg C (1p ;) such that | Jtg [SB] = tB(6;) — tB(Bs).
5. Let S={ (a,) | (¢ € S4 and B = B;)or (@ =0y and B € Sp)}
6. (Claim b1)[S C (Ta+B (e1,51))]

(2) Let (a,5) € S.
(b) (Case 1) (o € Sq and B =5,

i. Since v € S4, o =4 0.

ii. So (a, B) = axp (a1,5,) M(Case 1)
(c) (Case 2) (&= a and B € Sg)

i. Since B € Sg, B =B B;-
ii. So (e, B) =a+p (a1,3;) M(Case 2)M(Claim bl)

7. (Claim b2) [Jta+p [S] = tars({e1,B1)) — tars((a2, Bs))]
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(a) That claim is equivalent to:

Claim:< ;La; StA(a) Ntp(B) = (ta(a1) Ntp(B1)) — (talaz) Ntp(By))
(b) (©)

i. Letme |J tala)Nts(B).
i, So there & somme (@, B) € S such that m € t4(a) and m € t5(8).
ifi. (Case 1) (a € S4 and § = f;)
A. Since a € S4, m € |Jta[Sa], so m € ta(ag)and m ¢ ta(as).
B. Som € (ta(on) Ntp(B;)) and m ¢ (ta(az) Ntp(B,)) M(Case 1)
iv. (Case 2) (a = and 8 € Sp)
A. Since g € Sg, m € Jtp [SB], so m € tg(B;) and m ¢ tg(f,).
B. Som € (ta(a1) Ntp(B;)) and m ¢ (ta(az) Ntp(S,)) M(Case 2)M(C)
() (2)
1. Let m € (ta(a1) NtB(By)) — (talaz) NtB(6))
ii. Som € ta(an), m € tp(By), and m ¢ (ta(az) Nts(By))
iii. (Case 1) m ¢ ta(as)
A. Since m € ta(an) and m ¢ ta(az), m € (ta(ar) — ta(as)), so m €
Uta[Sal-
B. So there is an a € Sy such that m € £4(a).
C. Form the pair (a, B ).
D. (@, f;)is an element of S such that m € t4(a) and m € tg(5;)M(Case
1)
iv. (Case 2) m ¢ t5(8s)
A. Since m € t5(B;) and m & ts(By), m € ts(By) — ts(By), so m €
Ute [Sa].
B. So there is a 8 € Spsuch that m € t5(8).
C. Form the pair (as, 3) .

D. (ay,f) is an element of S such that m € t4(a;1) and m € tp(5).M(Case
2)H (D) M(Claim b2) E(Part b.)MProposition.

279



Proof of Proposition 90:
(Proposition 90): For any partially ordered truth medium A,
and practices of categorization 7y, and Ty,
if A satisfies assumption Set PP (i.e. B1, A4, A5)with respect to 75, and Ty,
then A + models(A) is a partially ordered truth medium satisfying assumption Set PP

with respect to practices of categorization 75, dels(ay @D Ty mo dele(A)-

1. Let Abe an arbitrary partially ordered truth medium,
and 7Ty, and 7, arbitrary practices of categorization for A
such that A satisfies assumption Set PP (i.e. Bl, A4, A5) with respect to Ty, and
Ty

2. By the models Set PP assumption preservation proposition (Proposition 84),
models(A) is a partially ordered truth medium satisfying Set PP with respect to

T): and TMm

models(A) odels(A) "’

3. We have Myode1s(4) = Ma and T, .4y = T, Py the definition of models.

4. So by the + Set PP assumption preservation proposition (Proposition 87),
A + models(A) is a partially ordered truth medium satisfying assumption Set PP

with respect to practices of categorization 7y, dets(a) a0 TM g moders "

Proof of Proposition 91:

(Proposition 91): Given arbitrary partially ordered truth medium A, and practices of
categorization 7y, and 7y,
if A satisfies monotonic extension of commitment with respect to models, and A is weakly
extensible with respect to models, and A satisfies assumption set PP (i.e.A4, A5, B1) with
respect to Ty, and Tz, then (544 modets(4)> = A4models(4)) Satisfies monotonic extension of

commitment with respect t0 Ts,, . oueeca)-

1. Let A be an arbitrary partially ordered truth medium, and 7y, and Ty, practices
of categorization, such that A satisfies monotonic extension of commitment with re-
spect to models, and A is weakly extensible with respect to models, and A satisfies

assumption set PP (i.e.A4, A5, B1) with respect to 75, and Tjy,.
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D jA+models(A) qimplies

&

Show vaq € EA+'m,¢:>dels(.'4)
TEA+models(A) (@) € TEA+modezs(A) (p)

3. By the monotonic extension of commitment for models proposition (Proposition 85)
we know that models(A) satisfies monotonic extension of commitment with respect

to models.

4. By the + monotonic extension of commitment preservation proposition (Proposition
88) we know A-+models(A) satisfies monotonic extension of commitment with respect

to models.

5. By the A+models(A) Set PP assumption preservation proposition (Proposition 90) we
know that A + models(A)is a partially ordered truth medium satisfying assumption

set PP with respect to practices of categorization 75, dets(a) 30 Trgsmo dela(A)"

6. By Proposition 60, we have
<E Atmodels(A)s = Atmodels( A)>satisﬁes monotonic extension of commitment with re-

spect $0 T5;, . oseraa) - MPTOPOSsItiON.

Proof of Proposition 92:
(Proposition 92): Given arbitrary partially ordered truth medium A, and practices of
categorization Ty, and Ty, , if A satisfies monotonic extension of commitment with respect

to models,

and A is weakly extensible with respect to models, and A satisfies assumption set PP
(i.e.A4, A5, B1) with respect to Ty, and Tjz,, then <EA+m0dels(A), jA+m0dels(A)> is weakly

extensible with respect to T, 4.4

1. Let A be an arbitrary partially ordered truth medium, and 7x, and 7y, practices
of categorization, such that A satisfies monotonic extension of commitment with re-
spect to models, and A is weakly extensible with respect to models, and A satisfies

assumption set PP (i.e.A4, A5, B1) with respect to Tx, and Tyy,.

2. By the A+models(A) Set PP assumption preservation proposition (Proposition 90),
we know that A+ models(A) satisfies assumption set PP with respect to practices of

categorization 733,4+modezs(A) and TMA+models(A)'
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3. By the Weak extensibility of models proposition (Proposition 86), we know that

models(A) is weakly extensible with respect to models.

4. By the + weak extensibility preservation proposition (Proposition 89), we know that

A+ models(A) is weakly extensible with respect to models.

5. By Proposition 63, we know the partially ordered set (X 44modets(4)> = A-+models(A)) IS

weakly extensible with respect to 7y .WProposition.
Yy p A+4models(A) p

Proof of Proposition 93:
(Proposition 93): Given a partially ordered truth medium A and practices of catego-

rization 75, and 7yy,, if A satisfies assumption B1with respect to 7s, and Tjy,, then

Vp € 4,75, (p) = TEA+models(A) ((p, L))

1. Let A be a partially ordered truth medium, and 75, and 7y, practices of catego-

rization such that A satisfies assumption B1 with respect to 7y, and Tyy,.
2. Let p be an arbitrary element of X 4.
3. Then (p, L) is an element of ¥ 44 modets(a), Since p € X4, and L€ Tpogers(a)-

4. Note that by definition of the + operator,
TEA+models(A) (<p’ 1)) = TEA (p) n TEmodezs(A)(J-) = TEA (p) n U Ty [U ta [ZAH .

5. By Proposition 6, we know that since A satisfies assumption B1 with respect to 7y,

and 7)r,, that A satisfies assumption B4 with respect to Ty, and Ty,
6. So UTnm, [Uta [24]] =U7Ts, [X4] (Assumption B4).
7. 80 T3y moserseay (P2 1)) = Toa () NU Tz, [S4].
8. Since p € B4, Tz, (p) € UTs, [24]:
9. S0 T5 4, mosers(ay (P L)) = Ts , (p). MProposition.

Proof of Proposition 94:
Proposition 94: For all truth media A,
if A satisfies assumption set PP (i.e. B1, A4, A5)
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with respect to practices of categorization 7y, and Ty,
then pow(A) is a partially ordered truth medium satisfying assumption set PP
with respect to practices of categorization 7 _, () and TMpow( "

Showing that pow(A) is a truth medium.

pow(A) has the structure of a truth medium. We need to show that ¥,,(4) and Mpey,(a)
are non-empty. Lpoy(4) is non-empty because & € P(X4). We know that M, is non-empty
since A is a truth medium. So Mpuy(4) is non-empty since Mpoya) = Ma. tpow(a) is 2
function Y00 (4) — P(Mpow(a)) by definition.

Showing that pow(A)is a partially ordered truth medium.

=pow(4) I8 a partial ordering since C is.

Showing that pow(A) satisfies assumptions A4, A5 with respect to practices of

categorization T}:p and 7; M,

ow(A) ow(A)*

This is immediate since Mp,,4) = M and TMp = Ty, by the definition of

ow(A)
pow. Substituting these equivalences into statements of A4 and A5 expressed relatively

to pow(A) and T, vields A4 and A5 expressed relatively to A and 7j,, which was
assumed.
Showing that pow(A) satisfies assumption Bl with respect to practices of

categorization Tgpow( 4) and TMpow( ar

Lemma 99 Let A be an arbitrary truth medium satisfying assumption A4 with respect to
practices of categorization Ty, and Tpr, . ThenVX C X4, X # @ implies T, [ta[X]] =
N (UTw, [Ea(@)])-

zeX

Let X be an arbitrary nonempty subset of ¥ 4.

(<)
1. Let a be an element of |J Tar, [N ta [X]].
2. So a € Tpr,(m) for some m, such that m € t4(x) for every z € X.
3. Soa €Ty, [ta(z)] for every z € X.
4 Soae M1 (U, [ta(2))m(S)
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2)

1. Let a be an element of (| (U 7Zn, [ta(x)]).
zeX

2. | Claim: there is some m € M4 such that
for every x € X, m € t4(x)

a € Tpr, (m) and ):|

(a) Pick arbitrary p € X. We know one exists since X is nonempty.
(

b) By case (2) assumption, there is some m € t4(p) such that a € Ty, (m).

(
(d) We know, by case (2)assumption, there is some n € t4(x)such that a € Ty, (n).

)

)
c) Now consider any x € X. [Show m € t4(z).]

)
e) Since A satisfies A4 with respect to Tps,, we know that m = n.
)

(
(f) Som € t4(z). Since z was an arbitrary element of X we have shown: for every

z € X, m € ty(r).MClaim.

3. Given some m € My satisfying the claim, m € (¢4 [X], and a € Ty, (m), so a €
U7, [Nta[X]) M (D) MLemma.

(B1)

Formally, [Show VS € Zpow(a) (U TMppur(a) [tpow(a)(S)] = TS pow(ay (S))}

1. Let Sbe an arbitrary element of ¥, 4)-

2. |:ShOW UTMpow(A) [tpo’w(A)(S)] = ﬁpow(fl) (S)]

3. Case 1: S =@, 50 tpou(a)(S) = Uta[X4] (by definition of pow)

(a) [Show UM,y (U4 [Z4]] = Tz ) (S)]
(b) From the definition of pow, we know that 75, ,,(S) = UTs, [24], and Ty,

ow(A) =

Tn,- So the above claim to be shown becomes
(Show U T, [Uta [Za]l = UTs, [Za]]

(c) This is just assumption B4 with respect to truth medium A and practices of
categorization Ty, and Tys,. Since we have assumed that A satisfies assumption

B1 with respect to 75, and 7Tjz,, we apply Proposition 6 (B1 implies B4).l(Case
1).
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4. Case 2: S # & 50 tpou(4)(S) = (Nt [S] (by definition of pow)

(a') [Show UTMpow(A) [ﬂ tA [S]] = Epow(A) (S):l
(b) From the definition of pow, we know that 7x, ., (S) = 7z, [S] and TMpguiay =
T, - So the above claim to be shown becomes
[Show T, [Nt4[S]] = N7z, [S]]
(c) Applying Lemma 99, this becomes
[Show (1 (Ui a6l = ) T ()
seS seS
(d) Since truth medium A satisfies assumption B1 with respect to Ty, and Ty,
and S C ¥4 we know that
Vs €S (UTm, [ta(s)] = Ts,(s)). This gives the desired result.
B(Case 2).H(B1).WProposition.

Proof of Proposition 96:

First we prove a lemma.
Lemma 100 For any truth medium A, | tpegeomp(4) [Enegeomp(a)] = Uta [E4]
Proof.

1. Let A be an arbitrary truth medium.

2. (9)

(a) Let m € Utnegeomp(a) [Enegeomp(4)]
(b) So there is an (i,) € Lpegeomp(a) Such that m € tregeomp(a) ({4, @)
(c) By the definition of ¥pegcomp(a), ¢ = 1or ¢ = —1, and a € X4.
(d) (Case 1): i=1

1. 80 tnegeomp(a) ({3, ) = ta(c).

ii. Som € ty(a).

iti. Som € Jta[Xa].M(Case 1)
(e) (Case 2): i=—1
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i. So tnegcomp(A) (<Z7 Oz)) = UtA [EA] - tA(a)
ii. Som e Jta[Za] —ta(e)
ili. Som € |Jta[E4].M(Case 2) H(C)

3. (D)

(a) Let m € | Jta [Z4].

(b) So there is a o € 4 such that m € t4 (o).

(c) Form (1,0).

(d) (1,0) € Znegeomp(a)-

() tnegeomp(a) ({1,0)) = ta (o) by the definition of tnegeomp( A)-
(f) So m € tpegeomp(a) ((1,0)).

(g) Som € Utnegeomp(A) [Snegeomp(4)] M (2) M (Lemma)

(Proposition 96): Given any truth medium A, the truth medium negcomp(A) is

negation complete with respect to models.

1. Let A be an arbitrary truth-medium.

2. [Show that negcomp(A)is negation complete with respect to models.]

Show that for all (i, @) € Zpegcomp(a)s
3. That is, 3R C X, cgcomp(4) Such that

U tnegoomp(A) [R] = U tnegcomp(A) [Znegcomp(A)} - tnegcomp(A) ((Z’ a))

4. Let (i,) be an arbitrary element of Z,cqcomp(a)-
5. By Lemma 100, we know that | Jtyegcomp(a) [Enegcomp( A)] =Uta[Z4]

6. So the claim to be shown becomes

[ShOW dRC Znegcomp(A) such that Utnegcomp(A) [R] = UtA [EA] - tnegcomp(A)(<i7 Ol)):|
7. By the definition of ¥,cgcomp(4), we know that ¢ = 1 or 2 = —1, and that a € ¥4.
8 (Casel):i=1
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(2) tnegeomp(a) ({8, @) = tnegeomp(a) ({1, @) = ta(e).

(b) Let R = {(=1,0)}.

(c) RC Xnegeomp(a), since —1 € {1,~1} and a € 4.

(d) Utnegeomp(a) [B] = tregeomp(ay ((—1,0)) = Uta [Z4] — ta(a).

(e) So Utnegcomp(A) [R] = UtA [EA] - tnegcomp(A) ((Za a>) - (Ca’se ]-)

©

. (Case 2): i=-1

(8) tnegeomp(a) (i, @) = Uta [Ea] — ta(o).

(b) Let R={(l,a)}.

() R C Segeomp(ay since 1 € {1,—1} and a € 54,

(d) Utnegeomp(a) [B] = tnegeomp(a) ({1, @) = ta(a).

(e) Claim: t4(a) =Uta[24] — (Uta[Z4] —ta(®)).
i. Since & € S, we have £4(c) € Uta [Sal.

ii. For all sets P, @, if P C @, then P = @ — (Q — P).MClaim.

(f) So Utnegcomp(A) [R] = U ta [EA] - (U tA [ZA] —ta (a)) =
Uta[24] = thegeomp(a) ((¢,@)).M (Case 2) MProposition.

Proof of Proposition 97:
(Proposition 97): For all truth media A,
if A satisfies assumption set PP (i.e. B1, A4, A5)
with respect to practices of categorization Ty, and Ty,

then negcomp(A) is a truth medium satisfying assumption set PP

and TM

with respect to practices of categorization 7y negcomp(A)

negcomp(A)
Let A be an arbitrary truth medium satisfying assumption set PP (i.e. B1, A4, A5) with
respect to practices of categorization 7x, and Tjy,.
Showing that negcomp(A) is a truth medium.
negcomp(A) has the structure of a truth medium. We need to show that pegeomp(a)

and Mpegcomp(4) are non-empty. Lpegeomp(4) is non-empty because ¥4 is nonempty (Aisa
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truth medium), and ¥0gcomp(a) = {1, =1} X Ta. Mpegcomp(a) 18 non-empty because My is
nonempty (A is a truth medium), and Myegcomp(a) = Ma-

trnegeomp(4) 18 @ function ¥y egcomp(a) = P(Mpegeomp(a)) by definition.

Showing that negcomp(A) satisfies assumptions A4, A5 with respect to
and Ty

practices of categorization Ty negeomp(A) *

negcomp(A)

This is immediate since Myegeomp(a) = Ma and Ty, = Ty, by the definition

egcomp(A)
of negcomp(A). Substituting these equivalences into statements of A4 and A5 expressed

relatively to negcomp(A) and Ty yields A4 and Ab expressed relatively to A and

negcomp(A)?
T, ,which was assumed.
Showing that negcomp(A) satisfies assumption Bl with respect to practices of

and Ty

categorization 7Ty negeomp(4) "

negcomp(A)

Lemma 101 If A is an arbitrary truth medium satisfying assumption A4
with respect to practice of categorization Tyr,, then

for all o€ 4, UTny Ut [Ba] = tale)] = UTu, [Uta [Zal] — U Ta, [Ea(a)]

Let A be an arbitrary truth medium satisfying assumption A4. Let a be an arbitrary

element of 4.

(S)
1. Let u be an element of |J 7, (U4 [2a] — ta(a)]

2. So u € Ty, (m) for some m € (Jta [Z4] —ta(a).

&

. Then m € Jta [E4] and m ¢ t4(a).

S

. Sou € UTMA [UtA [EA]].

ot

. [Show u ¢ |JTm, [ta(a)]]

(a) Assume u € |7y, [ta(e)]. [Show contradiction.]
(b) So, there is an n € t4(c) such that u € Tpr, (n).

(c) Since A satisfies assumption A4 with respect to practice of categorization 7jz,,

we know m = n.
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(d) So m € ty(a). Contradiction.

6. So u ¢ U7, [ta(a)).
7. So u € U T, [Uta[Eall = UTa, [ta(a)) B(C)

(2)

1. Say that w € JTa, [Uta [Zall, and w ¢ U Tar, [ta(@)].
2. So there is an m € | Jt 4 [S4] such that u € Ty, (m).
3. [Show that m ¢ £4()]

4. Assume m € t4(a). [Show contradiction.]
(a) If m € t4(a), then since u € Tpr, (M), u € |J T, [ta()]. Contradiction.
5. Som ¢ ta(a).
6. Som € Jta[Z4] —ta(a)
7. Sou € UTm, [Uta[X4] —ta(e)) M (D) BLemma.

(B1)

Show V (i,a) € Ynegeomp(A)

U TMnegwmp(A) [tnegcomp(A)(“a a) )] = ) ]

TEneycomp(A) ((1/7 Q))

Note that Ty = Tum,, by definition of negcomp.

negcomp(A)
1. Let (i,) be an arbitrary element of X,,cgcomp(A)-

By the definition of X,cgcomp(4), We know that ¢ =1 or ¢ = —1, and that o € ¥ 4.

2. (Casel):t=1

(a) tnegcomp(A) (<ia a)) = tA(a)'
(B) T2pegeompa (6 ) = T, (@)

(c) Since o € ¥4 and we know that A satisfies B1 with respect to 75, and Tp,,
we know that |J T, [ta(e)] = Ts, ().
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(d) Substituting we get (7, pomp(ay [Eregeomp(a) ({8 )] = T2, comnea (6 )
B (Case 1)

3. (Case 2): i =—1

() tnegeomp(a) (@) = Uta [Ea] — ta(a).

(b) T5,egeompiay ({6 @) = U Ty [Ba] — T ,(a).

(c) Since a € ¥4 and we know that A satisfies B1 with respect to 7x, and Ty, , we
have |J T, [ta(e)] = Tx, ().

(d) By Proposition 6, we know that A satisfies B4 with respect to 7y, and Tps,. So
UTu, [Uta[B4]l = U Ty, [24]

(e) Putting the previous two step results together, we get
U T, [Uta[Ball = U Ty [ta()] = U Ts, [B4] — Ty ().

(f) By Lemma 101, we know that
U, [Uta [Zall = U Ty [Ea(@)] = U Taey [Uta [24] — ta(e)] -

(8) So UTmy [Uta[E4] —ta(a)] =U T, [Ea] — Ty ().

(h) So U7z [tnegeomp(a) ({5 )] = T5,ocompeay ({8 2)) -

(1) Since TMn = TMAa

egcomp(A)
we have U TMnegco'm.p(A) [tnegcomp(A) (<Z7 Ot>)] = TEnegcamp(A) (<27 a>)
B (Case 2) H (B1) MProposition.
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Chapter 7

Demonstrating that the Range of
the Set PP Technique is a Subset
of the Range of the Set C'L

Technique

7.1 Introduction

In this chapter, we will use the methodology presented in the proof of Chapter 6 to show that
the range of applicability of the Set PP technique is a subset of the range of applicability
of the Set CL technique, i.e. ra(Set PP) C ra(Set CL). This proof consists in showing
that the applications of the Set CG technique constructed by the methodology presented
in Chapter 6 not only satisfy the Set CG technique-specific assumptions (D1, D2, D3), but

satisfy assumption LL (the representational version of Lindenbaum’s Lemma) as well.

7.2 Definition of desired results

Let us consider what is required to demonstrate the claim expressed in the chapter title.

We can show that ra (Set PP) C ra (Set CL) if we can show that:
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(PP — CL) Given any application of the Set PP technique, we can construct
an application of the Set CL technique such that the representational rela-
tion of logical consequence which was made intelligible by the given application
of the Set PP technique is embedded within the representational relation of
logical consequence made intelligible by the constructed application of the Set

CL technique.

The argument that condition (PP — CL) is adequate to show that ra (Set PP) C
ra (Set CL) is parallel to that used in Chapter 6 to prove that condition (PP — CG) is
adequate to show that ra (Set PP) C ra (Set CG).

7.3 Overview of the proof

7.3.1 A simplified goal

We already know that (PP — CG) is true from Chapter 6. There, we described a method-
ology (the Stage 3 methodology of Section 6.3.5) which,

1. given any application of the Set PP technique (a truth medium A and practices of
categorization Ty, and 7Ty, interpreting the assertion types and models of A, such

that Asatisfies the Set PP technique-specific assumptions with respect to 7y, and
TMA))

2. constructs from it

(a) an application of the Set CG technique (a consistency medium D and a practice
of categorization 7y, interpreting the assertion types of D, such that D satisfies

the Set CG technique-specific assumptions with respect to 7y,), and
(b) a function h embedding ALC(ZA,TEA) in ALC(ZD,TED)'
In this chapter, we will prove that (PP — CL) is true by showing that the application

of the Set CG technique constructed by the Stage 3 methodology of Chapter 6 is in fact also

an application of the Set CL technique. To show that result, it is sufficient to show that
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the consistency medium D constructed by the Stage 3 methodology of Chapter 6 satisfies

condition LL (the representational version of Lindenbaum’s Lemma).

7.3.2 Demonstrating the goal

We want to show that the consistency medium D constructed by the Stage 3 methodology
of Chapter 6 satisfies condition LL. The proof will take the following steps:

1. We will be given an arbitrary application of the Set PP technique.

2. To that application, we will apply the Stage 3 methodology constructing a consis-
tency medium D. Note that applying the Stage 3 methodology will involve nested
applications of the Stage 2 and Stage 1 methodologies. (Section 7.4)

3. We will then define a set PM C ¥p. We will prove that PM is the set of maximal
extensions of D (that is, PM = Maxp). (Section 7.5)

4. We will then show that every consistent assertion type of D has a maximal extension

(that is, for every p € Cp, there is an x € PM such that z >p p). (Section 7.6)

The above demonstrates that D satisfies LL.

7.4 Applying the Stage 3 methodology

We are given an application of the Set PP technique (a truth medium A and practices of
categorization 7, and 7)s, interpreting the assertion types and models of A, such that
Asatisfies the Set PP technique-specific assumptions with respect to 7s, and Ty, ).

The Stage 3 methodology constructs negcomp(A), and associated practices of catego-

and 7y ; and then submits them to the Stage 2 methodology.

rization Tx, negcomp(A)’

negcomp(A)

The Stage 2 methodology constructs pow(negcomp(A)), and associated practices of catego-

and Ty, ; and then submits them to the Stage 1 method-

rization 7x ow(negeomp(A)) )

pow(negcomp(A))
ology. The Stage 1 methodology constructs dm(pow(negcomp(A))) and Ty, ou(negcompiar) -
These results are passed back to the Stage 2 methodology, which passes them back to the

Stage 3 methodology. The consistency medium dm(pow(negcomp(A))) and the practice of
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categorization Ty dm(pow(negcomp(A))) interpreting its assertion types constitute the application
of the Set CG technology constructed by the Stage 3 methodology from A, 7, and Tyy,.
In the following, we will refer to dm(pow(negcomp(A))) as simply D. We will not have need
to refer to 7Ty, dm(pow(negeomp(ayy Since LLis defined in terms of the consistency medium alone
and is independent of any particular interpretation of that medium.

Computing D is a straightforward application of the definitions of the operators dm, +,

pow, and negcomp. There are two simplifying propositions.

Proposition 102 For any truth medium A,

Utnegcomp(A) [Znegcomp(A)] = UtA [EA] :

1. This follows from the definition of negcomp.

Proposition 103 For any truth medium A,

U tpow(negcomp(A)) [Zpow(negcomp(A))] = UtA [EA] .
1. This follows from the definition of pow and Proposition 102.

After simplifications, we can express D as follows (details are at the end of the chapter).

e Xp= ('P (Znegcomp(A))) x (Uta[Za]U{L}), where L¢ My.

e <p is defined as follows:
For all (S1,m1), (S2,me) € £p,
(Sl,m1> jD <Sz,m2> lff (Sl g SQ and (m1 = mg Or ma =_L))

/

<S’m> €Xp ‘
m =1 and 3(S,m’) € £p

®
S
|
Qo
R

such that m' € tpow (negcomp(A)) (5)

(m #1 and m e tpow(negeomp(A)) (S)) J

\

7.5 The set of maximal extensions

In this section, we define a set PM C Xp, and prove that PM is the set of maximal
extensions of D (that is, PM = Maxp). We will define PM in terms of a function PS on
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M 4, the set of models for the truth medium in the given application of the Set PP technique.
For any model m € My, PS(m) is the set of all assertion types (i, ) in Zpegcomp(a) for
which m is a model of (¢, a).

PS:Ms—P (Enegcomp( A)) is defined as follows:

For m € Mu, PS(m) = {(i, ) € Spegoomp(a) | ™ € tnegeomp(a)((1, )}

Now we are ready to define PM, our proposed set of maximal elements for D. Recall
that the assertion types of D are pairs, whose first element is a set of assertion types
from ¥,¢4comp(4) and whose second element is either a model from the set | J4 [£4] or the
distinguished element L. PM will contain exactly one element for every m € M4 for which
m is a model of some assertion type in Xpcgcomp(4)- (That is, PM will contain one element
for every m € |Jtnegcomp(4) [Enegcomp( A)] which we know by Proposition 102 to be equal to
Uta [Z4]). That element of PM will be a pair. Given that the second element is a model
m € |Jta [Z4], the first element will be the set of all assertion types (i,) in Lpegeomp(a)
for which m is a model of (3, ), that is, the set PS(m).

Now we define PM as follows:

PM = {(PS(m),m) | m € Jta[Zal}

Proposition 104 The set PM as defined above is equal to Mazp.

[Show PM = Mazp)|

Recall that
<Sa m) € C'D I

V(S8 ,m')y e Zp ((§,m) »p (S,m) — (§',m') &€ Cp)

Maxp =
(<€)
1. Let (PS(m),m) € PM. So m € |Jt4[Z4l.
2. [Show that (PS(m),m) is consistent, that is, (PS(m),m) € Cp]

(a) Since PS(m) C Zpegeomp(a) and m € Jta [Za]; (PS(m), m) € Ep.

(b Show that m € tpow(negcmnp(A))(PS(m));
this shows that (PS(m),m) € Cp since m #.L

i. (Case 1) PS(m) = @.
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A. This is not possible. Since m € | Jt4 [£4], there is some a € ¥4 such
that m € t4 (a). So (1,a) € PS(m).M(Case 1).
ii. (Case 2) PS(m) # @.
A. tpow(negeomp(a)) (PS(M)) = N tnegeomp(a) [PS(m)] -
B. For any (i,a) € PS(m), m € thegcomp(a)((3,@)) by the definition of PS.
C. So m € tpou(negeomp(A)) (PS(m))M(Case 2).

Show that anything strictly greater than (PS(m),m) is inconsistent, that is,
V(S',m') € ¥p ((§',m') =p (PS(m),m) — (S',m’) ¢ Cp)

(a) Let (S',m') € ¥p such that (S, m') »=p (PS(m), m).

(b) Sincem #.1, we have PS(m) C S’ and m = m/.

(©) [Show (§',m) ¢ Cp)

i. PS(m) C ', so there exists an (i,a) € S’ such that (i,a) ¢ PS(m).
ii. Then m ¢ tnegcomp(A)((i, a)).
ili. Since ' # @, tpow(negeomp(A)) (S') = N tnegeomp(a) [5'] -
iv. So m ¢ tyow(negeomp()) (S')-
v. Since m #L1, (S',m) ¢ Cp.
4. So (PS(m), m) is maximal for D, that is, (PS(m),m) € Mazp.MW(C)

(2)

1. Let (S,m) be a maximal assertion type of D. So (S,m) is consistent, and anything

strictly greater than (S, m) is inconsistent, that is,

(S,m) € Cp such that V(S',m') € Xp ((§',m') =p (S,m) — (S, m') ¢ Cp).
2. [Show (S,m) € PM, that is, show that m € [Jt4 (¥ 4] and S = PS(m)]

(a) [Show that m € [Jt4 [24]]

i. We know that m € (Jta [£4]U{L}. Assume that m =_.

[Show a contradiction.]
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ii. (S,1) € Cp implies 3(S,m’) € Ep such that m’ € tpou(negeomp(a) (S)-

iil. Since tpow(negeomp(a)) () € Uta [Z4]
(applying Proposition 103), m' € |Jta [Z4]-

iv. Then (S,m’) € Cp, since m' #.L, and m’ € tpou(negeomp(a))(S)-

v. But (S,m') »=p (S,m). This contradicts the claim that (S,m) € Mazp. So
m e Jta[X4].

(b) [Show that S = PS(m)]

i (S)
A. Let (i,a) € S.
B. Since (S,m) € Cp and m #.1, m € tpou(negeomp(4))(S)-
C. Since S # D, tpowmegcomp(A)) (S) = N tnegcomp(a) [S] -
D. So for every (i,a) € S, m € tnegcomp(a)({i,@)).
E. So (i,a) € PS(m).W(Q)
ii. (2)
A. Let (i,a) € PS(m).
B. Assume (i, ) ¢ S. [Show contradiction.]
C. Since (S,m) € Cp and m #1, m € tpou(negcomp(a))(S)-
D. [Show (S,m) <p (PS(m),m)]
E. (Casel) S=g2.

(S,m) <p (PS(m), m).M(Case 1).
F. (Case 2) S # 2.
tpow(negeomp(A)) (S) = [ tnegeomp(a) [5] -
S0V (4,8) € S, m € tnegeomp()({J, B))-
So § C PS(m).
So (S,m) <p (PS(m), m) .M(Case 2).
G. Since (PS(m),m) € Cp (by the same argument as that in main level C

step 2), (S, m) is not maximal. Contradiction.

H. So (i,a) € SH(D)
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3. So (S,m) € PM .M (D) MProposition.

7.6 Demonstrating that D satisfies LL

Now we show that Dsatisfies LL. To show this, we need to show that every consistent

assertion type of D has a maximal extension.

Proposition 105 Every consistent assertion type of D has a mazimal extension. That is,

for every (S,m) € Cp, there is a (§',m') € PM such that (S’,m') =p (S,m).

1. Let (S,m) € Cp.
2. (Case 1) m#L

(a) [Show (PS(m),m) is a maximal extension of (S,m)]
(b) M € tpouw(negeomp(4))(S)-
(c) [Show S € PS(m))
(d) (Case la) S = @
i. § C PS(m) trivially.® (Case 1a)
(e) (Case 1b) S # @

i tpow(negcomp(A))(S) = ﬂtnegcomp(A) [S] .
ii. SoV(i,a) €S, m € tregeomp(a) ({1, )

ili. So S C PS(m) by the definition of P.S.l(Case 1b)

(f) So (S,m) <p (PS(m),m) and (PS(m),m) € PM.M(Case 1)
3. (Case 2) m=1

(a) Then 3(S,m’) € £p such that m’ € tpow(negeomp(A4)) (S)-
(b) Applying Proposition 103, m’ € | Jt4 [Z4] .
(c) So (S,m’) € Cp, and (S, m) <p (S,m’) .
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(d) By Case 1, we know that given an (S, m’) € Cp, such that m’ #.1, (PS(m'), m’)
is a maximal extension of (S,m’). By transitivity, (PS(m’),m’) is a maximal
extension of (S, m) as well.

M (Case 2) WProposition.

7.7 Conclusion

We have shown that the consistency medium D constructed by the Stage 3 methodology of
Chapter 6 satisfies condition LL. This shows that the application of the Set CG technique
constructed by the Stage 3 methodology of Chapter 6 is in fact also an application of the
Set C'L technique (since D satisfies LL as well as satisfying D1, D2, and D3 with respect to
Tsp)- In doing so, we have shown that (PP — CL) is true, and therefore, that the range
of applicability of the Set PP technique is a subset of the range of applicability of the Set
CL technique, i.e. ra(Set PP) C ra(Set CL).

This concludes the linear text of the chapter. The remainder of the material in this

chapter are the details of the definition of D.

7.8 Details of the definition of D

We begin with A = (X4, Ma,t4)

In Stage 3, we apply the operator negcomp, yielding negcomp(A). (We don’t need to
consider the practices of categorization since LL is defined solely in terms of the consistency
medium).

e E'negcomp(A) = {la _1} x X¥a

o Mnegcomp(A) = Ma

® tpegeomp(a) is defined for any (i, @) € Tnegeomp(a) as follows:

if 1 = 1 then ta(a) else Jta[Z4] — ta(a)
Stage 3 submits negcomp(A) to Stage 2.

Stage 2 applies the operator pow to negcomp(A), yielding pow(negcomp(A)).
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o 2pow(1’Legcom;1rJ(A)) =P ({1’ _1} X ZA)

® =jow(negcomp(4)) 1S defined as the inclusion order on L pow(negeomp(A))» that is,

for all P,Q € Zpow(negcomp(A))7 P jpow(negcomp(A)) @ just in case P C Q
b Mpow(negcomp(A)) = My

® tpow(negcomp(A)) 1S defined for any S € Epow(negeomp(A)) a8 follows:

if S = @ then (Jt4 [Z4] else [tnegeomp(a) [S] (this applies Proposition 102)

Stage 2 submits pow(negcomp(A)) to Stage 1.

Stage 1 applies the operator dm to pow(negcomp(A)), constructing the consistency
medium dm(pow(negcomp(A))). The construction involves applying the operators models
and +, constructing the truth medium pow(negcomp(A)) + models(pow(negcomp(A))).

First we consider models(pow(negcomp(A))).

® X odels(pow(negeomp(A))) = Uta [Za] U{L}, where L¢ M4 (Apply Proposition 103).

= models(pow(negcomp(A))) 15 defined as follows,

for all p,q € erwdels(pow(negcomp(A)))a p jmodels(pow(negcomp(A))) q just in case p=gqor
p=1

Mmodels(pow(negcomp(A))) = My

tmodels(pow(negcmnp(A))) is defined for any p € Z:models(pow(negcomp(A))) as follows:

if p=1 then |Jt4 [E4] else {p} (this applies Proposition 103)

Now we apply the operator + to construct
pow(negcomp(A)) + model s(pow(negcomp(A))),

which we abbreviate as “p +m”.

e Spim =P ({1,-1} x Z4) x (Uta[Ea]U{Ll}), where L& My

o =pimis defined as follows:
for all (S1,m1), (S2,m2) € Epim,

(S1,m1) Zpim (S2,mg)iff (S1 C Sz and (my = mg or my =1))
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L4 Mp+m = My

® tyim is defined for any (S,m) € Epim, as follows:

(if S = @ then Ut [E4] else Ntnegeomp(a) [S])N(if m =L then (Jt4[S4] else {m})

Now we apply the operator dm to pow(negcomp(A)), constructing the consistency

medium dm(pow(negcomp(A))), which we will refer to as D.
e XYp= Ep—{-m

L4 jD:jp+m

4 )

(S,m) € Zp |
m=_and 3 (S,m') € Ep
° CD — < or >
such that m’ € tpow(negcomp(,q))(s)

{ (m 75_1__ and m € tpow(nEQCOmP(A)) <S)) J

301



Chapter 8

Demonstrating that the Range of
the Set C'G Technique is a Subset
of the Range of the Set BE

Technique

8.1 Introduction

In this chapter, we will demonstrate that any interpreted set of assertion types in the
range of applicability of the Set CG technique is in the range of applicability of the Set BE
technique. Intuitively, this result means that any interpreted set of assertion types for which
we can make the representational concept of logical consequence explanatorily intelligible
by an application of the Set C'G technique, is one for which we can do the same with the
Set BE technique. This result is one element of the more global picture we have developed
organizing all the techniques under consideration into a linear order on the basis of their
relative ranges of applicability.

Here is the structure of the chapter. We begin by discussing in detail just what the
claim to be proven means, and what constitutes the desired result. The central concept

in the proof will be a methodology for taking the elements of an application of the Set
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CG technique and constructing from them an application of the Set BE' technique, such
that the relation of consequence which was made intelligible by the given application of the
Set CG technique is also made intelligible by the constructed application of the Set BE
technique. This methodology will take the form of an operator on interpreted consistency
media which will have as its results interpreted truth media.

Since in this case, we are “moving” a relation of consequence from a consistency medium
to a truth medium, the methodology will need to construct a set of models. The concept
of “consequence sets” will enable us to carry out the construction. We will introduce the
idea of consequence sets, explore some of its properties, and then show how we can use
that concept to define the desired operator. We will conclude the chapter by giving proofs

showing that the defined operator achieves the result we have set out for it.

8.2 Definition of desired results

Let us consider what is required to demonstrate the claim expressed in the chapter title.

We can show that ra (Set CG) C ra (Set BE) if we can show that:

(CG — BE) Given any application of the Set CG technique, we can construct
an application of the Set BE technique such that the representational rela-
tion of logical consequence which was made intelligible by the given application
of the Set CG technique is embedded within the representational relation of
logical consequence made intelligible by the constructed application of the Set

BE technique.

The argument that condition (CG — BE) is adequate to show that ra (Set CG) C
ra (Set BE) is parallel to that used in Chapter 6 to prove that condition (PP — CQG) is
adequate to show that ra (Set PP) C ra(Set CG) .

To demonstrate (CG — BE), we shall describe a methodology which, given any applica-
tion of the Set CG technique (a consistency medium D and a practice of categorization 75,
interpreting the assertion types of D, such that D satisfies the Set C'G technique-specific
assumptions with respect to 75, ), constructs from it an application of the Set BE technique

(a truth medium A and practices of categorization 75, and 7, interpreting the assertion
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types and models of A, such that A satisfies the Set BE technique-specific assumptions with
respect to 7y, and 7T, ), and a function A embedding ALC’<2D o) in ALC<ZA Ts,)"
»CED 1THA

8.3 Structure of the proof

8.3.1 Reviewing the given

We are given an application of the Set C'G technique. This consists of a consistency medium
D = (¥£p,=<p,Cp) and a practice of categorization 75, for which it is assumed that D

satisfies Set CG (D1, D2, D3) with respect to 7x,.

8.3.2 Looking ahead to the end result

Our goal will be to define an operator ¢m which given a consistency medium D and prac-
tice of categorization 7x, such that D satisfies Set CG (D1, D2, D3) with respect to T,
constructs a truth medium tm(D) and practices of categorization T3 mpy 20d Ty, in-

terpreting the assertion types and models of ¢tm(D) such that

1. an image of ALC (Sp.Ts,) is embedded within ALC <2tm(D)) sz(D)>

(that is, there is a function h : ¥p — X, py such that
Vp,q € Xp (ALC@D,TED)(p,q) iff ALC< ) (h(p), h(er)))); and

2\t'rn.(D) ’thm(D)

2. truth medium tm(D) satisfies assumption Set BE (B1, B2, A7) with respect to Ty, D)

and Tth (D)

8.3.3 Preparing the way

Our presentation of the proof will take the following course. First, we will introduce a new
concept: the concept of “consequence-sets.” We will then develop some of the properties
of consequence sets. Following that, we will use the concept of consequence sets to define
the operator tm, and then prove that the operator tm meets the conditions characterized

above.
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8.4 Consequence sets

8.4.1 The function Cons

The function Consis defined in relation to some consistency medium D. A subscript is
used to indicate the name of the appropriate medium, e.g. Consp. For any assertion type
p € ¥p, Consp(p)is the set of LC-consequences of p relative to D. Given a consistency
medium D, we define Consp : £p — P(Ep) as follows:
for any p € ¥p, Consp(p) = {g € p | LCp(p,q9)}

Recall that LCp(p, q) is equivalent to CCp(p) € CCp(q). For more details, see Section
4.4.3.

For any assertion type p € X p, we call Consp(p) the consequence set of p with respect

to D.

8.4.2 Truth-equivalence and Cons

Given some set of assertion types ¥ and a practice of categorization 7y interpreting X,
two assertion types p,q € ¥ are truth-equivalent with respect to 7y, if they represent
exactly the same set of possibilities, that is, if 7x(p) = Tx(q). This proposition claims
that if a consistency medium satisfies Set CG with respect to the practice of categorization
interpreting its assertion types, then two assertion types are truth equivalent just in case

they share the same consequence sets.

Proposition 106 Given a consistency medium D, and practice of categorization Ty, if

D satisfies Set CG (D1,D2,and D3) with respect to Ty, then Vp,q € Ep, Tx,(p) =
T, (q) iffConsp(p) = Consp(q).

Let D be a consistency medium, and 7y, a practice of categorization, such that D
satisfies D1, D2,and D3 with respect to 7x,.

Let p, gbe arbitrary elements of ¥ p.

(=)
1. Assume Ty, (p) = Tx,(q). [Show Consp(p) = Consp(q)]
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S0 Ty (p) € T (q) and T (q) € Ty ().

. Since D satisfies D1, D2,and D3 with respect to 75, we can apply the Intelligibil-

ity of Consequence Theorem for Consistency Media (Theorem 55) twice, yielding

LCp(p,q) and LCp(q,p).

. By Proposition 49, LC is transitive, so LCp(p, q) implies Consp(q) C Consp(p); and
LCp(q,p)implies Consp(p) C Consp(q).

. So Consp(p) = Consp(q).M(—)

(<)

1. Assume Consp(p) = Consp(q) [Show T, (p) = Ts,(q)]

2. (©

(a) By Proposition 48, we know that LC'is reflexive. So LCp(q, q).
(b) So q € Consp(q), by the definition of Cons.

(c) So ¢q € Consp(p), since Consp(p) = Consp(q).

(d) So LC(p,q), by the definition of Cons.

(e) Given that Dsatisfies D1, D2,and D3 with respect to 7x,,, we can apply the

Intelligibility of Consequence Theorem for Consistency Media (Theorem 55),
yielding 7x,(p) € Tz, () B (S)

3. (D) Same as (C) but with pand ¢ exchanged.ll (2) B (+—) MProposition.

8.4.3 The set of unique consequence sets

Given a consistency medium D interpreted via a practice of categorization 7y, each element

o of Tp picks out some set of possibilities 75, (¢). Some elements of ¥p will pick out the

same set of possibilities (i.e. be truth-equivalent). From the proof above, we have seen

that, providing that D satisfies D1, D2, D3 with respect to 7y, this is exactly when the

assertion types involved have the same consequence sets with respect to D.
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Let us define the set {2p as follows: for any consistency medium D, Qp = Consp [Ep].
So Qp is the set of unique consequence sets for the assertion types of D. Given the results of
Proposition 106, if consistency medium D satisfies D1, D2, D3 with respect to 7y, then the
elements of Q2p correspond on a one-to-one basis with the differentiable sets of possibilities
represented by the assertion types of D (those sets of possibilities being the elements of
Tsp, [£p]). We will use the elements of 2p as the models in our construction of tm(D) from

D.

8.4.4 A simple result about consequence sets

Recognizing this fact is important in our definition of tm.
Proposition 107 The null set (&) cannot be a member of Consp [Lp].

Proof: If @ € Consp [Ep], then there exists a p € ¥ p such that Consp(p) = @. But
since LC'is reflexive (Proposition 48), Vp € ¥p,p € Consp(p). So Vp € ¥p,Consp(p) #
<.

8.5 The operator tm

We are now ready to define an operator tm which satisfies the conditions described in
Section 8.3.2.

Given an arbitrary consistency medium D, with practice of categorization 75, , we
define the truth medium tm(D) and derived practices of categorization 7y im(D) and Tth( )

as follows:

8.5.1 Truth medium tm(D):

® Yim) =%D
The assertion types for the constructed truth medium are identical to the assertion

types from the given consistency medium.

. th(D) =Qp

The models for the constructed truth medium are the consequence sets for the as-
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sertion types from the given consistency medium (the set Consp [Ep]). Consp is
the closure of the relation LC, the proxy for consequence relation for the Set CG

technique.

® tim(D) : Ltm(D) = P(Mym(py)is defined as follows:
for any o € Lim(py, tim(p)(0) = {Se Mipy | 0 € S}
The relation of truth-in-a-model for the constructed truth medium is simply set mem-
bership. An assertion type o is true-in-a-model S just in case ois a member of S.
Remember that S is the consequence set of some assertion type in the given consis-

tency medium.

8.5.2 Derived practices Tgtm(m and Tth(D):

i TEtm(D) =Tsp
The assertion types for the constructed truth medium (which are identical to the
assertion types from the given consistency medium) are interpreted identically as

well.

® TMyp(py * Mim(p) — P(U) is defined as follows:
for any S € Mymn(py, TM,pn(py(S) = N 75y [S]
The set of possibilities represented by a model S in the constructed truth medium
(which is the consequence set of some assertion type in the given consistency medium)
is the intersection of the sets of possibilities represented by the members of S, as they
were interpreted in the given consistency medium. Note that we don’t have to consider

the case where S'is null, since no consequence set can be null (Proposition 107).

8.6 Proof of properties of tm

8.6.1 Some supporting propositions

Given a consistency medium satisfying the Set CG assumptions with respect to a practice
of categorization by which it is interpreted, it is the case that, for any assertion type p, the

possibilities represented by the consequence set of p are equal to the possibilities represented
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by p.

Proposition 108 Given a consistency medium D, and practice of categorization Ty, if D

satisfies D1, D2,and D3 with respect to Tx,,, then Vp € ¥p, Tth(D) (Consp(p)) = Ts, ().

1. Let D be a consistency medium, and 7y, a practice of categorization, such that D

satisfies D1, D2,and D3 with respect to 75,,.
2. Let p be an arbitrary element of ¥ p.
3. [Show Tas, ) (Consn(p)) = T, (p)]
4. Note: Tny,,,, ., (Consp(p)) =7y, [Consp(p)]

5. (S)

(a) Since p € Consp(p) (by reflexivity of LC, Proposition 48), (| Tx, [Consp(p)] C
TED (P). (g)

(a) Let ¢ € Consp(p).

(b) By the definition of Cons, LCp(p, q).

(¢) By the Intelligibility of Consequence Theorem for Consistency Media (Theorem
55), Tep(p) € T5p ()

(d) Since g was arbitrary, we have Yq € Consp(p), Ts, (p) € T, (q).

(e) So Ts,(p) €7y [Consp(p)].M(2) MProposition.

Given a consistency medium satisfying the Set CG assumptions with respect to a prac-
tice of categorization by which it is interpreted, it is the case that, for any assertion type and
any consequence set, the assertion type is a member of the consequence set if and only if the
possibilities represented by the consequence set are a subset of the possibilities represented

by the assertion type.
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Proposition 109 Given a consistency medium D, and practice of categorization Ty, if
D satisfies D1,D2,and D3 with respect to Ty, then Vp € Xp, VS € Qp, p € S iff
Tth(D) (S) - TED (P)

1. Let D be a consistency medium, and 75, a practice of categorization, such that D

satisfies D1, D2,and D3 with respect to 7Ty ,.
2. Let p be an arbitrary element of ¥p.
3. Let S € Qp, thatis there exists a § € £ psuch that S = Consp(h).
4, [Show p € S iff Tas,,, p (5) C :rgD(p).]
5. (=)

(a) Assumep € S.

(b) Since Tth(D) (S) = ﬂTED [S]’ Tth(D) (§)c Tsp (p).W (_’)
6. (<)

(a) Assume Ty, 1, (5) € T, (p).

(b) [Show p € S]

(c) By Proposition 108 we know that 7, , 1, (Consp(0)) = T, (0), 50 Ta,,, py (S) =
Ts:, (6).

(d) So Tsp(6) € Txp ().

(e) Since D satisfies D1, D2, D3 with respect to Ts,, we have LCp (6, p), by the

Intelligibility of Consequence Theorem for Consistency Media (Theorem 55).

(f) So p € S.W(—) WProposition.

8.6.2 The tm Set BE assumptions proposition

Here we show that given an application of the Set CG technique, the operator tm constructs

an application of the Set BE technique.
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Proposition 110 Given that consistency medium D satisfies Set CG (D1,D2, and D3)
with respect to practice of categorization Ty,
truth medium tm(D) satisfies Set BE (B1,B2, A7)

with respect to practices of categorization thm( D) and Tth( Dy

Proof:

Let Dbe an arbitrary consistency medium, and 7x, a practice of categorization, such
that Dsatisfies D1, D2, and D3 with respect to 7y,.

(BL)

We have seen previously (in Section 2.3.6) that assumption B1is equivalent to a principle
of commutation for relations. Let’s redraw the picture presented there as it relates to our

current proof.

assertion types  — models
Yim(D) = XD t Qp = Consp [Ep]
1T IR
possibilities
U

1. arelation Ton Ux Ep such that u T p iff u € Ty, (p);
2. arelation R on U x M such that u R m iff u € Ty, ,, (m);

3. arelation ¢ on M x X such that m ¢ p iff m € ty,(p)(p)-

Then we can express B1 in the form of a constraint:

T = the relational composition of ¢ and R in that order: i.e.
u T p iff there exists an m such that wu R m and mtp

We will show that this constraint is satisfied as follows:

(<)

By definition of tm, m t p iff p € m.

By Proposition 109, p € m iff (u R m implies u T p) B (<)
(=)
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By Proposition 108, u T piff u R Consp(p). And since p € Consp(p) (LC is reflexive),
Consp(p) t p. B(—) MConstraint equivalent to B1.
We now give a different form of the proof of B1, followed by the proofs of B2 and A7.

=

[Show Vp e Etm(p) (U Tth(D) [ttm(D) (p)] = TEtm(D) (P))}

2. Since Xy(p) = XD, Tx,,,p) = Tsp, this is equivalent to

[ShOW Vp € Xp (U Ty [tem(D)(P)] = T (P))]
3. Let pbe an arbitrary element of X p.
4. By definition tm, t;,py(p) = {S € Qp | p € S}
5. ()

(a) Let S 6 tim(D) (P)-

(b) So S € Qp such that p € S.

(c) By Proposition 109, Ta,,,, ., (S) € 75, (p)-

(d) So UTth(D) [ttm(D)(p)] - ED (p). (g)
6. (2)

(a) We know that p € Consp(p), since LC-consequence is reflexive (Proposition
48).
(b) So Consp(p) € tim(p)(p)-

(c) By Proposition 108, we know that 75, (p) = T, p, (Consp(p)) -

(d) S0 Ts,(P) € U TMympy [tim(p)(p)] B (2) W(B1)
(B2)
L. [Show Wp € Sim(p) Y5 € Mim(0) (if Thtym()(S) € Ty (P); then S € timn) (1)) |

2. Since Xym(p) = Xp, Miym(p) = 2, timp)(p) ={S € Qp | p € S},
thm(D) = Tx, ,the above simplifies to
[Show Vp € £p VS € Qb (i Titynip(S) € Top(p), then p € S)]
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3. This is just one direction of the equivalence shown in Proposition 109.H(B2)
(A7)

1. The elements of My, (p) are partially ordered by set inclusion.

2. [Show VP,Q € Mym(Dy, Tatoipy(P) € Thtyniy (@) i Q@ C P]

3. Let P and Q be elements of M;p,(p).

4. (=)

(a) Assume that T, 5, (P) € T, p) (Q)-

(b) Thefl Jdp € £psuch that Consp(p) = P, and 3q € X p such that Consp(q) = Q.
(c) So by Proposition 108, Ti,,,,, (P) = Tz, (p) and TMypipy (@) = T (9)-

(d) So Tep(p) € Tzp(a)-
)

(e) So since Dsatisfies Set CG with respect to Tx,, we have LCp(p,q), by the

Intelligibility of Consequence Theorem for Consistency Media (Theorem 55).

(f) So Consp(q) € Consp(p), by the definition of Consand the transitivity of
LC (Proposition 49).

(g) SoQC P.H(—)
5. (<)

(a) Assume that @ C P.
(b) So N7Zs,[P] € N 75, Q-
(€) S0 Ty py(P) € Ty, ) (@) by the definition of ¢m. M (<) M (A7) MProposition.

8.7 Canonical construction of an application of the Set BE

technique given an application of the Set C'G technique

Theorem 111 Given an application of the Set CG technique

(a consistency medium D and practice of categorization Ty
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such that D satisfies Set CG (D1, D2, D3) with respect to Ty, ),

then there is an application of the Set BE technique

(a truth medium A and practices of categorization Ts,, and Ty,

such that A satisfies assumption set BE with respect to Ts,, and Ty, )

and a function h : Xp — X 4 for which
ALC s, 1, (P q) f

Vp,q € Xp
ALCs, 7, ) (A(p); h(2))

We will show that the truth medium tm(D), its associated practices of categorization
thm(D) and 7; Mym(py» @0d the identity function h:¥p — Syn(p) defined for all p € ¥pas

h(p) = p, satisfy the above claim.

1. Assume we have an arbitrary consistency medium D and practice of categorization

Ts., such that D satisfies Set CG (D1, D2, D3) with respect to 75, .

2. Applying Proposition 110, we know that tm(D)satisfies assumption set BE with

respect to T}:tm( D) and Tth(D)'

3. Since, ym(p) = Xp, and Ty, ,, = Tz, by the definition of ¢m, we know that

ALC(ED,TED) - ALC<Etm<D>1TEtm(D) >

So we know that

Vp,g € ¥p (ALC(ED,TED)(T” q) iff ALC< > (h(p), h(q))) BTheorem.

Zim(D)) T2 4m(p)

This completes the proof that (CG — BE), and therefore, we have shown that
ra(Set CG) C ra(Set BE).
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Chapter 9

Constructing a Minimal Equivalent
for any Application of the Set CG

Technique

9.1 The question at hand

An important question which attends the Set CG technique can be expressed informally
as follows: Given some application of the Set CG technique making some relation of con-
sequence intelligible, is there a “smaller” application which can make that same relation
of consequence intelligible? By “smaller,” what we are interested in is an application in
which the consistency medium involved uses a lesser number of assertion types than the
medium in the given application. A refined (and more powerful) version of this question
could be expressed as follows: Can we give a canonical method for constructing a minimal
(i.e. “smallest”) equivalent for any application of the Set CG technique?! The answer to
this latter question is “yes,” and the method we use will make use of the concepts introduced

in the previous chapter.

!Special thanks to Jon Barwise for asking this question.
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9.2 Formalizing the question

An application of the Set CG technique consists in a consistency medium D = (¥p, <p,Cp)
and a practice of categorization Ty, for which it is assumed that D satisfies the Set CG
assumptions (D1, D2, D3) with respect to Ts,,. We can refer to such an application of the
Set CG technique by the pair (D, Ts,,).

We can formalize the question posed above as follows:

Can we define an operator min, which, given an application of the Set C'G technique

(D, Ts,,) constructs an application of the Set CG technique <min(D),T2min(D)> such that

1. The relation of consequence which is made intelligible by (D, 7s,),
i.e. ALC(ED, Top)
is embedded within that made intelligible by <min(D),szm( D)> ; and

2. There is no application of the Set CG technique (E, 75 ;) such that

(a) the relation of consequence which is made intelligible by (D, 75 ),
i.e. ALC(ED, Top )
is embedded within that made intelligible by (E,7x,) ; and

(b) ’ZEI < |Zmin(D)|
We use here the standard notation |S| for the cardinality of a set S. So this
condition, if satisfied, would mean that the number of assertion types for con-
sistency medium E'is less than the number of assertion types for consistency

medium min(D).

9.3 Answering the question

The key to answering the question is recognizing that the least number of assertion types
which we can use in an application of the Set CG technique and still preserve the conse-
quence relation made intelligible by (D, 75;,,) is given by the cardinality of 7x, [¥p]; that
is, the number of differentiable sets of possibilities represented by the elements of ¥p via
the practice of categorization Tx,,. We will show below that no smaller number of assertion

types is capable of doing the job.
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Recall from Section 8.4.3 that for any consistency medium D, the members of the set
Qp (= Consp [Ep]) correspond on a one-to-one basis with the differentiable sets of possi-
bilities represented by assertion types of ¥p via the practice of categorization 7s,. This

fact is key to our answer, which begins with the definition of an operator min.

9.4 Definition of the operator min

We are now ready to define an operator min which satisfies the conditions described in
Section 9.2.

Given an arbitrary consistency medium D, and a practice of categorization 7y,
interpreting D, we define the consistency medium min(D) and
derived practices of categorization ’Tgmm( as follows:

D)

9.4.1 Consistency medium min(D):

® Zninp) = §2p (= Consp [Zp))
The assertion types for the minimal medium are the consequence sets of the given

medium (these were the models in the truth medium constructed by tm in Chapter

8).

® =iin(p) = the inclusion relation on (),

that is, for all P,@Q € Emin(D)v P =min(D) QIf PCQ

® Crin(p) = Consp [Cp]
The consistent assertion types for the minimal medium are the consequence sets of
the consistent assertion types in the given medium.

9.4.2 Derived practice Tx

min(D) :

* T3, inpy | Smin(D) — P(U) is defined as follows:
for any P € ¥in(D)s 'Zémin(D)(P) =NTx, [P)
We give the assertion types in the minimal medium the same interpretation they had

as models in the truth medium constructed by tm in Chapter 8. Because of this
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equivalence, we will be importing some of the results from that chapter. Note that we
don’t have to consider the case where Pis null, since no consequence set can be null.

(Proposition 107).

9.5 Proving the correctness of the answer

In this section, we prove that the operator min meets the requirements outlined in Section
9.2. The proof will take two parts. The first part will show goal 1; that the relation of con-
sequence which is made intelligible by (D, 75, ) is made intelligible by <mz’n(D),Tgmin( D)> .
The second part will show goal 2; that there is no “smaller” application of the Set CG

technique which can do the same.

9.5.1 Showing that the original relation of consequence is made intelligi-

ble by the new application
Stating the goal formally

We are given an application of the Set CG technique (D, 75, ), that is, a consistency medium
D and a practice of categorization Ty, interpreting D, such that D satisfies D1, D2, and
D3 with respect to Ty,. Our claim is that the relation of consequence which is made
intelligible by (D,7x,) (i.e. ALC(ED,TED)) is embedded within that made intelligible
by <mz’n(D),Tgmm(D)>. To demonstrate this claim, we need to show that: (1) an im-

age of ALC ( ) is embedded within ALC < (that is, there is a function

z:D”TED Emi-n(D)y'TEn,”:,,L(D) >

h:Xp— Zmin(D) such that
Vp7q € Xp <ALC<2D,T2D>(pa Q) iff ALC Emin(D)’TEmin(D)

sistency medium min(D) satisfies assumptions D1, D2, D3 with respect to 7x;

><h<p>,h<q>>)>; and (2) that con-

min(D) "

Identifying the embedding function A

We define the embedding function h : ¥p — Xpn(p) as follows:
for all p € Xp, h(p) = Consp(p).
ALCs,, 1, ) (p:q) iff

To demonstrate that Vp,q € £p
ALC@ h(p), h(q))

min(D),Tz:mm(D)> (
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it suffices to show that Vp € £p (TE p(®) =75, .0 (h(p))) and then apply the definition
of ALC.
We have already proven this result, although in a different guise. To see this, recognize

the following equivalences:

1. Zin(p) = Mim(p) ; the set of assertion types in the consistency medium min(D)
equals the set of models for the truth medium constructed from D by the operator tm

(see Section 8.5 for the definition of tm).

2. Ty

consistency medium min(D) are to be interpreted equals the practice used to interpret

min(Dy = IMym(pyi the practice of categorization by which the assertion types in the

the models of the truth medium constructed from D by the operator tm.
These equivalences allow us to restate Proposition 108 as follows:

Corollary 112 Given a consistency medium D, and practice of categorization Ty, if D

satisfies D1, D2,and D3 with respect to Ts,,, thenVp € Ep, Tx .. (Consp(p)) = T, (p)-

Given Corollary 112, it is immediate that h as defined is the embedding we desire.

Proving that min(D) satisfies assumption D1 with respect to T)]mm(D).

Proposition 113 Given a consistency medium D, and practice of categorization Ty,
if D satisfies D1, D2,and D3 with respect to Ty,

then min(D) satisfies assumption D1 with respect to Tgmm( Dy

This result is immediate given the definitions.

1. Let D be a consistency medium, and 75, a practice of categorization, such that D

satisfies D1, D2,and D3 with respect to 75, .

Show that min(D) satisfies assumption D1 with respect to Ts;, .
that is,
2. | Show VP,Q € Zpin(p)s P Zmin(p) @ implies Ty, . Q) C T3 ineoy (P,
that is,
Show VP, Q € X py, P C Q implies (75, [Q] € Tz, [P)
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3. This last is immediate.

Proving that min(D) satisfies assumption D2 with respect to Ty, .

Proposition 114 Given a consistency medium D, and practice of categorization T,
if D satisfies D1, D2,and D3 with respect to Ts,,,

then min(D) satisfies assumption D2 with respect to Ts, . p, -

1. Let D be a consistency medium, and Tx,, a practice of categorization, such that D

satisfies D1, D2,and D3 with respect to 7x,,.

Show that min(D) satisfies assumption D2 with respect to Ty, that is,

min (D)’

Show VP € Emm(D)v Pe Cm’in(D) iff TEmin(D) (P) ;é %]

3. Let P be an arbitrary element of X, p).

4. (—)
(a) Assume P € Crrin(p)- [Show TS in(0) (P) # @].
(b) P € Crin(p) iff P € Consp [Cp], by the definition of min.
(c) So there is a p € Cp, such that P = Consp(p).

)
)
(d) By Corollary 112, T, .. 1y (P) = Tz, (p)-
e) Since p € Cp, and D satisfies D2 with respect to Ty, , we know that 7y, (p) # @.

(
(f) So Ty iy (P) # 2. M (=)
5. («)

(P) 7£ & —Pe C’mm(D):I

min(D)

(a) {Show Ts
(b) Show the contrapositive.

(c) Assume P ¢ Cpin(p)- [Show T3 imipy (P) = @] .

(d) Since P ¢ Cpin(p), we know P ¢ Consp [Cp], by the definition of min.
(e) We know that P € Consp [Xp], since P € Zpin(py-
(f) So P = Consp(p)for somep € ¥p — Cp.

320



(8) Sop¢ Cp.
(h) Since D satisfies D2 with respect to 7x,, we know that 7y, (p) = @.
(i) By Corollary 112, Ty, ... 1, (P) = T5, (P).

(i) So Tz,,...py(P) = .M (—) MProposition.

Proving that min(D) satisfies assumption D3 with respect to Igmm( Dy

Proposition 115 Given a consistency medium D, and practice of categorization Ty,
if D satisfies D1, D2,and D3 with respect to Ty,

then min(D) satisfies assumption D3 with respect to TS pin(py

Let D be a consistency medium, and 7y, a practice of categorization, such that D
satisfies D1, D2,and D3 with respect to Tx,.
[ Show that min(D) satisfies assumption D3 with respect to Ty, ., that is,
a) Show VP, Q € Zpinp), 3T C{P, Q}mm(D
such that UTEmin(D) [ = TEmin(D) (P)Nn TEmin(D)(Q)a and
b) Show that VP, Q € Xmin(p), IA CTminn) (P)
such that UTs,,.,.p) [A] = T30y (P) = T2 0y (@)

(Part a)

Show VP, Q S Zm'm(D)a ar c {P Q}mzn(D
such that Usz.n(D) [F] = szm(p) (P)N ,]—Emi'n(D) Q)

2. Let P,Q € Emin(D)'

3. Then there exists a p € Xp such that Consp(p) = P, and a ¢ € ¥p such that

Consp(q) =
4. By Corollary 112, T, . 1, (P) = Ts,(p), and Tx, 1, (@) = T3, (q).

5. Since D satisfies D3a with respect to 7y,
we know that IR C {p, q)%,such that |J T, [R] = Ts,(p) N Tz, (q).
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7. Let I = Consp|R]
8. Claim: Consp[R] C {P,Q}“mm(D) .

(a) [Show Vr € R, P C Consp(r) and @ C Consp(r)]

(b) Since r € {p,q)}%, r =p p and 7 > p g, so by Proposition 46,
we know LCp(r,p) and LCp(r,q).

(c) Since LC is transitive (Proposition 49), we know that Consp(p) C Consp(r)
and Consp(q) C Consp(r), so P C Consp(r) and Q C Consp(r). EMClaim.

9. Claim: UTs,,,p I =UTs, [R].
(a) UTs, [R] = URTgD (r)y= URTEmm(D) (Consp(r)) by Corollary 112.
re re
(b) URTEmin(D) (Consp(r)) = U7z, [Consp|R]] = UTs,,,,p, [[] - HClaim.
re

10. So J7x I =T5, im0y (P) N Tz, ) (@) WPart a.

min(D) [
(Part b)

Show that VP, Q € Zmin(D), 3A Clmin(p) (P)
such that 75, p) [A] = T,y (P) = Topininy (@)

2. Let P,Q c Emzn(D)

3. Then there exists a p € Xp such that Consp(p) = P, and a ¢ € Ep such that
Consp(q) = Q.

4. By Corollary 112, Ts, ., (P) = Tsp (p), and Ty, 1) (@) = T, (q).

5. Since D satisfies D3b with respect to Ty,
we know that 3S CTp p,such that T, [S] = Ts,(p) — Tx5(9).

6. So UTED [S] = TE-m.in(D) (P) - TEmin(D)(Q)'
7. Let A = Consp[9]
8. Claim: COTLSD[S] ngin(D) (P)
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(a) [Show Vs € S, P C Consp(s)]
(b) Since s €1p p, s =p p, so by Proposition 46, we know LCp(s,p).

(c) Since LC is transitive (Proposition 49), we know that Consp(p) C Consp(s),
so P C Consp(s). MClaim.

(a) UTs, [S]= U Tep(s) = USTEmin(D)(C’onsD(s)) by Corollary 112.
s€

seS
(5) U T oy Consp(s) = U T oy [COn3DIST] = U Ty [4] MClin,
s€
10. So U 75, im0y [A] = 75 im0y (P) = T5 iy (Q)-MPart b.MProposition.

Pulling it all together

Proposition 116 Given a consistency medium D and a practice of categorization Ty,
interpreting D, such that D satisfies Set CG (D1, D2, and D3) with respect to Ty, then
there is a function h: ¥p — Xpn(p) such that

Vp,q € Ep (ALC@D,TED)(p,q) iff ALC<Emin(D)aTEmin(D)> (h(p),h(q)))); and consistency
medium min(D) satisfies assumption Set CG (D1, D2, D3) with respect to Ts,, . 1,

1. Given that we define h as follows:
for all p € ¥p, h(p) = Consp(p),
then by Corollary 112, we have
VP € £p (Tup(b) = Fopniry (A()))-
Applying the definition of ALC gives

¥0.0€ 5p (ALC(s, 7, (p.0) i AL, ) (h(p), @) ).

mz’n(D)yTEmin(D)
2. Propositions 113, 114, and 115show that consistency medium min(D) satisfies as-

sumptions D1, D2, D3 with respect to 7y, . Dy WProposition.

(

This shows that <min(D), TS in D)> is an application of the Set CG technique, and that
the representational relation of logical consequence which it makes intelligible, embeds that

made intelligible by (D, Ts,) -
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9.5.2 Showing that no smaller application can make the original relation

of consequence intelligible

Proposition 117 Given an application of the Set CG technique (D,Ty,,), that is, a con-
sistency medium D and a practice of categorization Ty, interpreting D, such that D satisfies
Set CG (D1, D2, and D3 ) with respect to Ty, ), there is no application of the Set CG technique
(E,Ts ) such that

(a) the relation of consequence which is made intelligible by (D, 7y ),

ie. ALC@D, Tnp) is embedded within that made intelligible by (F,7x); and

(b) IEEl < lzmin(D)|

To demonstrate this claim, we will assume that there is such an application (E,7Ty,),

and show that that assumption leads to a contradiction.
1. Assumptions:

(a) Since we have assumed that (E, Ty) is an application of the Set CG technique;
we have assumed that consistency medium E satisfies assumptions D1, D2, and
D3 with respect to Tx,. As an application of the Set CG technique, the relation

of consequence which (F, 7y, ) makes intelligible is ALC<EE o)
’ E

(b) Since we have further assumed that the relation of consequence which is made

intelligible by (D, Tx ), that is, ALC< ) is embedded within that made

p, Tzp
intelligible by (F, 75, ), we have assumed that there is some function f embedding

the relation ALC’< within the relation ALC<2E, Tog)- That is, we have

®p, Top)
assumed that there exists some function f: Xp — ¥Xg such that

Vp,a€Sp (ALC(s, 5 y(pq) it ALC(5, 7, ) (F(P), £(2)))-

(c) We have also assumed that |Xg| < [me( D)‘ .

2. [Show that the assumptions given above lead to a contradiction)]

3. We know that lEmm(D)| = |Ts, [Ep]|from Proposition 106 and the discussion in
Section 8.4.3.
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4. Since [Sg| < |Spmin(p)| (by assumption above), and [Tz, [Sg]| < |Sp| (since Ty, is a
function, though not necessarily one-to-one), we know that |Tx, [Xg]| < |Tx, [ZD]|-
Recall that Ty, [Xg] is the set of differentiable sets of possibilities represented by the
assertion types in Xg via the practice of categorization 7yx,. This claim will be key
to the contradiction we derive. In what follows, we will show that |75, [¥g]| must be

greater than or equal to |7y, [Xp]] .

5. Claim: Given that we have accepted the condition

Vp,q €5p (ALC(s, 7, )(p:q) if ALCis, 7y (f(p), £()))

we are committed to

Vp,q € Zp (Tep(p) = Tep (@) iff T2p (£ () = T2 (F(q)))-

(a) Let p,gbe arbitrary elements of ¥p.

(b) Ts,(p) = Tsp(q) iff
Tsp(p) € Tep(q) and T (q) € Txp (p) iff
ALC<ED’ TZD>(p, q) and ALC<ED, TED>(q,p) iff
ALC 5, 1,y (F(p), (@) and ALCs, 7.y (f(9), F(p))ift
Tsp(f(p) € T2 (f(9)) and T, (f(9)) € Tnp(f(p)) iff
Tsx(f(p)) = Tzp(f(g)). MClaim.

6. Define a family of properties Zp one for each element P of 75, [£p]. These properties
apply to elements @ of 75 [Xg|, and are defined as follows:
for some element Qof Ty, [Lg|, Zp(Q)is true just in case @ = Ty, (f(p))for some
p € ¥p such that 7y, (p) = P.

7. Claim: —-3M, N € Ty, [Lp] such that
M # N and
3Q € Ty, [ZE] such that (Zp(Q) and Zn(Q))

(a) Say that such M and N exist. [Show contradiction.

(b) Then 3M, N € 75, [£p] such that
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M # N and 3Q € Ty, [£g] such that

@ =Tz, (f(p)) for some p € £p such that Ty, (p) = M and
QR = Tz, (f(q)) for some q € E¥p such that 75, (¢) = N

(c) Then 3p,q € ¥p such that T, (p) # Tsp(9) and Tsp(f(p) = Tox(f(9))-

(d) This contradicts the equivalence in Step 5 above.MClaim.

8. So every @ € Ty, [Xg| has the property Zp (that is Zp(Q)is true) for at most one
element P of 75, [Ep)].

9. Claim: For every Pin Ty, [Lp], there is at least one @ that has the property Zp.

(a) For every P € Ty, [Ep), there is some p € £psuch that Ty, (p) = P.
(b) Therefore there is some g € £g such that ¢ = f(p), since f: ¥p — Zp.
(c) Therefore there is some @ € 75, [Xg|such that Q = Ty (q).

(d) That @ = 7s,(f(p))for some p € Lpsuch that 75, (p) = P, and therefore
Zp(Q)is true.

10. Given the claims in steps 8 and 9 above, we see that the number of elements of
T, [Xg]) must be greater than or equal to the number of elements of 75, [£p]. This
contradicts the claim that |7s, [Eg]| < |Ts, [Ep]| which was made in Step 4.

B Contradiction.

9.5.3 Conclusions

We have shown that for any application of the Set CG technique (D, 7y, ), the
operator min constructs an application of the Set CG technique <min(D),Tgmin( D)>

such that

1. The relation of consequence which is made intelligible by (D, 75, ),

i-e. ALC(ED, TED) 5
is embedded within that made intelligible by <min(D), TEmm(D)> ; and

2. There is no application of the Set CG technique (F, 75 ) such that
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(a) the relation of consequence which is made intelligible by (D, 7s ),
i.e. ALC(ED, T2D>’
is embedded within that made intelligible by (E, 75, ) ; and

(b) 12| < |Smin(p)|

So for any application of the Set C'G technique (D,7s,), the application of the Set

CG technique <min(D),TEmm(D)>is a minimal equivalent, the “smallest” application of

the Set CG technique embedding, in the relation of conseuqnce it makes intelligible, the
relation of consequence made intelligible by (D, Ty ) .

Further, there is one last interesting thing to notice. Since ¥,,;,(p) just are the models
from the tm construction of Chapter 8; and the practice by which they are interpreted
(7%, in(py) is the same as in that case, we can apply the result that ¢m(D) satisfies A7

with respect to TMm( D) and recognize that the minimal medium is logically simple, with

consequence equivalent to set inclusion.
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Part V

Reflections and Next Steps
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Chapter 10

Reflections and Next Steps

10.1 Introduction

It is now time to review what we have done and look ahead to future work. We will present
this discussion in two parts. In the first part, we will review the key results shown in the
course of the dissertation. In the second part, we reflect on those results and consider
directions for future work from the perspectives of each of the four levels of our investi-
gations. We will work from the “outside” in, starting at the level of applications, and
dropping down through the different levels of the representational schema account, to the
foundational characterizations at its core. We will begin by considering applications of the
representational techniques; then consider the representational techniques themselves; then
the explanatory strategies used by the representational techniques; and lastly the founda-
tional characterizations used as a basis for the techniques (including the representational

conception of consequence)

10.2 Review of key results

We began with John Etchemendy’s account of how the technique of model-theoretic se-
mantics implements a representational semantics. From that account, we constructed the
representational schema, a general form for techniques used to construct theories of logical

consequence implementing representational semantics. We set out several tests by which
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we could evaluate the proposed schema. To be successful, the schema should (1) be able to
assimilate techniques for constructing representational theories of consequence beyond the
specific model-theoretic approach described by Etchemendy, (2) help increase our under-

standing of existing techniques, and (3) help us to create new techniques.

We have shown that the schema is capable of subsuming two broad classes of repre-
sentational techniques: those using a model-theoretic strategy to explain the consequence
relations modelled; and those using an order-consistency strategy. Within those two classes,
we have used the schema to describe five different techniques, three of the model-theoretic
kind (Set E, Set PP, and Set BE) and two of the order-consistency kind (Set CL and
Set CG). Three of those five techniques (Set PP, Set BE, and Set CG) were created us-
ing the structure and vectors of extension provided by the representational schema. The
Set PP technique reduces the epistemological commitments of the Set E technique, the
Set BE technique is a model-theoretic technique supporting partial models, and the Set
CQG technique is an order-consistency technique which does not require the assumption of
Lindenbaum’s Lemma (and thus does not require the assumption of maximal extensions for

consistent assertion types).

The representational schema, by assimilating the various techniques to a common frame-
work, made it possible for us to compare and contrast differing techniques of representational
semantics with respect to four criteria: the mode by which they explain the consequence
relation; the range of interpreted languages to which they are applicable; their degree of
epistemological commitment; and the ease with which they can be used in particular ap-
plications. We were able to describe, in terms of the schema, a standard methodology for
comparing the ranges of interpreted languages to which different techniques are applicable.
That methodology showed how we could “move” relations of logical consequence from the
context of one technique to that of another. Using that methodology, we were able to es-
tablish that the ranges of applicability for the five techniques discussed could be arranged
in a linear order: ra (Set E) C ra (Set PP) C ra(Set CL) C ra (Set CG) C ra(Set BE).

We used the schema to describe a general methodology for applying representational
techniques in the construction of theories of logical consequence for given interpreted lan-

guages. We then used that methodology to apply (or outline the application of) techniques
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of both kinds to a number of interpreted languages, including propositional logic, feature
logics (sentential languages with feature structures as models), and languages in which
feature structures are considered as assertions in their own right.

We further used the schema to prove an interesting result, that for any application of
the Set C'G technique, we could construct an application of that same technique, such that
the relation of logical consequence made intelligible by the given application was embedded
in the relation of logical consequence made intelligible by the constructed application, and
that no “smaller” application (in the sense of a consistency medium with a set of assertion

types of lesser cardinality) could do the same.

10.3 Reflections and next steps

Now we look both back and ahead. With respect to each of four levels of our investiga-
tion (applications of representational techniques, representational techniques, explanatory
strategies, and foundational characterizations) we shall consider integrating concepts and

directions for future work.

10.3.1 Applications of representational techniques
Two levels of semantic analysis

We can notice that in all of our applications of the representational schema, there were
two levels to the semantic analysis: the level of characterizing semantic conventions and the
level of applying a representational technique. The same semantic conventions could be suf-
ficient to imply the technique-specific assumptions of multiple techniques (e.g. the semantic
conventions governing acceptable interpretations of the P(W F'F)-language of propositional
logic imply both the Set E or Set CG assumptions), or different semantic conventions could
be sufficient to imply the technique-specific assumptions of a single technique (e.g. the
semantic conventions governing acceptable interpretations of both the WFF or P(W FF)-
languages of propositional logic imply the Set F assumptions).

The argument is not that these two levels were not present in traditional semantic analy-

ses. For example, many accounts of the semantics of propositional logic (though not all!
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See Barwise and Etchemendy 1999) include the convention “the sentence symbols are log-
ically independent.” What we would like to point out is that the process of applying the
representational schema makes the separate existence of these levels more clear, and gives
us a method for formally specifying both these semantic conventions, and the representa-
tional techniques whose technique-specific assumptions they imply; and then considering

the interaction between the two levels.

For example, the two-level analysis allows us to give an explanation of why the corol-
lary to Lindenbaum’s Lemma works as a proxy for consequence in the case of propositional
logic. Given that the semantic conventions for interpretations of a language imply monotonic
extension of commitment and weak extensibility, then if further given that LL (the repre-
sentational version of Lindenbaum’s Lemma) holds of a consistency medium modelling that
language, it is the case that LLC (the representational version of the corollary to Linden-

baum’s Lemma) is equivalent to the representational conception of logical consequence.

It is interesting to consider that the two levels of analysis have different purposes. The
level of representational techniques is geared to the purpose of making the representational
relation of logical consequence explanatorily intelligible. The level of semantic conventions
has (at least) two purposes. One purpose is that the semantic conventions of the language
should make possible an explanatory account of the relation of logical consequence for the
language (and one way to do that is by implying the technique-specific assumptions of some
representational technique). But another purpose is to ensure the usability of the language
by the subjects (human, machine, ...) who will be using it to think and communicate.
So in creating new representational techniques, our focus is more on making the process
of modelling consequence easier or more theoretically productive. Whereas in creating
languages with new semantic conventions, our focus includes making the languages created

easier to speak, manipulate, and understand.

We saw, for instance, that the semantic conventions of propositional logic imply that
acceptable interpretations of that language satisfy the conditions of monotonic extension
of commitment and weak extensibility. We further saw reasons, from a practical, applied
perspective, why it would be useful for a language to support those properties. Yet we

also saw that those properties are not necessary for a model-theoretic explanatory account

334



of consequence. For example, we were able to give a model-theoretic explanatory account
of consequence for the simple language Roll, even though its acceptable interpretations
satisfied neither property. We could argue that the semantic conventions of propositional
logic evolved the way they did because those conventions make the language more usable.

Thinking about the level of semantic conventions opens up an important level of variation
among languages. For example, it allows us to consider the multiple ways in which different
languages make it possible for their users to extend their commitments. Contrast the
powerset construction of the P(W F F)-language of propositional logic with the subsumption
relation for feature structures. There are two very different ways of extending commitments,
and yet they both imply monotonic extension of commitment. The two approaches are more
or less usable than each other in different situations.

Something which is sometimes hard to remember is that our languages did not spring
from Gargantua’s ear fully formed (Rabelais 1990). They were created and evolved over
time. Feature structures are an obvious example. In the process of creating new (or evolving
existing) languages, having a clear distinction between the semantic conventions of a lan-
guage and the properties required for making consequence intelligible, may help designers in
the process of constructing new modes of expression. For example, perhaps their are other
ways of extending commitments than those we have already seen? In designing a language
with a new approach to extending commitments, one might want to keep in mind that
if the semantic conventions created for the language implied the conditions of monotonic
extension of commitment and weak extensibility, then one of the order-consistency tech-
niques could be applied to make the consequence relation for that language explanatorily

intelligible.

Importance of justificatory accounts for proposed semantic relations of logical

consequernce

An important message from Etchemendy’s work in the “Concept of Logical Consequence”
(Etchemendy 1990) is that any proposed semantic model of the relation of logical conse-
quence needs a principled justification, and that Tarski’s interpretational justification of

the model-theoretic approach is flawed. Etchemendy proposes representational semantics
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as a means of constructing such justifications. If we accept Etchemendy’s position, that
means that we need to carry out such justificatory constructions for every proposed model
of consequence. It is not sufficient to construct a semantic account which is “analogous to
Tarski” and consider the account, for that reason alone, to be complete. We saw this in the
case of the feature logic application above (Sections 3.3.3 and 3.6). There, we claim that for
the account of consequence between sentences in a feature logic to be complete, we should
construct a justificatory account showing that the proposed proxy for consequence relation

is in fact equivalent to the representational conception of logical consequence.

Completing the feature structure accounts

One of the next steps in the project, then, is to see if we can use the representational schema,
to construct justificatory accounts for models of logical consequence for some language of
feature logic, and some language in which feature structures are used as assertion types.
To complete these accounts, we would need to characterize the semantic conventions for
acceptable interpretations of feature structures. We have seen that we should expect these
conventions to be different when feature structures are used as models (for feature logics)
and when feature structures are used as assertion types. In the case of a feature logic, we
will seek to develop a proof that the semantic conventions for acceptable interpretations of
the sentences in the logic and the feature structures (used as models) imply the technique-
specific assumptions for some representational technique. Our candidate technique for this
proof is the model-theoretic Set BE technique. In the case of a language in which feature
structures are used as assertion types, we will seek to develop a proof that the semantic
conventions for feature structures (used as assertion types) imply the technique-specific
assumptions for some representational technique. The candidate technique we propose for

this proof is the order-consistency Set C'G technique.

10.3.2 Representational techniques
Multiple dimensions of flexibility in constructing techniques

We have seen that there are many dimensions of flexibility in constructing representational

techniques. Here we will consider three: flexibility in the roles of specific technique-specific
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assumptions; flexibility in the kind of technique-specific assumptions used; and flexibility
in the “division of labor” between the technique-specific assumptions and the proxy for

consequence relation.

First, let’s consider flexibility in the roles of specific technique-specific assumptions.
We saw in many cases, that the technique-specific assumptions for a technique played a
dual role. Each assumption was used in two ways, both to ensure the intelligibility of
consequence and to support the explanatory strategy. In the case of the Set BE technique,
we saw something different. There, two assumptions (B1 and B2) were used to ensure the

intelligibility of consequence, and a third (A7) was used to support the explanatory strategy.

Secondly, we have seen flexibility in the kind of technique-specific assumptions used.
The technique-specific assumptions used by the model-theoretic representational techniques
placed no requirements on assertion types involving the possibilities represented by some
other type or types. Whereas the order-consistency techniques did involve such assumptions
(such as monotonic extension of commitment and weak extensibility). Those assumptions
introduced expressibility constraints into the account of consequence. For the languages we
were considering, those expressibility constraints were implied by the semantic conventions

of the language.

Third, we saw flexibility in how the work of making consequence intelligible could be
split across the technique-specific assumptions and the proxy for consequence relation. In
all of the model-theoretic techniques we considered, the only difference between the tech-
niques was in the set of technique-specific assumptions which they used. Whereas in the
order-consistency case, we constructed the Set CG technique from the Set C'L technique by
deleting the technique-specific assumption LL (the representational version of Lindenbaum’s
Lemma), and then changing the proxy for consequence relation to “make up the difference.”
This highlights important degree of freedom which can be used in constructing new tech-
niques. Not only can we change the technique-specific assumptions, we can also change
the proxy for consequence relation. This flexibility reflects that which we see in logical
semantics generally, where a combination of (1) truth definition and (2) special constraints
on the class of models determines what you get as a logic, and setting those two semantic

“parameters” to different combinations often results in the same “yield.”
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Completing our picture of the relations between the ranges of applicability of

the various techniques

We have gone a long way toward constructing a picture of how the relative ranges of
applicability of representational techniques compare with one another. We have been able to
arrange the techniques discussed into a linear order in terms of relative range of applicability.
However, it is important to note that our understanding of the whole picture is partial, and
that potentially valuable understanding awaits our completing this picture. The first way
in which our current picture is partial in that we have demonstrated a series of inclusions,
but in each case, we do not know whether the inclusion is proper, or in fact an equality. In a
number of the cases (particular ra (Set PP) C ra (Set CL) and ra (Set CG) C ra (Set BE)
we have tried to prove the reverse inclusions but have so far been unsuccessful. The next
steps in this area are to continue working on those proofs in the hopes of either finding a
way to make them go through or being able to characterize counterexamples. Either result
should add to our understanding. A second way in which our picture is partial is that it

only reflects those techniques which we have already defined.

Looking ahead to more refined comparisons of ranges of applicability

It is one thing for a technique to be technically capable of modelling the relation of logical
consequence for a particular interpreted set of assertion types; it is another thing for that
modelling process to be easy to carry out, or for the constructed models to be easy to work
with. We should look ahead to developing more refined categories and comparisons with
respect to ranges of applicability. For example, it may prove useful to be able to answer
the question, for a particular interpreted set of assertion types: “Can the representational
relation of logical consequence for this interpreted set of assertion types be modelled by
technique X using an intelligible medium in which all of the assertion types are expressible
by a finite structure?” Asking such questions, and then being able to compare techniques
in terms of their relative ranges with respect to such questions, should be a source of deeper

understanding.
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Open to new techniques

A natural next step is to continue seeking to define new techniques. Nothing in our inves-

tigations suggests that the list of techniques we have considered is complete.

10.3.3 Explanatory strategies
The relation of model-theoretic and order-consistency semantics

Let us consider two high-level relations between model-theoretic and order-consistency ex-
planatory strategies. First, we will look at the overlap in terms of the relative ranges of
applicability of techniques using the two strategies; and then we will consider the way in
which order-consistency models of consequence contain “implicit models.”

From our analysis of the relative ranges of applicability of representational techniques,
we see that the ranges of applicability of the two model-theoretic and order-consistency
strategies overlap significantly. Many interpreted sets of assertion types can have their
representational relation of logical consequence modelled from both perspectives. We have
seen that any interpreted set of assertion types whose relation of logical consequence can
be modelled by an application of the Set E or Set PP model-theoretic techniques can
be modelled by either the Set CLor Set CG order-consistency techniques; and that any
interpreted set of assertion types whose relation of logical consequence can be modelled
by the Set CLor Set CG order-consistency techniques can be modelled by the Set BE
model-theoretic technique.

One thing that is interesting about the overlap is that it enables us to use techniques
from both strategies in a particular application. For example, we could use a technique
of one strategy to model a relation of consequence for a language (perhaps because that
strategy was easier to apply in the case of that language); and then use the methods of the
proofs of range inclusion to move that description into the context of the other explanatory
strategy; perhaps to take advantage of results or techniques available only there.

Another thing interesting point results from the proofs in Chapters 8 and 9 (the proof
showing the inclusion of the range of the Set C'G technique within the range of the Set

BE technique, and the construction of a “minimal equivalent” for any application of the
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Set CG technique). While a consistency medium does not explicitly use models to model
the relation of logical consequence; there is a set of models implicit in any consistency
medium satisfying the Set CG technique-specific assumptions with respect to the practice
of categorization interpreting its assertion types. That set of models is characterized by the
operator tm in the proof of Chapter 8. From Chapter 9, we also see that the set of those
models are themselves the assertion types of a consistency medium satisfying the Set CG
technique specific assumptions with respect to the practice of categorization interpreting
them. This concept of implicit models is related to the notion of a “core” from Barwise and
Seligman 1997, Lecture 4 and Lecture 6. There those authors present results showing that

one can always construct a core from any family of classifications and informorphisms.

Considering the relation to information systems

We expect that the theory of information systems, algebraic ()-structures, and domains is
related to order-consistency semantics. The work on minimal media presented in Chapter
9 is a prospective first step toward building a connection between the concepts developed

in this dissertation and that theory.

The two explanatory strategies need not be the only ones

We have shown there to be two explanatory strategies capable of grounding representational
models of logical consequence. It is interesting to think that there may be others. It could
be that in changing the foundational characterizations (see below) that other explanatory

strategies may become possible.

10.3.4 Foundational characterizations

Every technique which we considered in this dissertation used the same foundational char-
acterization of the space of possibility, assertion types, practices of categorization inter-
preting assertion types, and the representational conception of logical consequence. These
assumptions are not the only possible ones. First we consider a reflection on the notion of

“intelligibility,” then we turn to consider variations on the foundational assumptions.
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Intelligibility is a general idea

One of the key ideas underlying the representational schema is the notion of “intelligibility,”
the way in which a relation defined in terms of the structure of an “intelligible medium”
can, given certain assumptions, act as a proxy for some other relation assumed to exist in
the space of possibility. The kind of intelligibility we were most concerned with was the
“intelligibility of consequence.” In that case, the representational relation of logical conse-
quence (as we had defined it) was the relation assumed to exist in the space of possibility
for which we sought a proxy. But interestingly, in the course of our explorations, we saw
that “intelligibility” is a general idea, and put it to use in many forms, including the intel-
ligibility of consistency, the intelligibility of compossibility, and the intelligibility of logical
truth.

Three-valued practices of categorization

If we are seeking to model the interpretation of assertion types as carried out by actual
agents in the world, it may be of more value to use a three-valued approach to practices of
categorization. On such an approach, the practice by which an assertion type is interpreted
divides the space of possibility into three parts: those possibilities for which the practice
holds the assertion type true; those possibilities for which the practice holds the assertion
type false; and those possibilities for which the practice is uncommitted or neutral. This
would require a change in the assumed representational conception of logical consequence;

and those changes would ripple through the entire theoretical structure developed.

Non-monotonic reasoning

The representational relation of logical consequence we assumed for the purposes of our
discussion was standard consequence. A direction for future study would be to consider
how the concepts and techniques presented here could apply to other kinds of consequence
relations, e.g. of the kind modelled in studies of non-monotonic reasoning. Such phenomena

are considered in Barwise and Seligman 1997, Lecture 19.
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10.4 Conclusion

Our work in this dissertation, together with these reflections and potential next steps all
point in a common direction. That direction is one which sees logic as a dynamic field,
seeking to create principled accounts of concepts of logical consequence. In this work, we
have constructed and explored a framework for understanding, comparing, and creating
such accounts on the basis of the principles of intelligibility and explanatory strategy.
This orientation toward “principled creativity” is perhaps the most important lesson
my teachers have given me. They have taught me that the way is open, and that the
possibilities for creativity are there; but that as we create, we should keep our principles,
the ways in which we choose to order our creations, in mind. Those principles are more

than measures, they are a source of creativity itself.
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Appendix A

Logical Truth and “Amnalytic

Consequence”

A.1 The concept of analytic consequence in the informal set-

ting

For the purposes of this section, we need to recall the way we were thinking of model-
theoretic semantics before we began the process of formalization, i.e. as we considered it
in section 1.3. We made certain assumptions about how we were choosing to think about
logical consequence and logical truth: namely, that a sentence p was a logical truth iff it
was true in all possibilities; and that a sentence p was a logical consequence of a set of
sentences ¥ just in case the argument (X, p) preserved truth in every possibility. In terms
of our chosen interpretation of logical consequence, we can define a new concept, namely
“analytic consequence.” We can say that a sentence p is an analytic consequence iff p
is a logical consequence of any set of sentences. Given our chosen interpretations, it is a
simple argument that the following claims are equivalent: pis an analytic consequence, pis
a logical consequence of @, and pis logically true. That analytic consequence and logical
truth are equivalent is a point is made by Tarski (1956, 418). The proof is trivial but just

to ensure that the way we are using the various terms is clear, we give it below.
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A.1.1 Equivalence of “pis an analytic consequence” and “pis a logical

consequence of &”

1. By definition, “pis an analytic consequence” is equivalent to “For any set of sentences

Y, the argument (3, p) preserves truth in all possibilities.”

2. Claim: “For any set of sentences X, the argument (X, p) preserves truth in all possi-

bilities.” is equivalent to “the argument (&, p) preserves truth in all possibilities.”

(a) (—) Immediate since @ is a set of sentences.ll (—)

(b) («) If (&, p) preserves truth in all possibilities, then pis true in every possibility.
So regardless of ¥, the argument (X, p) preserves truth in all possibilities.ll () H

Claim.

A.1.2 Equivalence of “pis a logical consequence of @” and “pis logically

true”

(@, p) preserves truth in all possibilities iff
in every possibility, either some element of @ is false, or p is true iff
pis true in every possibility iff

pis logically true.

A.2 Formalizing the concept of analytic consequence

Our informal understanding of analytic consequence is: a sentence p is an analytic conse-
quence iff p is a logical consequence of any set of sentences. In our formal account of the
model-theoretic framework, we have characterized arguments more generally as consisting
of pairs of assertion types: the first assertion type as premise, and the second as conclusion.
So we could say that relative to set of assertion types ¥ and practice of categorization 75

interpreting %,
for any assertion type p € ¥, p is an analytic consequence iff Vg € ¥ (ALCix, 75,y (¢, p)).

We will define a predicate AAC (Assumed Analytic Consequence) on ¥ as follows:

346



AAC 5 15,y (p) iff Vg € ¥ (ALC (5 13,y (¢, p))-

We show now a simple result about the analytic consequence predicate.

Proposition 118 For any set of assertion types ¥ interpreted by any practice of catego-

rization Ty, it is the case that

Vp € 5, AAC(s, 13 (p) ff T2(p) = U Tz [X]
(=)
1. Let pbe an arbitrary element of ¥ such that AAC s, 7,y (p).
2. SoVgeXx (ALC@YTE)(q,p))by definition of AAC.
3. So Vq € X (Tx(q) C Ts(p)) by definition of ALC.
4. So U7 [E] € Tx(p).
5. Since p € X, Tx(p) C U7z [X].
6. So Tx(p) = U Tz [¥]. M (-)
()
1. Let pbe an arbitrary element of ¥ such that Tx(p) = | 7Tx [X].
2. Let g be an arbitrary element of .
3. Then Tx(q) CUT= [].
4. So Tx(q) C Ts(p).
5. So ALC(s 73,y (4,p)-
6. Since g was arbitrary, Vg € % (ALC(s 15,)(q,D))
7. So AAC s 73 (p).M (—) MProposition.

347



A.3 A distinction between analytic consequence and logical

truth

Now we can notice something very interesting. The equivalence of analytic consequence
and logical truth which held in the informal account of model-theoretic semantics does not
carry across into our formalization. For arbitrary set of assertion types ¥ and practice
of categorization 7Ts, we have characterized logical truth (ALTs ;) for assertion type
p € ¥ by Tg(p) = U. Whereas we have characterized analytic consequence (AACs 7;,)
for assertion type p € ¥ by Tx(p) = |J7x [X]. When the possibilities represented by the
assertion types of ¥ ( that is, |75 [X]) do not equal to whole space of possibility (i),
then assessments of logical truth and analytic consequence may diverge. Some analytic

consequences may not be analytic truths.

Where did this difference between the informal and formal accounts come from? It has
its source in the fact that the form of arguments which we are using in our formalization
(premise/conclusion pairs of assertion types) is more general than the form of arguments
used in the informal representational account (set of sentences as premises and single sen-
tence as conclusion). Our formalization makes clear something built into the informal
account by making us consider the empty set of premises as an assertion in its own right.
Because of the way in which preservation of truth across all possibilities is defined, the
empty set of premises functions as if it were an assertion true in every possibility, that is,
it functions as a logical truth. For any set of assertion types %, if ¥ contains an assertion
type pwhich is a logical truth, then | J7s [¥] = U, and hence, logical truth (ALTs; 7)) and
analytic consequence (AACs 1,y) are equivalent. Another case in which {7 [¥] = U, and
thus one in which logical truth and analytic consequence are equivalent, is when (¥, 75) is a
conventional application of a language with negation and a semantic convention of excluded

middle, like the P(W FF')-language of propositional logic.

We can consider the condition that | J 75 [X] = U with respect to both model-theoretic

and order-consistency techniques.
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A.3.1 Model-theoretic techniques

We show below that neither the intelligibility of consequence nor the intelligibility of logical
truth for truth media depend upon the condition that | J 75 [E] = U. So the existence of a
built in assertion which functions as a logical truth is not a requirement for using model-
theoretic semantics. Instead it is an artifact of a specific way of constructing a model-
theoretic semantics. At the more general level at which our formalization is functioning,

logical truth and analytic consequence may be extensionally distinct.

Proposition 119 It is not the case that if truth medium A satisfies assumption set E with

respect to Ts., and Ty ,, that | JTs, (4] = U.

We construct a case in which truth medium A satisfies assumption set £ (B5, A4, A5, B8)
with respect to Ty, and Ty, and | Tx, [Z4] # U.

2a={p}
My = {m,n,o}
U=1{1,23,4,5}
z | Tz, ()
Define 75, as follows:
p | {1,2,3}
So UTEA [ZA] = {1,2,3}.
z | Ty, ()
1
Define Ty, as follows: m | {1}
n | {2,3}
o | {4,5}

The above definitions satisfy assumptions A4 (the models are disjoint) and A5 (the
models are consistent).

We use the statement of B5 to construct t4.

z | ta(zx)

Construct t4 as follows:

p | {m,n}

Given the above definitions, assumptions B5and B8 are satisfied. (For B8 take S =
{m,n}, then Ty, [S] ={1,2,3} = Tx,(p), and take R = {0}, then | Ty, [R] = {4,5} =
U—Ts,®)).

349



In our example, A satisfies assumption set E (B5, A4, A5, B8) with respect to 7y, and
Ty, yet U7Ts, [X4) # U. WProposition.
From this result, we see that none of the assumption sets implied by E imply that

U,];:A [ZA] =U.

Corollary 120 It is not the case that if truth medium A satisfies assumption set TP (or
B or LT)
with respect to Ty, and Tyy,, that JTx, [Za] =U.

This is immediate from Proposition 119 and Proposition 13.HCorollary.

A.3.2 Order-consistency techniques

We show below that the intelligibility of consequence for consistency media also does not
depend upon the condition that | J 75 [X] = U. So this assumption is not a requirement for
using order-consistency semantics either.

Looking at the example in Section 5.4, we see that we could consistently supplement
the conditions OEX with an additional constraint that there be some possibility in which
none of odd, even, oddOrEven, oddAndFEven,is true. Under those expanded conditions,
U7Zsog [ZoE] # U, but it would still be the case that the consistency medium OF satisfies
D1,D2,D3 with respect to Tx,,, and LCog makes the assumed relation of consequence

ALC<ZOEyTZOE) intelligible.
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