Find the treasure by picking a point that satisfies the following clues:

1. is as far from the fountains as from the oak tree
2. is 10 m (meters) from the building
3. is not the point X.

How can you find the treasure?
$\mathcal{N o t e s}$ Chapter or: Points, Lines, Planes, and Angles
Unit 1: Some Basic Figures Section 1: \mathcal{A} Game and Some Geomptry

A simplest figure in geometry is a \qquad It has no size, nor dimension. -

A
A \qquad extends in two directions without ending. Line $A B$ or line $B A$ is denoted by $\widehat{A B}$ or $\widehat{B A}$.

A geometric \qquad is suggested by a floor, wall, or table top. Unlike the items listed, however, a plane extends without boundary. It is without thickness. We'll, however, show edges to denote a plane.

In geometry, the terms point, line, and plane are accepted as intuitive ideas and are not defined. These undefined terms are then used in the definitions of other terms.
\mathcal{N} Notes Chapter on: Points, Lines, $\mathcal{P l a n e s}$, and \mathcal{A} ngles
Unit 1: Some Basic Figures
Section 2: Points, Lines, and $\mathcal{P l a n e s}$
\qquad is the set of all points.
\qquad points are points all in one line.

Collinear points
Noncollinear points
\qquad are points all in one plane.

Coplanar points
Noncoplanar points

The \qquad of two figures is the set of points that are in both figures.

Extra Chapter o1: Points, Lines, Planes, and Angles
Unit 1: Some Basic Figures Quick Quiz

Classify each statement as true or false. Justify your answer.

1. All points on a line are coplanar.
2. A line has one endpoint.
3. A point is named by a capital letter.
4. Two lines intersect in two points.
5. The edge of a plane is a line.

The point B is between points A and C. Note that B must lie on line $A C$.

Segment AC, denoted $\overline{A C}$, consists of points A and C and all points that are between A and C. Points A and C are called the \qquad of $\overline{\mathrm{AC}}$.

Ray AC, denoted $\overrightarrow{A C}$, consists $\overline{A C}$ and all other points P such that C is between A and P . The endpoint of $\overline{\mathrm{AC}}$ is A , the point named first.

Ray $B A$ and ray $B C$, from above, are called \qquad rays.
B is \qquad A and C .
\mathcal{N} otes \mid Chapter oi: Points, Lines, Planes, and Angles
Unit 2: Definitions and Postulates Section 3: Segments, Rays, and Distance

The length of segment $B C(\overline{B C})$, denoted by $B C$, is the distance between B and C.

Find the value of the following:
(a) CA
(b) $B C$
(c) $|x-y|$
(d) $A B$

Postulate 1 Ruler Postulate

1. The points on a line can be paired with the real numbers in such a way that any two points can have coordinates 0 and 1 .
2. Once a coordinate system has been chosen in this way, the distance between any two points equals the absolute value of the difference of their coordinates.

Postulate 2 Segment Postulate

If B is between A and C, then

$$
A B+B C=A C .
$$

Example

B is between A and C, with $A B=2 x, B C=x+3$, and $A C=30$. Find:
(a) the value of x
(b) $B C$
$\mathcal{N o t e s} \mid$ Chapter o1: Points, Lines, Planes, and Angles
Unit 2: Definitions and Postulates
Section 3: Segments, Rays, and Distance
In Geometry two objects that have the same size and shape are called
\qquad In other words, \qquad means having a same measurement.

Congruent segments are segments that have equal lengths.
To indicate that $\overline{\mathrm{DE}}$ and $\overline{\mathrm{FG}}$ have equal lengths, we write

$$
\mathrm{DE}=\mathrm{FG} .
$$

To indicate that $\overline{\mathrm{DE}}$ and $\overline{\mathrm{FG}}$ are congruent, we write

$$
\overline{\mathrm{DE}} \cong \overline{\mathrm{FG}} .
$$

The \qquad of a segment is the point that divides the segment into two congruent segments.

A \qquad of a segment is a line, segment, ray, or plane that intersects the segment at its midpoint.
$\mathcal{N o t e s} \quad$ Chapter on: Points, Lines, \mathcal{P} lanes, and \mathcal{A} Igles
Unit 2: Definitions and Postulates Section 4: Angles

Postulate 3 Protractor Postulate

On line $A B$ in a given plane, choose any point O between A and B. Consider ray $O A$ and ray $O B$ and all the rays that can be drawn from O on one side of line $A B$. These rays can be paired with the real numbers from 0 to 180 in such a way that: (a) Ray OA
 is paired with 0 , and ray $O B$ with 180 . (b) If ray OP is paired with x, and ray OQ with y, then measure of angle POQ is $|x-y|$.

Postulate 4 Angle Addition Postulate

If point B lies in the interior of angle $A O C$, then

$$
\mathrm{m}_{4} \mathrm{AOB}+\mathrm{m} \Varangle \mathrm{BOC}=\mathrm{m} \Varangle \mathrm{AOC} .
$$

If $\Varangle A O C$ is a straight angle and B is any point not on line $A C$, then

$$
\mathrm{m} \Varangle \mathrm{AOB}+\mathrm{m} \Varangle \mathrm{BOC}=180 .
$$

\qquad angle (denoted:) are two angle in a plane that have a common vertex and a common side, but no common interior points.

The \qquad of an angle is the ray that divides the angle into two congruent adjacent angles.
\mathcal{N} otes Chapter o1: Points, Lines, Planes, and Angles
Unit 2: Definitions and Postulates Section 4: Angles

There are things that you can assume in Geometry, and there are things you can't. Let figure them out.

List all the conclusion from the diagram on the right.

All points shown are \qquad line $A B$, ray $B D$, and ray $B E$ intersect at \qquad _.
A, B, and C are \qquad $\angle A B C$ is a __-_-_-_ angle.
D is in the \qquad of $\angle A B E$. $\angle \mathrm{ABD}$ and $\angle \mathrm{DBE}$ are \qquad angles.

(1) You can't assume size or measurement. This means that you can't assume congruence and right angle.
(2) You can assume relative positions and collinearity.

Postulate 5

A line contains at least two points; a plane consists at least three points not all in one line; space contains at least four points not all in one plane.

Postulate 6

Through any two points there is exactly \qquad line.

Postulate 7

Through any three points there is at least \qquad plane, and through any three noncollinear points there is \qquad one plane.

Postulate 8

If two points are in a plane, then the line that contains the points is \qquad that plane.

Postulate 9

If two planes intersect, then their intersection is a \qquad .
\mathcal{N} otes \mid Chapter o1: Points, Lines, Planes, and Angles
Unit 2: Definitions and Postulates
Section 5: Postulates and Theorems Relating Points, Lines, and Planes

Theorem 1-1

If two lines intersect, then they intersect in exactly \qquad point.
Theorem 1-2
Through a line and a point not in the line there is exactly \qquad plane.
Theorem 1-3
If two lines intersect, then exactly \qquad plane contains the lines.

Example

Classify each statement as true or false. Give the definition, postulate or theorem that supports your conclusion.

1. A given triangle can lie in more than one plane.
2. Any two points are collinear.
3. Two planes can intersect in only one point.
4. Two lines can intersect in two points.

Extra	Chapter or: Points, Lines, \mathcal{P} lanes, and \mathcal{A} ngles Unit 2: Definitions and Postufates Quick Quiz
	Complete with always, sometimes, or never.
	1. Two points ___-_-_-_-_ lie in exactly one line.
	2. Three points __-_-_-_-_-_ lie in exactly one line.
	3. Three points ____________ lie in exactly one plane.
	4. Three collinear points __-_-_-_-_-_ lie in exactly one plane.
	5. Two planes _-_-_-_-_-_ intersect.
	6. Two intersecting planes _-_-_-_-_-_ intersect in exactly one point.
	7. Two intersecting lines __-_-_-_-_ intersect in exactly one point.
	8. Two line ____-_-_-_-_ intersect in exactly one point.
	9. Two intersecting lines ___-_-_-_-_ lie in exactly one plane.
	10. A line and a point not on that line ________-_ lie in more than one
	plane.
	11. A line _-_-_-_-_-_ contains exactly one point.
	12. When A and B are in a plane, line $A B$ _-_-_-_-_-_ in that plane.

