Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling

Toll-like receptor signaling and subsequent activation of NF-κB and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of NF-κB-dependent cytokotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain death (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overcomes blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.

Toll-like receptor signaling and subsequent activation of NF-κB and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of NF-κB-dependent cytokotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain death (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overcomes blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.

Significance

Pathogenic organisms express virulence factors that can inhibit immune signaling pathways. Thus, the immune system is faced with the challenge of eliciting an effective inflammatory response to pathogens that actively suppress inflammation. The mechanisms that regulate this response are largely undefined. The Yersinia virulence factor YopJ blocks NF-κB and MAPK signaling, resulting in reduced cytokine production and target cell death. Here, we find that caspase-8, RIPK1, and FADD are required for YopJ-induced cell death and show that mice lacking caspase-8 are severely susceptible to Yersinia infection and have defective proinflammatory cytokine production. These findings highlight a possible mechanism of immune defense that can overcome pathogen inhibition of cell-intrinsic proinflammatory immune responses.
Caspase-8 Activity Is Required for YopJ-Induced Cell Death and Caspase-1 Processing. TLR signaling can trigger RIPK1-mediated cell death either via caspase-8 or RIPK3 (14, 21). The observation that zVAD-fmk-treatment did not protect B6 BMDMs from Yp-induced death suggests either caspases are not required for Yp-induced cell death or blocking caspase activity in Yp-infected cells triggers cell death via RIPK3-mediated necrosis. Caspase-8 catalytic activity prevents a lethal RIPK3-dependent programmed necrosis that occurs in early embryonic development (23). Notably, we found that Ripk3−/− BMDMs had no defect in Yp-induced caspase-1 processing or cell death, whereas Ripk3−/− BMDMs failed to process caspase-1 or undergo cell death in response to Yp infection, in contrast to Salmonella (Stm) or LPS+ATP treatment (Fig. 2A–C). This failure was not the result of insufficient back-crossing of these mice, because there were no single nucleotide variants between B6 and three different lines of 129 mice in caspase-8, cFIP, FasL, or RIPK3, and the polymorphic genes immediately flanking caspase-8 are
(not linked to these cell death pathways (Fig. S3). Importantly, in Ripk3+/− BMDMs, zVAD-fmk abrogated Yp-induced death (Fig. 2C). These data demonstrate that caspase inhibition induces RIPK3-dependent programmed necrosis in Yp-infected cells and that RIPK3 is not required for YopJ-induced caspase-1 processing or cell death in the presence of caspase-8. RIPK3 can activate caspase-1 in the absence of caspase-8 in response to LPS (24) or cIAP inhibitors (25). Therefore, caspase-8 and RIPK3 might play redundant roles in caspase-1 activation or cell death during Yp infection. Intriguingly, conditional deletion of caspase-8 by inducible (ERT2-Cre), or developmental (LysM-Cre) approaches significantly reduced YopJ-mediated processing of caspase-1 in RIPK3-sufficient cells, indicating that caspase-8 and RIPK3 play a nonredundant role in YopJ-induced caspase-1 processing (Fig. 2D and Fig. S4A). This caspase-8–dependent processing of caspase-1 was functionally important, because IL-18 secretion was significantly reduced in Ripk3+/− Casp8−/− but not in Ripk3+/− BMDMs (Fig. 2E). However, conditional deletion of caspase-8 was not sufficient to protect BMDMs from Yp-induced cell death (Fig. S4 B and C), in keeping with the finding that zVAD-fmk leads to programmed necrosis in RIPK3–sufficient cells. Importantly, caspase-1 activation in response to STm was completely unaffected in caspase-8 conditional BMDMs, indicating that these cells retained the ability to undergo inflammasome activation (Fig. S4D). We also observed an apparent synergy between zVAD-fmk and Nec-1 in protection from LPS+ATP–treated cell death in B6 cells (Fig. 2C). However, this is most likely because zVAD-fmk–pretreated cells that are then exposed to LPS+ATP undergo programmed necrosis, as Ripk3+/− cells treated with zVAD-fmk followed by LPS+ATP are protected from cell death (Fig. 2C).

To dissect how caspase-8 mediates activation of caspase-1, we reconstituted immortalized Ripk3−/− Casp8−/− (iR3−/−C8−/−) macrophages with either WT caspase-8 (WT C8) or mutant caspase-8 lacking the three critical aspartate residues required for autoprocessing (D3A C8). Critically, expression of WT C8 but not of D3A C8 restored both Yp-induced cell death and processing of caspase-1 in iR3−/−C8−/− cells (Fig. 2 F and G). Both forms of caspase-8 were expressed at similar levels in the reconstituted cells, but the D3A mutant lacked catalytic activity, consistent with observations that noncleavable forms of caspase-8 do not exhibit catalytic activity in the absence of forced dimerization (26) (Fig. S5 A and B). Noncleavable caspase-8 nonetheless retains some function, because it interacts with cFLIP to inhibit programmed necrosis and mediate protection from embryonic lethality (23, 27). Consistently, zVAD-fmk treatment abolished both caspase-8 and caspase-1 processing in response to Yersinia infection, but not in STm–infected cells (Fig. S5 C–E). These data indicate that zVAD-fmk does not block the autopsprocessing of caspase-1 that occurs in canonical inflammasomes but inhibits caspase-8–mediated caspase-1 processing.

Fig. 2. Caspase-1 activation and IL-18 secretion in response to Yersinia infection require caspase-8. (A and B) Lysates from BMDMs left uninfected (Ui), infected with Yp for 2 h, STm for 1 h, or LPS–primed for 3 h and ATP for 1 h (LPS+ATP) were probed for caspase-1 processing by Western analysis. (C) Percent cytotoxicity (LDH release) of BMDMs infected with Yp for 4 h, STm for 1 h, or treated with LPS+ATP as in A. (D) BMDMs treated with 4-hydroxytamoxifen (4-OHT) (50 nM) and infected as in A. (E) IL-18 assayed by ELISA from BMDMs left uninfected (Ui), infected with isogenic Yp 32777, YopJ C172A, or STm, or LPS–primed for 4 h. (F and G) iR3−/−C8−/− BMDMs were reconstituted with empty vector, WT caspase-8 (WT C8), or noncleavable mutant caspase-8 (D3A C8). (F) LDH release 4 h postinfection. (G) Caspase-1 processing by Western analysis, MOI of 50:1; 30 μM Nec-1 and 100 μM zVAD-fmk were used 3 h before infection where indicated. N.D., not detected. Error bars indicate mean ± SEM of triplicates and are representative of three or more independent experiments. **P < 0.0001.

Fig. 3. FADD is required for Yersinia–induced caspase-1 processing and cell death in the absence of RIPK3. (A and B) BMDM cell lysates were probed for caspase-1 by Western analysis after infection with ΔYopJ or Yp for 2 h, STm for 1 h, treated with LPS for 3 h and ATP for 1 h (LPS+ATP), or left uninfected (Ui). (C) Percent cytotoxicity (LDH release) of BMDMs left uninfected, infected with ΔYopJ or Yp for 4 h, STm for 1 h, or LPS+ATP as in A. N.D., not detected. Error bars indicate mean ± SEM of triplicates and are representative of three or more independent experiments. **P < 0.0001.
Altogether, these data indicate that the cleaved active caspase-8 homodimer mediates YopJ-induced processing of caspase-1.

Inhibition of NF-κB and MAPK signaling by YopJ is necessary for Yp-induced cell death (28), but whether this is responsible for RIPK1- and caspase-8-mediated caspase-1 activation is not known. Intriguingly, inhibition of both IkB kinase beta (IKKβ) and p38 MAPK induced RIPK1-dependent processing of caspase-8 and -1 and RIPK1-dependent death of ΔYopJ-infected cells (Fig. S6). Similarly to WT Yp infection, this cell death was largely unaffected in Ripk3−/− cells but was abrogated in the absence of both RIPK3 and caspase-8. Together, these data demonstrate that RIPK3-dependent inhibition of NF-κB and MAPK signaling triggers RIPK1/caspase-8-mediated caspase-1 activation.

FADD Is Required for Yp-Induced Caspase-1 Processing and Cell Death. These findings, together with previous observations that YopP induces formation of a caspase-8, RIPK1, FADD complex (16), and that FADD plays a role in apoptosis downstream of TRIF (14), suggested that FADD might play a role in YopJ-induced caspase-1 activation and cell death. Fadd−/− mice exhibit embryonic lethality that is reverted with loss of RIPK3 (29). As anticipated, YopJ-induced caspase-1 processing was indeed abrogated in Ripk3−/−Fadd−/− cells but not in Ripk3−/− cells (Fig. 3A), whereas STm-infected cells exhibited robust caspase-1 processing in the absence of RIPK3 and FADD (Fig. 3A and B). Consistent with the recent study by Gurung et al. (30), Ripk3−/−Fadd−/− BMDMs also showed a noticeable reduction in LPS+ ATP-induced caspase-1 processing and cell death (Fig. 3B and C). Moreover, proinflammatory cytokine production in response to LPS alone was reduced in BMDMs lacking RIPK3 and caspase-8 or FADD (Fig. S7), consistent with recent findings that pro-IL-1β expression is reduced in these cells (30–32). Whereas Gurung et al. (30) observed that caspase-8 contributes to LPS+ ATP-induced canonical inflammasome activation, unlike with FADD deficiency, we did not observe a consistent reduction in caspase-1 processing in Ripk3−/−Casp8−/− macrophages treated with LPS+ATP, and we were unable to detect caspase-8 processing in LPS+ATP-treated cells. The contribution of FADD and caspase-8 to LPS+ATP-induced caspase-1 activation may relate to differential effects on NLRP3 inflammasome priming.

YopJ-Induced Caspase-8 Activation Promotes Anti-Yersinia Immune Defense in Vivo. YopJ promotes dissemination of Yersinia to systemic tissues (33). However, increasing YopJ-mediated cytotoxicity paradoxically enhances immune clearance and reduces virulence (34). How this cytotoxicity contributes to host defense in vivo is not known. We therefore infected bone marrow chimera mice lacking both RIPK3 and caspase-8 in the hematopoietic compartment, because these cells cannot undergo YopJ-induced cell death. Critically, in contrast to B6, Ripk3−/−, or littermate control bone marrow (BM) chimeras, mice with a caspase-8–deficient hematopoietic compartment rapidly succumbed to infection with a Yp strain that is nonlethal to WT mice (35) (Fig. 4A and Fig. S8A). Surprisingly, Ripk3−/−Casp8−/− chimeric mice were deficient in production of serum IFN-γ, IL-6, and IL-1β despite a several-log increase in bacterial cfu in infected tissues on day 6 postinfection (Fig. 4B and C and Fig. S8B). Both innate and adaptive Ripk3−/−Casp8−/− cells failed to produce cytokines; inflammatory monocytes in the mesenteric lymph nodes (mLNs) and splenic natural killer (NK) cells were all defective in production of TNF-α, and IFN-γ at day 6 postinfection (Fig. 4D–G and Fig. SGC). In contrast, the chemokine MCP-1 was not affected in Ripk3−/−Casp8−/− chimeric mice (Fig. 4B). On day 3 postinfection, Ripk3−/−Casp8−/− chimeras had a higher proportion of TNF-producing inflammatory monocytes in the spleen (Fig. S9B), suggesting that caspase-8 deficiency in vivo does not lead to a failure of cell-intrinsic cytokine production per se. Cytokine production in the mLNs, where bacterial burdens were similar across genotypes, was defective on both days 3 and 5 (Fig. S9A–C).

These findings demonstrate that combined deficiency of RIPK3 and caspase-8 results in severe susceptibility to WT Yp infection, but whether this is due to a failure to respond to the activity of YopJ or to a more global failure to induce immune responses was not clear. Importantly, Ripk3−/−Casp8−/− bone marrow chimera animals were capable of surviving infection.
with ΔYopJ Yp, had significantly lower bacterial burdens of ΔYopJ in their spleen and liver, and partially recovered production of intracellular TNF (Fig. 5 A–C). Despite elevated bacterial burdens, in the Ripk3−/−/Casp8−/− chimeras these mice had smaller spleen lesions that lacked close association of neutrophils with bacteria, compared with control caspase-8–sufficient chimeras, which had extensive lesions containing bacterial colonies surrounded by visible cell debris and neutrophilic infiltrates (Fig. SD, Figs. S9 D and E, and Table S2). These data are consistent with reduced levels of in vivo death of Ripk3−/−/Casp8−/− cells. Intriguingly, ΔYopJ-infected Ripk3−/−/Casp8−/− chimeras showed significantly elevated numbers and extent of liver death compared with Yp-infected animals, suggesting that in the absence of NF-κB blockade the Ripk3−/−/Casp8−/− cells can generate protective inflammatory responses that correlate with increased cell death in vivo (Fig. 5 E–G). Together these findings demonstrate that YopJ-dependent triggering of caspase-8 plays a critical role in mediating anti-Yersinia immune defense in vivo and that loss of RIPK3 and caspase-8 results in dysregulated inflammatory responses and failure to control Yersinia.

Discussion

Caspase-1 and caspase-8 activation are generally induced by distinct stimuli. In contrast to caspase-1, which causes pyroptosis independently of other caspases, caspase-8 induces apoptosis through caspases-3 and -7. Caspase-8 can also mediate cleavage and secretion of IL-1β and IL-18 downstream of Fas/FasL signaling or endoplasmic reticulum stress (36, 37) and was recently reported to regulate expression of pro-IL-1β (31, 32). We now demonstrate that caspase-8, RIPK1, and FADD mediate caspase-1 activation in response to the Yersinia virulence factor YopJ, thus revealing an unanticipated integration of caspase-1 and caspase-8 death pathways in response to Yersinia infection. We cannot currently exclude the possibility that RIPK3 and caspase-8 function redundantly to mediate cell death, or that RIPK3-mediated necrosis contributes to host defense against Yersinia. Nevertheless, in caspase-8–sufficient cells, RIPK3 is dispensable for YopJ-induced cell death or caspase-1 activation, and in caspase-8 conditional knockout cells, RIPK3 is not sufficient for YopJ-induced caspase-1 processing. Under certain conditions, RIPK3 can mediate caspase-1 activation and cell death in response to LPS (24) or cIAP inhibitors (25). Thus, whereas TLR stimulation alone triggers RIPK3-dependent necrosis in caspase–8–deficient cells, our data demonstrate that YopJ triggers cell death and caspase-1 processing through caspase-8. Engagement of caspase-1 by both of these pathways may enable the release of caspase-1–dependent inflammatory signals by dying cells, even when this caspase-1 activation does not occur in a canonical inflammasome platform. Our data suggest a model (Fig. S10) whereby RIPK1, caspase-8, and FADD engage a cell death and caspase-1-activation pathway that promotes anti-microbial immune defense in response to pathogen-mediated interference with innate immune signaling pathways.

In addition to controlling cell-extrinsic death, caspase-8 also plays a role in NF-κB signaling and gene expression (31, 32, 38–39), potentially via cleavage of cFLIP (40, 41). However, YopJ-induced caspase-1 activation and cell death via caspase-8 and FADD are independent of LPS-induced priming, because they are triggered by NF-κB inhibition and are independent of ASC, NLRP3, and IFNAR. Indeed, LPS priming prevents YopJ-driven cell death (6, 11), either owing to up-regulation of NF-κB–dependent survival genes or inhibition of caspase-1 by YopM in LPS-primed cells (42).

A previous study by Zheng et al. (43) observed a role for ASC in caspase-1 activation in Y. pestis-infected cells, in contrast to our studies here. YopJ isoforms from different Yersinia isolates exhibit different degrees of NF-κB inhibitory activity, and this also correlates with their degree of ASC/NLRP3 inflammasome activation. An alternative possibility is the slightly different infection conditions in the Zheng et al. study, which infected cells for 20 min prior to gentamicin treatment. Future studies will determine the underlying basis for this apparent difference.

Finally, whether cell death or dysregulated cytokine production, or both, are directly responsible for the inability of caspase–8–deficient animals to clear Yersinia infection remains to be determined. The drop in cytokine production over the course of Yp infection in Ripk3−/−/Casp8−/− chimeric mice may be due to increased blockade of signaling pathways as a consequence of progressively greater bacterial burden over time. Caspase-8–mediated cell death and caspase-1 activation in response to blockade of innate signaling may thus mobilize bystander cells for rapid cytokine production and/or phagocytosis of pathogen-associated cell debris.

Materials and Methods

Cell Culture and Infections. BMDMs were grown and infected as previously described (11). Briefly, Yersinia were grown overnight with aerobiosis in 2×YT broth at 26 °C. On the next day, Yersinia were diluted into inducing media and grown with aeration for 1 h at 26 °C followed by 2 h at 37 °C. Salmonella was grown overnight in LB at 37 °C with aeration, then diluted into high-salt LB and grown standing at 37 °C. Cells were infected at a multiplicity of infection (MOI) of 20:1, centrifuged at 200 × g for 5 min, gentamicin (100 μg/ml) was added 1 h after infection, and cells/supernatants were harvested at indicated time points. Caspase processing in cell lysates was analyzed by Western blotting, percent cytotoxicity was assayed by lactate dehydrogenase (LDH) release or propidium iodide (PI) uptake, and release of cytokines was analyzed by ELISA as described in SI Text. All statistical analyses were performed using the two-tailed unpaired Student t test.

Fig. 5. RIPK3/caspase-8–deficient mice survive ΔYopJ infection and partially recover intracellular cytokine production. Lethally irradiated B6.5L mice were reconstituted with B6, Ripk3−/−, or Ripk3−/−/Casp8−/− BM and orally infected with 8–10 × 10^8 cfu Yersinia (Yp) or ΔYopJ Yersinia (ΔYopJ) per mouse. Mice were assayed for (A) survival, (B) bacterial loads per gram of tissue, and (C) percent TNFα–infected monocytes in mLNS by flow cytometry. (D and E) Representative images of H&E-stained (×200) and extracellular bacterial colonies (arrows) in infected mice. (Scale bars, 50 μm.) (F and G) Quantification of number and extent of lesions. (B) Day 5. (C) Representative plots from pooled data on days 5 and 6 (±SEM). (D–G) Day 6. Dagger denotes five dead or moribund mice not harvested for cfu. Dotted lines represent limit of detection. Solid lines represent means (histology) or geometric means (cfu). Flow cytometry plots were gated on live CD45.2+, CD11c+, CD11b+, Ly6G−, Ly6C− cells. **P < 0.01, WT vs. ΔYopJ infected Ripk3−/−/Casp8−/− monocytes. R3C8, Ripk3/Casp8. Data representative of two or more independent experiments.
Animal Infections. Mice (fasted 12–16 h) were orally inoculated with 8–10 × 10^7 Yersinia (32777). Tissues and sera were collected on days 3, 5, and 6. Tissues were processed and plated on LB plates containing ingar (2 μg/mL) to determine bacterial loads (colony-forming units per gram). Levels of serum cytokines were assayed by LumineX. Cells from spleens and mesenteric lymph nodes were cultured in the presence of brefeldin A and monensin for 5 h, stained for surface and intracellular cytokines, and analyzed by flow cytometry as described in SI Text. Spleen sections were fixed and stained for H&E. All animal studies were performed in accordance with University of Pennsylvania Institutional Animal Care and Use Committee approved protocols.

23. Acknowledgments. We thank Gordon Ruthel of the PennVet Imaging Core, Flow Cytometry and Cell Sorting Core, and Human Immunology Core for technical assistance. We thank Vishva Dixit (Genentech) for Ripk3−/− mice and Razq Hakeem (University Health Network) for Casp8−/− mice. Junying Yuan and Tiffany Hong (Harvard University) provided Casp1−/− BM; Thiromala Devi-Kanneganti (St. Jude Children’s Research Hospital) provided Casp3−/− and Casp7−/− BM; Casp8−/−Xylast-Cre BM was provided by Stephen Hedrick (University of California at San Diego); and Jim Bliska (State University of New York, Stony Brook) provided Yersinia strains. We thank Lance Peterson for critical reading. This work was supported in part by a Pilot Award from the University Research Foundation and National Institutes of Health Grants AI109267 and AI103062 (to I.E.B.).
Supporting Information

Philip et al. 10.1073/pnas.1403252111

SI Text

Cell Culture and Infection Conditions. Bone marrow-derived macrophages (BMDMs) were grown as previously described (1) in a 37 °C humidified incubator in DMEM supplemented with 10% FBS, Hepes, sodium pyruvate (complete DMEM), and 30% L929 supernatant for 7–9 d. Receptor interacting protein kinase 3-deficient (Ripk3Δ−) mice are N7 generation back-crossed and were provided by Vishva M. Dixit, Genentech, San Francisco. Caspase-8 (Casp8)−/− mice were provided by Razq Hakem, University Health Network, Toronto; Fas-associated death domain protein-deficient (Fadd−/−) mice were provided by Tak W. Mak, University Health Network, Toronto; and Ripk1−/− mice were provided by Micheile Kellihier, University of Massachusetts, Boston. Ripk3−/−, Casp8−/− mice in these studies were back-crossed six times and a detailed SNP analysis of Ripk3Δ−/− Fadd−/− mice indicated that 90–94% of loci are B6 in any given mouse. Bones from Casp8−/− and Casp8−/− mice were provided by T. Devi-Kanneganti, St. Jude Children’s Research Hospital, or purchased from Jackson Laboratories. Bones from Tnf−/− mice were provided by Sankar Ghosh, Columbia University, New York, and bones from MyD88−/− mice were provided by Ruslan Medzhitov, Yale University, New Haven, CT. Casp8xLysM-Cre bones were provided by Stephen Hedrick, University of California at San Diego, La Jolla. Fetal liver-derived macrophages (FLDMs) were grown from E12–14 livers in complete DMEM and 50% L929 supernatant for 7–9 d. Sixteen to twenty hours before infection cells were replated into 96-, 48-, 24-, or 12-well dishes in complete DMEM containing 10% L929 supernatant. Bacterial strains are described in Table S1. Yersinia were grown overnight with aeration in 2×YT broth at 26 °C. The bacteria were diluted into fresh 2×YT containing 20 mM sodium oxalate and 20 mM MgCl2 (inducing media). Bacteria were grown for 1 h at 26 °C followed by 2 h at 37 °C. Salmonella were grown overnight in LB medium at 37 °C with aeration, diluted into fresh LB containing 300 mM NaCl, and grown standing at 37 °C for 3 h. Bacteria were washed three times with prewarmed DMEM, added to the cells at a multiplicity of infection (MOI) of 20:1 unless otherwise indicated, and spun onto the cells at 1,000 rpm for 5 min. Cells were incubated at 37 °C for 1 h post-infection followed by addition of 100 μg/mL gentamicin. Necrostatin-1 (Nec-1) and Z-VAD-fmk were added 2 or 3 h before infection [30 μM or 60 μM Nec-1 (Calbiochem), 100 μM ZVAD-fmk-001 (R & D Systems), 0.5 μg/mL Cytochalasin-D (Sigma), and 25 mM N-acetylcyesteine (Sigma)]. IκB kinase beta (IKKβ) and p38 inhibitors were added 1 h before infection (BMS 345541 and SB202190; Millipore).

4-Hydroxytamoxifen Treatment. The 4-hydroxytamoxifen (4-OHT) (50 nM, 98% pure Z-form; Sigma) was added on days 3 and 5 to indicated BMDMs in complete DMEM supplemented with 30% L929 supernatant. Cells were replated on day 7 and infections were performed as described above on day 8.

Western Blotting. All Yersinia infections, unless otherwise indicated, were performed with wild type Yersinia pseudotuberculosis strain IP2666 (YP) or YopJ-deficient Yersinia pseudotuberculosis IP26 (ΔYopJ). Cell lysates were analyzed by Western blotting as described in ref. 1. Briefly, cells were lysed in 20 mM Hepes, 150 mM NaCl, 10% glycerol, 1% Triton X-100, and 1 mM EDTA. Lysates were mixed with protein loading buffer, boiled, and centrifuged and 20% of the total cell lysate loaded onto 4–12% NuPAGE gels (Invitrogen). Proteins were transferred to PVDF membrane (Millipore) and blotted with rabbit anti-mouse caspase-1 antibody (sc-514; Santa Cruz Biotechnology), rat anti-mouse caspase-8 (clone 1G12, ALX 804-447-C100; Enzo Life Sciences), or mouse anti-mouse β-actin (Sigma). Secondary antibodies were goat anti-rabbit, goat anti-rat (Jackson Immunoresearch), or anti-mouse HRP (Cell Signaling Technology). Concentrations for lysis were calculated based on vol/vol.

Generation of Immortalized Cell Line. Freshly isolated Ripk3−/− Casp8−/− bone marrow was infected with the v-myec-v-raf-expressing J2-Cre retrovirus (2) and differentiated in 15% L929 supernatant. After 20 d in culture macrophages were weaned off L929 and passaged in complete DMEM.

Viral Transductions. WT C8 expression was accomplished by cloning full-length murine caspase-8 into the pBabe-Puro retroviral vector upstream of the T2A ribosomal skipping sequence followed by enhanced GFP. Mutations in murine D3A C8 were inserted at D387A, D397A, and D400A using the QuikChange Site Directed Mutagenesis kit (Agilent). D3A C8 was cloned into the pRRL-Puro lentiviral vector upstream of the T2A ribosomal skipping sequence followed by enhanced GFP. Stable expression was achieved by retro- or lentiviral transduction of iR3−/− C8−/− cells followed by two rounds of sorting by FACS to enrich for GFP+ cells. Plasmids were a gift from AO.

Cell Death Assays. Lactate dehydrogenase release. All Yersinia infections, unless otherwise indicated (as in Fig. 1G and Figs. S1B and S6) were performed with IP2666 (YP) or IP26 (ΔYopJ). BMDMs were seeded into 96-well plates at a density of 7 × 104 cells per well in complete DMEM containing 10% L929 supernatant. Cells were infected as described above and supernatants harvested at indicated times postinfection. Lactate dehydrogenase (LDH) release was quantified using the Cytotox96 Assay Kit (Promega) according to the manufacturer’s instructions. Cytotoxicity was normalized to Triton (100%) and LDH release from uninfected/untracted cells was used for background subtraction.

Propidium iodide uptake was analyzed by flow cytometry and confocal microscopy. Cells were seeded in 12-well suspension dishes at a density of 5 × 105 cells per well 16–20 h prior to infection. Cells were harvested with cold PBS at indicated times, washed twice with PBS, and stained with propidium iodide (PI) (Calbiochem), washed twice with PBS, run on an LSR Fortessa, and analyzed using FlowJo (TreeStar) software.

Kinetics of PI uptake was analyzed by time-lapse confocal microscopy. Twelve-well chamber slides (ibidi) were coated with 1 mg/mL poly-l-lysine (Sigma) at 4 °C 1 d before seeding cells. Cells were seeded at a density of 8–10 × 104 cells per well 16–20 h before infection. Four hours before infection, cells were loaded with Cell Tracker Green (Invitrogen) according to manufacturer’s instructions, washed once, and replenished with fresh media. At time of infection, PI was added and PI uptake was analyzed using the inverted Leica DMI4000 based Yokagawa CSUX-1 spinning disk confocal microscope in a 37 °C humidified chamber (Pent Vet Imaging Core) over indicated time points.

ELISAs and Luminex. BMDMs were pretreated with 50 ng/mL Escherichia coli LPS (Sigma) for 3 h before bacterial infection as described above, and supernatants were harvested 4 h post-infection. Release of proinflammatory cytokines was measured by ELISA using capture and detection antibodies against IL-6, IL-12, IL-1α (BD Pharmingen), or IL-1β (e-Bioscience). To
detect IL-18 by ELISA (MBL International) from *Yersinia*-infected cells. BMDMs were infected (with LPS priming where indicated) and supernatants were harvested 4 h postinfection. Magnetic 20-plex Lumines (Invitrogen) was performed for sequentially at the University of Pennsylvania Human Immunology Core to quantify cytokines and chemokines in mouse serum.

Caspase-8 Activity Assay. BMDMs were seeded into 96-well white-walled plates at a density of 7 × 10⁴ cells per well in complete DMEM containing 10% L929 supernatant. Cells were infected as described above with Ye or YeP for 2 h. Media was aspirated and a 1:1 mix of PBS and Caspase-Glo 8 reagent+buffer (Promega) was added as per the manufacturer’s protocol. Plates were allowed to shake at 300 rpm for 40 min before luminescence was read.

Mice. C57BL/6.SJL mice were obtained from Jackson Laboratories. All experiments were performed under Institutional Animal Care and Use Committee (IACUC) approved protocols and in accordance with the guidelines of the IACUC of the University of Pennsylvania. Six- to eight-week-old C57BL/6.SJL mice were lethally irradiated with 1,100 rads and 2–5 × 10⁸ Ripk3⁻/⁻Casp8⁻/⁻, Ripk3⁻/⁻Casp8⁺/⁺, Ripk3⁺/⁻Casp8⁻/⁻ (provided by D.R.G.) and C57BL/6 (Jackson Laboratories) bone marrow (BM) cells were transferred i.v. BM chimeras were allowed to reconstitute for 8 to 10 wk. Mice were starved for 12–16 h and infected orally with 8–10 × 10⁷ *Yersinia* (32777). Mice were killed and tissues and sera were harvested on days 3, 5, 7, and 7 postinfection, as indicated. Bacterial load was determined by plating dilutions of tissue homogenates on LB+irgasan plates and serum cytokines were measured by sandwich ELISA for IFN-γ (eBioscience).

Flow Cytometry. Spleens and mesenteric lymph nodes were isolated, red blood cells were lysed, and plated in complete-DMEM containing brefeldin A (Sigma) and monensin (BD) in a 37 °C humidified incubator for 5 h. Cells were washed with FACS buffer (PBS with 1% BSA and 2 mM EDTA), fixed, and permeabilized (BD) according to manufacturer’s instructions and stained for CD19, NK1.1, CD45.1, CD45.2, B220 (BD), CD11b, viability (Invitrogen), Ly6C, CD3, CD11c, TNF, IFN-γ (eBiosciences), and Ly6G (BioLegend). Samples were run on an LSRFortessa and analyzed using FlowJo (TreeStar) software.

Histopathology. Spleens and livers were fixed and stained for hematoxylin and eosin. Sections were quantified by a blinded pathologist according to the metric in Table S2.

Detection of Germ-Line Single-Nucleotide Variations and Small Insertion/Deletion. We downloaded whole-genome sequencing data from the Mouse Genomes Project of Wellcome Trust Sanger Institute (3). Using a pipeline that was initially developed for detecting somatic mutations using paired tumor-normal sample, we identified the germ-line single-nucleotide variations (SNVs) of the three 129 strains (129P2, 129S1, and 129S5) by running a paired SNV analysis using C57B6 as the reference sample. The initial variant calls were generated using variation detection module of Bambino (4) with the following parameters: -min-flanking-quality 15 -min-alt-allele-count 2 -min-minor-frequency 0 -broad-min-quality 10 -mmf-max-hq-mismatches 15 -mmf-min-quality 15 -mmf-max-any-mismatches 20 -unique-filter-coverage 2 -min-mapq 1. A postprocess pipeline filters SNVs in regions with low-quality regions and remaps (using the program BLAT) and realigns (using the program SIM) the reads harboring variant allele to the mouse mm10 genome to remove additional false calls. The validation rate for human cancer genome analysis is about 95% (5), and that of mouse exome sequencing data are ~90% (6).

Statistics. All statistical analyses were performed using the twotailed unpaired Student t test or Mann-Whitney U test, where indicated.

Fig. S1. Caspase-1 contributes to *Yersinia*-induced cell death and neither ASC, NLRC4, NLRP3, nor IFNAR is required for *Yersinia*-induced death. (A) B6, Casp1^{−/−}Casp11^{−/−}, or Casp11^{−/−} BMDMs were infected with Yp and LDH release was measured at indicated time points. (B) Percent cytotoxicity (LDH release) from B6 and 129/SvImJ BMDMs infected with Yp for 4 h. (C) Cell lysates from B6 and 129/SvImJ BMDMs were probed for caspase-1 processing by Western analysis at 0, 60, and 90 min postinfection with Yp. (D) Percent cytotoxicity (LDH release) from B6 and Asc^{−/−}Nlrc4^{−/−} BMDMs at indicated time points. (E) Cell lysates from Ifnar^{−/−}, Nlrp3^{−/−}, and Asc^{−/−} BMDMs were probed for caspase-1 processing at 0, 60, and 120 min postinfection with *Yersinia*. (F) B6 BMDMs were pretreated with 0.5 μg/mL cytochalasin D (CytD) or 25 mM N-acetylcysteine (NAC) before infection with *Yersinia* (Yp) or *Yersinia* expressing the type-three secretion system on a plasmid (T3SS/mCD1). Cell lysates were probed for caspase-1 processing at 60 and 120 min postinfection. (G) B6, Casp3^{−/−}, and Casp7^{−/−} BMDMs were infected with WT *Yersinia* (Yp), YopJ-deficient Yp (ΔYopJ) for 2 h, or *Salmonella* (STm) for 1 h, or were primed with LPS (50 ng/mL) for 3 h followed by ATP (2.5 mM) for 1 h, or left uninfected (UI). Cell lysates were assayed for caspase-1 processing by Western analysis. (H) B6, Casp3^{−/−}, and Casp7^{−/−} BMDMs were infected with Yp and LDH release was measured at indicated time points. Error bars indicate mean ± SEM of triplicates. ***P < 0.0001.
Fig. S2. YopJ induces caspase-1 activation and cell death during Yersinia infection is TRIF-dependent and reduced cytokine production during Yersinia infection is not due to cell death. (A–B) B6 BMDMs were loaded with Cell Tracker Green, washed, and treated with Nec-1 (30 μM) 3 h before infection with Yersinia as described in Fig. 1. PI uptake was measured by time-lapse confocal microscopy. (A) Representative images at indicated times, 10× magnification, (B) average percentage PI+ cells from five fields per time point. ~500 cells per field. (C and D) Percent cytotoxicity (LDH release) from BMDMs uninfected or infected with the strains of Yersinia ΔYopJ and IP2666, for 4 h, Salmonella (STm) for 1 h, or were primed with LPS (50 ng/mL) for 3 h followed by ATP (2.5 mM) for 1 h (Table S1). (C) B6, MyD88−/−, and Trif−/− BMDMs. (D) Ripk1+/+ and Ripk1−/− FLDMs. (E) Percent cytotoxicity (LDH release) from BMDMs infected with WT Yersinia (Yp), YopJ-deficient Yp (ΔYopJ), or left uninfected (UI) for 4 h or infected with Salmonella (STm) for 1 h. (F and G) IL-6, IL-12p40/70 assayed by ELISA on cells treated as in E. Cells were treated with LPS (50 ng/mL), Nec-1 (30 μM), or zVAD-fmk (100 μM) 3 h before infection where indicated. Error bars indicate mean ± SEM of triplicates. ***P < 0.0001.
Fig. S3. Caspase-8, cFLIP, and RIPK3 loci are identical in B6 and 129 mice. Whole-genome sequencing data were downloaded from the Sanger Center for inbred mouse strains B6, 129P2, 129S1, and 129S5. A modified version of Bambino variant detector was run, using C57BL/6 as the reference sample for comparison, to call SNVs. Only SNVs with a variant allele frequency (VAF) >90% based on next-generation sequencing read counts were used in this analysis. All SNVs (including synonymous and nonsynonymous) ±10 genes on either side of Casp8 or Ripk3 are reported here.
Fig. S4. YopJ-dependent caspase-1 processing requires caspase-8. (A) Caspase-1 and -8 processing in cell lysates of BMDMs and (B) caspase-8 activity measured 2 h postinfection with YeP− and Ye (Table S1). (C) Percent cytotoxicity (LDH release) in cells treated as in Fig. 2D. (D) 4-OHT−treated (50 nM) BMDMs of indicated genotypes were infected with Salmonella (1 h) and cell lysates were probed for caspase-1 processing by Western analysis. Casp8f/f LysM-Cre, Casp8f/f×LysM-Cre. Nec-1 (30 μM) and 100 μM zVAD-fmk were used 3 h before infection where indicated. Error bars indicate mean ± SEM of triplicates.
Fig. S5. Active caspase-8 is required for *Yersinia*-induced caspase-1 processing. (A) Caspase-8 processing by Western blotting and (B) caspase-8 activity from immortalized *Ripk3*−/− and *Casp8*−/− BMDMs reconstituted with empty vector, WT caspase-8 (WT C8), or noncleavable caspase-8 (D3A C8) and infected with the indicated *Yersinia* strains as in Fig. 2F and G, MOI of 50:1. (C–E) B6 BMDM cell lysates were probed for caspase-1, -8, and -3 processing 2 h postinfection with *Yersinia* strains and 1 h postinfection with *Salmonella*. Nec-1 (30 μM) and 100 μM zVAD-fmk were used 3 h before infection where indicated. Error bars indicate mean ± SEM of triplicates.

Fig. S6. *YopJ*-deficient *Yersinia*-induces caspase-8–dependent caspase-1 processing in the presence of NF-κB and MAPK inhibitors. B6, *Ripk3*−/− (*R3*−/−), or *Ripk3*−/− *Casp8*−/− (*R3*−/− *C8*−/−) BMDMs were infected with Δ*YopJ*. Nec-1 (60 μM) and IKKβ and p38 inhibitors (5 μM) were used 2 h and 1 h before infection, respectively. Cell lysates were assayed for (A) caspase-1 and (B) caspase-8 processing by Western analysis 4 h postinfection. (C) Percent cytotoxicity was measured by LDH release 8 h postinfection. Error bars indicate mean ± SEM of triplicates. ***P < 0.0001.
Fig. S7. Ripk3^{−/−}Casp8^{−/−} and Ripk3^{−/−}Fadd^{−/−} BMDMs have a defect in LPS priming. BMDMs were primed with LPS (50 ng/mL) 3 h before infection with *Yersinia* (YopJ C172A or isogenic 32777, Yp) or *Salmonella,* or treated with ATP (2.5mM) for 4 h. Supernatants were assayed for caspase-1-dependent and -independent cytokine secretion by ELISA. (A and C) IL-1α and IL-1β; (B and D) IL-6 and IL-12p40/70. Error bars indicate mean ± SEM of triplicates.
Fig. S8. RIPK3-deficient mice are not more susceptible to *Yersinia* infection and exhibit WT levels of IFN-γ production from adaptive cells. Lethally irradiated B6.SJL mice were reconstituted with B6, *Ripk3*−/−, or *Ripk3*−/−*Casp8*−/− BM and orally infected with 8–10 × 10⁷ cfu Yp per mouse as in Fig. 4. Mice were monitored for (A) survival and (B) bacterial loads per gram of tissue at day 6 postinfection. Dagger denotes nine dead mice not harvested for cfus. Dotted lines represent limit of detection. Solid lines represent means or geometric means (cfu). (C) Cells were gated on live CD45.2⁺, CD3⁺, CD4⁺, or CD8⁺ cells.
RIPK3/caspase-8–deficient mice experience faster bacterial dissemination and dysregulated cytokine production even at early time points during *Yersinia* infection. Lethally irradiated B6.SJL mice were reconstituted and infected as in Fig. 4. (A) Bacterial loads per gram of tissue on days 3 (Upper) and 5 (Lower) postinfection. (B and C) Percent TNF⁺ inflammatory monocytes in (B) spleens and (C) mesenteric lymph nodes were analyzed by flow cytometry. (D) Representative images of spleen in naïve and *Yersinia*-infected Ripk3⁻/⁻Casp8⁺/⁺ and Ripk3⁻/⁻Casp8⁻/⁻ chimeric mice at days 3 and 5, showing lesions of necrosuppurative splenitis (dashed white lines) and extracellular bacterial colonies (arrows) in infected mice. H&E staining. (Scale bars, 50 μm.) (E) Quantification of lesion severity in spleens. Dagger denotes three dead mice not harvested for cfus. Dotted lines represent limit of detection. Solid lines represent geometric means. Flow cytometry plots were gated on live CD45.2⁺, CD11c⁻, CD11b⁺, Ly6G⁻, and Ly6Ch⁺. R3C8, Ripk3Casp8.
Fig. S10. *Yersinia* YopJ induces caspase-8/RIPK1/FADD-dependent caspase-1 processing and cell death via inhibition of NF-κB and MAPK. *Yersinia* secretes YopJ into the host cytosol, which inhibits NF-κB and MAPK signaling. TRIF-dependent signals activate FADD/RIPK1, which can trigger caspase-8-dependent caspase-1 activation and cell death (pyroptosis). In the absence of caspase-8, *Yersinia* induces RIPK3-dependent necrosis. This pathway of Yp-induced cell death may enable the host to override inhibition of cytokine production by YopJ and promote anti-bacterial immune responses.

Table S1. Bacterial strains used in this work

<table>
<thead>
<tr>
<th>Strain name or genotype</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP2666 (Yp)</td>
<td>WT Yersinia pseudotuberculosis serogroup O:3 strain</td>
<td>1</td>
</tr>
<tr>
<td>32777</td>
<td>WT Y. pseudotuberculosis serogroup O:1 strain (previously known as IP2777)</td>
<td>2</td>
</tr>
<tr>
<td>IP26 (ΔYopJ)</td>
<td>IP2666 YopJ-deficient strain</td>
<td>3</td>
</tr>
<tr>
<td>YopJC172A</td>
<td>32777 mutant YopJ C172A</td>
<td>4</td>
</tr>
<tr>
<td>T3SS/mCD1</td>
<td>Yp cured of virulence plasmid, reconstituted with modified virulence plasmid from Yersinia pestis lacking all known effectors but expressing function type III secretion system</td>
<td>5</td>
</tr>
<tr>
<td>8081 (Ye)</td>
<td>WT Yersinia enterocolitica serogroup O:8</td>
<td>6</td>
</tr>
<tr>
<td>8081c (YeP−)</td>
<td>8081 virulence plasmid cured</td>
<td>6, 7</td>
</tr>
<tr>
<td>SL1344</td>
<td>WT Salmonella enterica serovar Typhimurium</td>
<td>8</td>
</tr>
</tbody>
</table>

Description of strain name or genotype, abbreviations, and source or reference information for all bacterial strains used.

Table S2. Histopathology scoring scheme

<table>
<thead>
<tr>
<th>Score</th>
<th>No. of lesions</th>
<th>Lesion extent</th>
<th>Bacterial colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>0–9</td>
<td>Small</td>
<td>Rare, small</td>
</tr>
<tr>
<td>2</td>
<td>10–19</td>
<td>Medium</td>
<td>Infrequent, small to medium</td>
</tr>
<tr>
<td>3</td>
<td>20–30</td>
<td>Medium to large, infrequent confluence</td>
<td>Frequent, small to medium</td>
</tr>
<tr>
<td>4</td>
<td>>30 or marked confluence</td>
<td>Medium to large, frequent confluence</td>
<td>Frequent, large or coalescing</td>
</tr>
</tbody>
</table>

Rubric that describes the scoring scale for lesion size and number of lesions in spleens and livers of naïve or infected mice.