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ABSTRACT. The question of how the probabilistic opinions of different individuals should be ag-
gregated to form a group opinion is controversial. But one assumption seems to be pretty much
common ground: for a group of Bayesians, the representation of group opinion should itself be a
unique probability distribution (Madansky, 1964; Lehrer and Wagner, 1981; McConway, 1981; Bor-
dley, 1982; Genest et al., 1986; Genest and Zidek, 1986; Mongin, 1995; Clemen and Winkler, 1999;
Dietrich and List, 2014; Herzberg, 2014). We argue that this assumption is not always in order.
We show how to extend the canonical mathematical framework for pooling to cover pooling with
imprecise probabilities (IP) by employing set-valued pooling functions and generalizing common
pooling axioms accordingly. As a proof of concept, we then show that one IP construction satisfies
a number of central pooling axioms that are not jointly satisfied by any of the standard pooling
recipes on pain of triviality. Following Levi (1985), we also argue that IP models admit of a much
better philosophical motivation as a model of rational consensus.

1. INTRODUCTION

The problem of opinion aggregation is “the problem of determining a sensible formula for rep-
resenting the opinions of a group” (Genest et al., 1986). Representations of group opinion are
important in a number of contexts, from scientific advisory panels (on climate change, for ex-
ample), to joint efforts in scientific inquiry, to decision making in various kinds of groups. In a
Bayesian setting, group consensus is particularly important from a theoretical standpoint. The
received view is that probabilistic opinions are subjective (Ramsey, 1931; Savage, 1954; de Finetti,
1964). Forms of intersubjective agreement have been sought to replace the surrendered notion of
objectivity (Genest and Zidek, 1986; Nau, 2002). Probabilistic opinion pooling is one proposal for
finding such consensus. It is widely assumed that, for a group of Bayesians, a representation of
group opinion should take the form of a (single) probability distribution.The central position of
this essay is that, in certain philosophically interesting and important cases, such an assumption is
not always appropriate.

At the end of their review article on pooling, Dietrich and List mention other approaches that
“redefine the aggregation problem itself” (2014, p. 20). According to them, one such approach is
the aggregation of imprecise probabilities." Of the few accounts of aggregating probabilities that

Date: November 4, 2016.

Several people gave us very helpful feedback on the ideas in this paper. Thanks to Robby Finley and Yang Liu
for their comments on a presentation given to the Formal Philosophy reading group at Columbia University, and
to members of the audiences at the Columbia Graduate Student Workshop, the Probability and Belief Workshop
organized by Hans Rott at the University of Regensburg, and a presentation at CUNY organized by Rohit Parikh. We
are grateful to Arthur Heller, Michael Nielsen, Teddy Seidenfeld, Reuben Stern, and Mark Swails for their excellent
comments on drafts of the paper. We would like to especially thank Isaac Levi for extensive discussion of the content
of this paper and comments on drafts and a presentation. Finally, thanks to both the editor and the anonymous
referee. The referee provided engaged and thorough feedback that has undoubtedly improved the essay in a number
of ways.

Here we use IP as a general term, abstracting from the important distinction Isaac Levi makes between what
he calls imprecise and indeterminate probability, or what Walley calls the Bayesian sensitivity analysis and direct
interpretations, respectively. Roughly speaking, according to the first interpretation, while an agent is normatively
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deal with imprecision, many tend to focus on cases in which the individual opinions are already
imprecise. And such accounts do not proceed by generalizing the pooling framework, axioms, etc.
(Moral and Del Sagrado, 1998; Nau, 2002). A general account of probabilistic consensus should
cover cases in which probabilities are imprecise at the level of the individual (a topic to which we
return towards the end of the paper). However, our aim is to call into question the assumption
that group opinion should be represented by a single probability distribution when precision holds
at the level of the individuals. In this effort, we extend a line of argument that uses limitative
results concerning aggregation—results demonstrating the impossibility of jointly satisfying a set
of formal pooling criteria for precise aggregation methods—as a springboard into IP (Walley, 1982;
Seidenfeld et al., 1989). That is, the limitations of precise pooling motivate IP in the sense that
certain IP models do satisfy desiderata for “group” opinion that precise models do not.

After presenting the basic mathematical framework for probabilistic opinion pooling, we review
some of the central limitative results (Section 2). One contribution of the present essay is gener-
alizing the pooling framework, framing pooling with imprecise probabilities in the mathematical
language common in research on probability aggregation with precise probabilities (Sections 4 and
5). The particular IP model that we primarily focus on in this paper, as a proof of concept, is
presented in Section 4 (in a sense that will be made clear and precise, our case for considering
IP models of pooling does not rise and fall with this particular format). Even in cases in which
individual probabilities are precise, demanding that the output of an aggregation method be a
single probability function is overly restrictive. As we show, representations of group opinion in
terms of sets of probability functions have some very nice features. On the one hand, IP allows
for a plausible philosophical account of rational consensus (Section 3). On the other hand, the
construction we study satisfies a number of the central pooling axioms that are not jointly satisfied
by any of the standard, precise pooling recipes on pain of triviality (Sections 5 and 6). We close
by considering some potential objections (Section 7).

2. POOLING

A general framework for aggregating the probabilistic opinions of a group to form a collective
opinion is that of pooling. Formally, a pooling method for a group of n individuals is a function

F:P"—>P
mapping profiles of probability functions for the n agents (or simply the n distributions under
consideration), (py,...,p,), to single probability functions intended to represent group opinion,
F(py,...,p,).- The probabilities are assigned to events, which we represent as subsets of a sample
space, 2. We assume that €2 is countable. The agenda, or the set of events under consideration,
is assumed to be an algebra &/ of events over {2, that is, a set of subsets of  closed under
complementation and finite unions (in the general case, closure under countable unions yields a
o-algebra).? A function p : Q — [0,1] is a probability mass function (pmf) iff Y. .qp(w) = 1.
Abusing notation, we can define a probability measure, p, on general events for a given pmf by

may not be precisely elicited or introspected. On the second interpretation, imprecision is a feature of the credal
state itself and is not attributable to imperfect elicitation or introspection. It is possible, of course, for a credal state
to be imprecise in both senses, that is, an indeterminate credal state could be incompletely elicited.

2For completeness, we include the probability axioms. A probability function is a mapping p : &/ — R that
satisfies the following conditions:

(i) p(A) =0 for any Ae o

(i) p(©Q) =1L

(iii) p(Au B) = p(A) + p(B) for any A, B € & such that An B = (.
If, in addition, & is a o-algebra and p satisfies the following condition, p is called countably additive:

(iv) If{A,}%_; € & is a collection of pairwise disjoint events, then

p(UrZy An) = 201 P(An).

In this paper, we assume countable additivity for convenience, not because we take it to be rationally mandatory.
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P(E) = > cpP(w). Pooling can be formulated in terms of pmfs, and we will appeal to pmfs in
discussing geometric pooling functions and the external Bayesianity constraint below.

Various interpretations of pooling are proposed in the literature. Wagner, for example, offers the
following (2009, pp. 336-337):

(1) A rough summary of the current probabilities of the n individuals;

(2) a “compromise” adopted by the individuals for the purpose of group decision making;

(3) a rational consensus to which the individuals revise their probabilities after discussion;

(4) the opinion a decision maker external to the group adopts upon being informed of the n expert
opinions in the group;

(5) the opinion an individual in the group adopts upon being informed of the n — 1 opinions of his
“epistemic peers” in the group.

These five interpretations do not exhaust the possibilities. Our target interpretation is rational
consensus, adopted either for the sake of the argument (a compromise) in order to perform some
task in group inference or decision making (2) or genuinely by individual group members (3, 5).
However, the account we consider could also be used by a decision maker external to the group.

2.1. Criteria for Pooling Functions. What properties should a pooling function have? We
review some of the most popular properties discussed in this connection. It is important to consider,
for each property, the extent to which it is normatively compelling for a particular interpretation
and use of pooling functions. Surveys of the material presented here include Simon French’s (1985),
Genest and Zidek’s (1986), and Dietrich and List’s (2014).

McConway (1981) and Lerher and Wagner (1981) introduce a convenient property of pooling
functions called the strong setwise function property and strong label neutrality by the respective
authors. The property has it that the individual probabilities for an event—and not the entire
distributions of each individual—are all that is required to determine the collective probability of
that event.

Strong Setwise Function Property. There exists a function G : [0,1]" — [0, 1] such that, for
every event Aa F(pla apn)(A) = G(pl(A>7 apn(A))

What case can be made for the strong setwise function property (SSFP) as a pooling norm? SSFP
can be seen as a probabilistic analogue of the independence of irrelevant alternatives constraint in
the social choice literature. Consider two profiles (py, ..., p,,) and (pj,...,p,,). Suppose that, for
some event A, p;(A) = p}(A) for i = 1,...,n, but the two profiles differ on some other event (so for
pooling probabilities for A, “irrelevant” parts of the probability functions differ). It can happen that
F(py, - Pp)(A) # F(p,...,p,)(A) despite the fact that (p;(A),...p,(4)) = (P1(4),...,p,(A)).
That is, the “consensus” probabilities for A differ for the two profiles despite no change in individual
opinions concerning A. So, the pooled probability for A is not a function merely of the individual
probabilities for A. For such an F', no function G exists because such a function would have to
map one profile of values in [0, 1]" to two distinct outputs in [0, 1]. Admittedly, such a case for the
normative status of SSFP is incomplete.

Many of the axioms proposed in the literature on pooling require that some property of the
individual probability functions be preserved under pooling. When the algebra contains at least
three events, one such preservation property follows immediately from SSFP, as McConway observes
(1981, Theorem 3.2).

Zero Preservation Property. For any event A, if p,(A) = 0 for ¢ = 1,...,n, then F(py,...,p,,)(4)
= 0.

As Genest and Zidek remark, the zero preservation property (ZPP) is one in a class of constraints
requiring that the pool preserves initial shared agreements. The normative status of this sort of
preservation axiom has been called into question in the literature (Genest and Wagner, 1987). Of
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course, ZPP is forced upon those endorsing SSFP. For conceptions of consensus on which common
ground is sought, that is, a non-question begging position of agreement, ZPP is more compelling.
We return to consensus as shared agreement or common ground below in Section 3.

McConway’s Theorem 3.2 shows more. Taken together, the marginalization property (MP) and
the zero preservation property (ZPP) are equivalent to SSFP. McConway’s formal setup differs
somewhat from the one presented here. He is concerned with classes of pooling functions that
take into account all o—algebras on 2. We, however, are considering pooling functions for a fixed
algebra (which seems to be the more common approach). The formal properties of concern to
McConway must be modified accordingly. A pooling function satisfies MP if marginalization and
pooling commute. We adopt the modification of MP proposed by Genest and Zidek (1986, p.
118). Let &7’ be a subalgebra of 7. Suppose that p is a distribution over (€, .7). The marginal
distribution p| .~ given by p over (€, 47’) is the restriction of p to &/’ such that p(A) = p!,(A)
for all Ae &’. [pl.] is a Carathéodory extension of p| ., to <.

Marginalization Property. Let &7’ be a sub-c-algebra of /. For any A € &', F(py,....,p,)(A) =
F(lpitar], o [Pnlar])(A).

Below, we will state an analogue of another of McConway’s results. That result says that
MP is equivalent to the weak setwise function property (WSFP) (1981, Theorem 3.1). Instead of
F(py,...,p,)(A) depending just on the p;(A),i = 1,...n, those pooling functions merely satisfying
WSFP depend on both p;(A) and the event, A. The difference is that a profile in [0, 1]™ may be
mapped to more than one output, so long as the associated event differs.

Weak Setwise Function Property. There exists a function G : &7 x [0,1]" — [0, 1] such that,
for any event A € o7, F(py,...,p,)(A) = G(A,p,(A),...,p,(A)) for each profile in the domain of F.

Probabilistic independence is another natural candidate property for preservation under pooling.
In the precise setting, there are a number of equivalent formulations of probabilistic independence.
For example, two events, A and B, are said to be stochastically independent according to p if

p(A n B) = p(A)p(B). Dividing both sides by p(B), provided p(B) > 0, yields p(ﬁ;f) = p(A)

when A and B are independent. But the lefthand side of the equation is a standard definition of

the probability of A conditional on B: p(A|B) = £ (;2;;3)’ when p(B) > 0. This observation allows
us to state another standard formulation of probabilistic independence. A and B are independent
according to p if p(A|B) = p(A). The conditionalization of p with respect to an event B, p?, is
given by setting p®(A) = p(A|B) for all A. We will return to stochastic independence below, but

it will be convenient for us to adopt the definition in terms of conditional probabilities.

Probabilistic Independence Preservation. If p;(A|B) = p;(A4) for i = 1,...,n, then
FB(pla 7pn>(‘4) = F(ph 7pn)(A)

This axiom says that two events that are probabilistically independent according to every individual
probability function are independent according to the pool.

Another preservation axiom is unanimity preservation, which requires that, if all of the functions
being pooled are identical, then the output of the pooling function is that probability function. So if
all the individual opinions are the same, the group opinion is identical to that common distribution.

Unanimity Preservation. For every opinion profile (py,...,p,,) € P, if all p, are identical, then
F(plv"'7pn) = P;i-

Other sorts of pooling axioms, like MP above, demand that some operation or other commutes
with pooling. A very interesting example of such an operation is a type of Bayesian updating.

347" is a boolean subalgebra, of &7 if &/’ € o/ and &', with the distinguished elements and operations of 7, is
a boolean algebra. That is, the operations must be the restrictions of the operations of the whole algebra; being a
subset that is a boolean algebra is not sufficient for being a subalgebra of o/ (Halmos, 1963).
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Standard Bayesian conditionalization goes via Bayes’ theorem:

By Ay _ _ p(A)p(Bl4)

By the law of total probability, the denominator, p(B), can be rewritten. Where {C; : j =1,2,...}
is a partition of Q, p(B) = >}; p(B|C;)p(C)).

Ezxternal Bayesianity is a mild generalization of commutativity with Bayesian conditionalization.
The requirement is that updating the individual probabilities on a common likelihood function (as
opposed to updating on an event) and then pooling is the same as pooling and then updating the
pool on that likelihood function. The likelihood function, A : 2 — [0,0), is defined on elements
of the sample space. In conditionalizing, A(-) serves the same role as the conditional probability
p(B|-) in Bayes’ theorem above, expressing the degree to which some fixed evidence B is expected
on various events. Put roughly, updating on A results from substituting the likelihood function in
for the conditional probabilities on the right hand side of Bayes’ theorem. For every w € 2,

A w) = p(w))\(w) when W' W
p( ) Zw’eﬂp(w/))‘(w,)’ h w;gp( ))‘( )>0

If p is a probability measure, it must be defined on an algebra including the elements of €2. Oth-
erwise, take p to be a pmf and obtain a probabiltiy measure on a given algebra by summing over
the elements of €2 in each event to obtain the probability of events in the algebra. Comparing the
above formula with the version of Bayes’ theorem in which the denominator is expanded by the
law of total probability makes the relation between A(w) and p(B]-) apparent. While not itself
a probability distribution, A(w) is proportional to p(B|w), for fixed data B. And though not a
function of general events in 7, the likelihood of an event A can be obtained by summing the
likelihoods of all w € A. Updating on a likelihood function reduces to standard conditionalization
on some event, B, when

, when p(B) > 0.

Aw) =

1, fwe B
0, otherwise.

(This reduction holds generally for imprecise probabilities also (Stewart and Ojea Quintana, MS2,
Proposition 2).)

Crucially, the likelihood function is assumed to be common in the external Bayesianity axiom.
So while disagreement concerning the prior is permitted by pooling functions satisfying external
Bayesianity, the commutativity of pooling and updating is guaranteed only when there is agreement
on the likelihood funciton.

External Bayesianity. For every profile (py,...,p,) in the domain of F' and every likelihood
function A such that (p*, ..., p}) remains in the domain of F, F(py,...,p}) = FA(py, ..., p,,)-

A similar axiom requires that a single individual conditionalizing on A before pooling is the same
as conditionalizing the pool on A (Dietrich and List, 2014).

Individualwise Bayesianity. For every profile (py, ..., p,,) in the domain of F' and every individual
k such that (pq, ...,pz, ..., P,,) Temains in the domain, F'(p;, ...,pz, Dy) = FANpy, .. py)

We also have more to say about individualwise Bayesianity below.
2.2. Types of Pooling Functions. Various concrete pooling functions have been studied in the
literature. These functions fare differently on the criteria reviewed just above. Of the commonly

discussed pooling operators, linear pooling functions may be the most common and obvious proposal
(Stone, 1961; McConway, 1981; Lehrer and Wagner, 1981).

Linear Opinion Pools. F(py,...,p,) = >.i_, wip;, where w; = 0 and " ; w; = 1.
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wy, ..., Wy are fixed non-negative weights summing to 1 that are associated with the n individuals.
Linear pooling, then, takes a weighted average of the individual probabilities. Equal weights for
the n probability functions specifies one linear pooling function; a dictatorship specifies another
linear pooling function. In the latter case, all of the weight is accorded to a single individual
(w; = 1 for some i) with the result that the pooled probability for any event A is that individual’s
probability for A: F(py,...,p,)(A) = p;(A). Interestingly, weights w; = 1 were used in a U.S.
Nuclear Regulatory Commission study of the frequency of nuclear reactor accidents (Ouchi, 2004,
p. 5).

Another proposal is to take a weighted geometric instead of a weighted arithmetic average of the
n probability functions (Madansky, 1964; Bacharach, 1972; Genest et al., 1986).4

Geometric Opinion Pools. F(py,...,p,) = c| [, p;", where w; > 0 and > ; w; = 1, and

o 1 . . .
c= S T e @) is a normalization factor.

Unlike linear pools, geometric pools specify the collective probabilities of elements of €2 instead of
events in general. But as with the likelihood functions above, the probability of any event A is
determined by summing the probabilities of w € A. Because of the way in which multiplication
figures into the geometric pooling recipe, there are profiles for which F(py,...,p,)(w) = 0 for all
w € Q, in violation of the probability axioms. If for each w € 2 there is a p; € (py, ..., p,,) such that
p;(w) = 0 we have such a violation. To avoid this worry, the domain of geometric pooling operators
is restricted to profiles of regular pmfs, i.e., those p such that p(w) > 0 for all w € Q. We denote
the set of regular pmfs P’ making the relevant domain P'™™.%
A third, more recent proposal from Dietrich (2010) is given by the following formula.

Multiplicative Opinion Pools. F(pi,....,p,)(w) = ¢[ [, p;, where py is a fixed “calibrating”
probability function, and ¢ = L ~7 is a normalization factor.
YwrealPo(@)p1 (W] [P, (w)]

w

As with geometric pooling functions, the domain of multiplicative pooling functions will be re-
stricted to P'". Comments on the interpretation and choice of py can be found in (Dietrich and
List, 2014, pp. 17-19)

Various results, both characterization and limitative, for the different pooling operations and
axioms have been obtained. For example, SSFP characterizes linear pooling.

Theorem 1. (McConway, 1981, Theorem 3.3; Lehrer and Wagner, 1981, Theorem 6.7) Given
that the algebra contains at least three disjoint events, a pooling function satisfies SSFP iff it is a
linear pooling function.

Theorem 2. (McConway, 1981, Corollary 3.4) Given that the algebra contains at least three
disjoint events, F satisfies WSFP and ZPP iff F is a linear pooling function.

McConway has shown that a pooling function has the WSFP iff it has the MP. So linear pooling
functions satisfy MP and ZPP.

Theorem 3. (Genest, 1984, p. 1104) The geometric pooling functions are externally Bayesian and
preserve unanimity.

Other sorts of pooling functions, such as a certain generalization of geometric pooling, satisfy the
conditions of Theorem 3. A characterization of externally Bayesian pooling functions is given in
(Genest et al., 1986). Dietrich and List provide a characterization of multiplicative pooling.

1 1

4An unweighted geometric pool of n numerical values is given by /1 - Tn = 2] -+ T .

SRather than assuming regularity or that the algebra contains the elements of €2, we could make the weaker
restriction to the domain of profiles of pmfs such that there is some w € Q for which p,(w) > 0 for all ¢ = 1,...,n.
And pmfs allow us to obtain measures defined on general algebras on 2.
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Theorem 4. (Dietrich and List, 2014, Theorem 3) The multiplicative pooling functions are the
only individualwise Bayesian pooling functions (with domain P'™).

There are many Arrovian limitative theorems in the pooling literature. As Robert Nau notes,
none of the pooling methods discussed satisfy even unanimity, external Bayesianity, and the
marginalization property (2002, p. 266). (As we show below, our proposal in this paper does
satisfy those properties.) One result that we have occasion to appeal to below follows from results
due to Lehrer and Wagner (1983, Theorems 1 and 2) in conjunction with Theorem 1 above:

Theorem 5. (Cf. Lehrer and Wagner, 1983) Given that the algebra contains at least three pairwise
disjoint events, the only pooling functions that preserve probabilistic independence and satisfy SSFP
are dictatorial.

It follows that non-dictatorial linear pools do not preserve probabilistic independence. In general,
non-dictatorial pooling methods struggle with independence preservation (Genest and Wagner,
1987). (Here, too, we claim to do better.)

3. MOTIVATIONS FOR IP

In general terms, imprecise probabilities (IP) models do not require representing an agent’s or
group’s judgments of subjective probability as numerically precise. Instead, such judgments could
be represented by sets of probability functions (Kyburg and Pittarelli, 1996), for example, or by
intervals (Kyburg, 1998).

There are a number of motivations for working with IP models. These include the potential to
resolve some of the “paradoxes of decision” (Ellsberg, 1963; Levi, 1986b), allowing for more flexible
and less arbitrary models of uncertainty (Gérdenfors and Sahlin, 1982; Walley, 1991), allowing for
incomplete preferences (and hence judgments of incomparability) in the subjective expected utility
setting (Levi, 1986a; Seidenfeld, 1993; Kaplan, 1996), and increased descriptive realism (Arl6-Costa
and Helzner, 2010). An overview of these and other motivations for IP can be found in (Bradley,
2014).

Most important for present purposes, IP allows for—what we consider—a very interesting and
philosophically well-motivated account of consensus (Levi, 1985; Seidenfeld et al., 1989). Our goal
in this section is to present this account of consensus for explicit consideration in the context of
pooling. It may help to first consider the case of full or plain belief. At the outset of inquiry,
inquirers may seek consensus as shared agreement in their beliefs. This could be achieved by
retaining whatever beliefs are common to all parties and suspending judgment on those that are
controversial thereby avoiding question-begging. Importantly, the consensus is generally a weaker
state of belief. Since inquiry initiating from the consensus view proceeds without begging questions
against parties to the consensus, various hypotheses of concern can receive a fair hearing. Such a
consensus constitutes a neutral or non-controversial starting point for subsequent inquiry.

The idea that parties to a joint effort in inquiry or decision making should restrict themselves to
their shared agreements—as a compromise or as genuine consensus—can be extended to judgments
of probability. An analogous sense of suspending judgment concerning what is controversial is
available in the IP setting. To suspend judgment among some number of probability distributions
is to not rule them out for the purposes of inference and decision making. Put another way, to
suspend judgment among some number of distributions is to regard each as permissible to use in
inference and decision making. If the parties seeking consensus all agree that p is not permissible,
then the consensus position reflects that agreement and rules it out (this will have to be finessed
when we come to the question of convexity below). A set of probability functions represents the
shared agreements among the group concerning which probability functions are not permissible to
use in inference and decision making. For example, it is consensus that the probability of some
event is not below the minimum of individual assignments.
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Many authors refer to the output of a pooling function as a consensus (Lehrer and Wagner,
1981; McConway, 1981; Genest and Zidek, 1986). In what way is a precise pool a consensus?
Isaac Levi draws a distinction between consensus as the outcome of inquiry and consensus at the
outset of inquiry (1985). At the outset of inquiry, agents may seek common ground upon which to
pursue joint inquiry. This is consensus as shared agreement, discussed just above. Disagreement
among the parties to the consensus may then be resolved (in the best case) through joint efforts
in inquiry—consensus as the outcome of inquiry. Given the restriction that consensus must be
representable by a unique probability function, outside of the special case when all individuals are
in total agreement, finding consensus as shared agreement that suspends judgment on unshared
probabilistic views is a foreclosed possibility.

The individuals could assume some common, precise probability distribution, but Levi argues
this is not consensus as common ground:

there can be no analogue in contexts of probability judgment of the two senses of
consensus [ identify. If two or more agents differ in probability judgment, they
can all switch either to the distribution adopted by one of them or to some other
distribution which is, in a sense, a potential resolution of the conflict between their
differing distributions. There is only one kind of consensus to be recognized—namely
the resolution of conflict reached through revolution, conversion, voting, bargaining
or some other psychological or social process. (1985, pp. 5-6)

Wagner likewise distinguishes between a compromise adopted to perform an exercise in group
decision making and a consensus to which the individuals revise their own beliefs (Section 2). Levi’s
point in the quotation above is that a precise pool is neither a consensus as shared agreement since,
in general, it is not restricted to just the shared probabilistic views; nor is it justified on the basis
of inquiry, understood as designing and performing experiments, obtaining evidence, etc. A precise
pool might represent the sort of political consensus that a vote does in the case of preferences, or
that the output of a judgment aggregation function does in the case of qualitative belief. That is,
consensus as bargaining or compromise. Of course, at least one sort of compromise 4s a consensus
adopted for the sake of the argument rather than genuinely. That is, parties to the compromise
could assume the consensus position as Levi identifies it—namely, a convex IP set—for the sake
of the argument, or for carrying out some group deliberation or inquiry so long as the consensus
position is strong enough for the group’s purposes. It must be admitted that there are other
compromise positions, including precise pools, that the group might assume.

But Levi’s view distinguishes between political and rational consensus. Returning again to the
case of full belief, Levi requires that revisions be decomposable into a sequence of contractions and
expansions. An inquirer’s set of full beliefs constitute her “standard for serious possibility” in the
following sense: if A is among her full beliefs, — A is not a serious possibility. To change her mind,
the inquirer must first suspend judgment on A by contracting A if she cares to avoid error (where
error is judged by her own lights). From the contraction, both A and —A are serious possibilities.
A direct revision to include —A involves deliberately importing error from the point of view that
rules —A out as a serious possibility.

Unlike full beliefs, however, judgments of subjective probability do not bear truth values. So
how might one suspend judgment among candidate distributions before changing points of view?
As discussed just above, subjective probabilities are used in determining expectations for available
acts. Levi’s proposal is that to suspend judgment among some number of distributions is to not rule
them out for use in the functions that they perform in inquiry and deliberation. Coming to regard a
probability distribution as permissible is the analogue of opening one’s mind to the (serious) possi-
bility of —A in the case of full belief. Just as assuming a weaker position in full belief avoids begging
questions, retreating to a superset of distributions avoids prejudging the issue of determining which
distributions are permissible for use in inquiry and deliberation. Moving from a set of probability
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functions (including a singleton) to a superset is the probabilistic analogue of contraction. Employ-
ing sets of probability functions avoids demanding direct revisions to probabilistic judgments the
agent regards as impermissible from the standpoint of her current probabilistic judgments without
first “contracting” to a neutral position that suspends judgment among the relevant probabilistic
views (Levi, 1974). As he emphasizes, both reaching common ground at the outset of inquiry and
subsequent reasoned changes in probabilistic views are available to groups in the IP setting.

Why has most work on probabilistic aggregation restricted itself to consideration of represen-
tations in terms of a single probability function? One reason is that such representation is the
standard for individuals and, since we are treating groups as agents in a sense, that representation
should extend to groups as well. Genest and Zidek write, “it would be natural to express the con-
sensus judgment in the same form as the originals” (1986, p. 115). But the authors of the present
essay are not moved by this convention (or in Walley’s terminology, by this “Bayesian dogma of
precision”) for some of the very reasons as discussed just above. We urge, in what follows, that
theorizing concerning IP should be extended to accounts of probabilistic opinion pooling and wice
versa. Even if the motivations for IP in general, including at the level of individuals, are found
less than convincing, one might think that the case for IP at the level of group opinion is more
persuasive, say as an account of consensus. We take the motivations above and the propositions
that follow as recommending further consideration of IP in the context of pooling and consensus.

4. TP POoOLING FORMATS

We want to make a case that the out-of-the-gate restriction of the codomain of F' to P is unwar-
ranted (just as many have argued that the standard Bayesian assumption that rational individuals
are committed to determinate probabilistic judgments is unwarranted). Our strategy is to point
to a sensible account that abandons that restriction. Here we assume a representation in terms of
a set of probability functions. We make use of set-valued functions or correspondences. Where F
refers to a pooling function that outputs a single probability function, we will use F to refer to
pooling correspondences outputting sets of probability functions:

F:P"—- 2P

4.1. Convex or Not? Much of the work with IP assumes that IP sets of probabilities are convex
(Smith, 1961; Levi, 1974; Girén and Rios, 1980; Gilboa and Schmeidler, 1989; Walley, 1991; Moral
and Del Sagrado, 1998). A set of probability functions, P, is convex if, for any two functions in
the set, the set includes every convex combination of those functions.

Convexity. If p;, p, € P, then ap; + (1 —a)p, € P for a € [0, 1].

Besides some handy computational properties of convex sets of probability functions (Girén and
Rios, 1980), convexity can be motivated philosophically. A set of probability functions represents
the shared agreements among the group members concerning which distributions are ruled out for
use in deliberation and inquiry. But is it not common ground that the convex combinations of
individual probability functions are ruled out? The idea is that convexity recommends a weaker
attitude in suspending judgment among some number of probability distributions; fewer distribu-
tions are ruled out. Convexity requires keeping an open mind concerning potential compromises or
resolutions of conflict (the convex combinations) between various probabilistic views. Levi argues
that convex combinations have “all the earmarks of potential resolutions of the conflict; and, given
the assumption that one should not preclude potential resolutions when suspending judgment be-
tween rival systems [...] all weighted averages of the two functions are thus taken into account”
(1980, p. 192).

The normative status of convexity is the subject of outstanding controversy. Seidenfeld, Schervish,
and Kadane make a case against convexity in the context of group decision making (1989). They
observe that if two Bayesian agents differ in both probability and utility, any compromise position
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in probability besides trivial convex combinations entails a violation of a Pareto constraint on pref-
erence. Levi responds in his (1990), arguing against the Pareto condition. Kyburg and Pittarelli
lodge some complaints about the property in “Some Problems for Convex Bayesians” (1992). In
“Set-Based Bayesianism,” they explore relaxing convexity to allow for IP sets in general. Seiden-
feld et al.’s theory of coherent choice does not require convexity (2010). They offer a variation of
one of Kyburg and Pittarelli’s criticisms of convexity, registering a counterexample that exploits
the failure of convex combinations to preserve probabilistic independence (but see (Levi, 2009, pp.
373-375) for a response).

Depending on the decision theory, distinctions between pooling formats may or may not be of
importance. For example, there are decision rules that cannot distinguish between certain convex
and non-convex sets of probabilities (Gilboa and Schmeidler, 1989; Walley, 1991). Such distinctions
are meaningful according to other decision rules (Levi, 1980). And there are decision rules that
distinguish between any two sets of probabilities (Seidenfeld et al., 2010). The important point here
is that disputes over the format of pooling functions are idle if such distinctions are not decision-
theoretically meaningful. On decision theories that cannot distinguish a convex set of probabilities
from its extreme points, for example, there is nothing at stake in arguments over whether an IP
opinion pool is convex or not.

4.2. Convex Pooling Functions. As a proof of concept, we will investigate aggregation functions
that output sets of probability functions. The aggregate is formed by taking the convex hull of the
n probability distributions:

F(p1,--sDp) = conv{p; :i=1,...,n}
The convex hull of a set of points is the smallest convex set containing those points. We write
F(py, ..., Py)(A) as shorthand for the set of probability assignments to A:

F(p1,-Pn)(A) = {p(A) : pe F(py, ... Py)}

We work with convexity, not because we presume to know of decisive arguments in its favor, but
because convexity is a broadly customary assumption, we do not yet feel compelled to dismiss
it, and it allows us to make a proof of concept argument for IP pooling. In effect, assuming
convexity amounts to making it slightly harder to show some of the propositions below, though the
propositions also hold for IP aggregation methods that relax convexity. We return to the issue of
convexity below to make good on our earlier promise to clarify how our case for IP in the context
of opinion aggregation does not depend entirely on convezr IP pools (Section 7.3, Proposition 7).

5. EXTENDING POOLING AXIOMS TO THE IP SETTING

Convex TP pooling functions satisfy the extensions of those axioms to the IP setting. For the
SSFP, we replace G with a set-valued function or correspondence: G : [0,1]" — 22([0,1]). G
is a map from n numerical values in [0,1] to a set of probability values, G(p;(-),...,p,(-)). The
constraint becomes that there exists a function G such that, for any event A, F(py,...,p,)(A) =
G(p1(A),....,p,(A)). WSFP, then, requires a function G : &/ x [0,1]" — £([0,1]). For unanimity
preservation, we do not distinguish between p and {p}. ZPP is generalized analogously. If p;(A) =0
for all ¢ =1,...,n, then F(py,...,p,,)(A) = {0}. The MP has a straightforward extension to sets
of probability functions: F(py,...,p,)(A4) = F([p1la], - [Pnla])(A), for any A € o/' There are
many ways to generalize constraints. While we offer conservative and natural modifications of
the axioms in order to extend them to the imprecise setting, the crucial question is whether we
have modified what is compelling about the axioms. For example, is representation in terms of a
unique probability function crucial to what makes commutativity of conditionalization and pooling
compelling, or what is appealing about preserving shared judgments of independence? In each case,
we submit, the attractiveness of the axiom does not hinge on whether the output of the aggregation
function is a single probability function or a set of them.
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First, we note that an analogue of McConway’s result holds for IP pooling functions in general.

Proposition 1. Let F : P" — Z(P) be an IP pooling function (not necessarily convex). F satisfies
WSFP iff F satisfies MP.

Before stating the next proposition, we record a fact about convex sets of probabilities (simple and
familiar to those with a background in geometry) that we will make use of in the proof.% Proofs
for the lemmas and propositions are recorded in the appendix.

Lemma 1. Let F(py,...,p,,) = conv{p, : i = 1,....n} for any profile (py,...,p,,) in the domain of
F. Any p € F(py,...,p,) can be expressed as a convexr combination of the n probability functions,
i.e. p= 0 a;p;, where o =0 fori=1,....n and 3" a; = 1.

Proposition 2. Convexr IP pooling functions satisfy SWFP, WSEFP, MP, ZPP, and unanimity
preservation.

As indicated in the proof, SSFP entails both WSFP and ZPP.

While linear pooling functions are not externally Bayesian, convex IP pooling functions satisfy the
extension of external Bayesianity to the IP setting. The convex or prior-by-prior conditionalization
of a convex set of probability functions, F2(py, ..., p,,), results from conditionalizing each member
of the set. Updating a convex set of probability functions on a common likelihood function is
defined analogously:

, , . A .
Pprovep) = {0 Flor <P T PN >0 and ) = P i)

To show that convex IP pooling functions are externally Bayesian, we first state another observation.

Lemma 2. (Cf. Levi, 1978; Girén and Rios, 1980) Convezity is preserved under updating on a
likelihood function, i.e., ]-")‘(p17 ey Py,) 1S cONVEL.

Proposition 3. Convex IP pooling functions are externally Bayesian.

Dietrich and List argue that while geometric pooling is justified on epistemic grounds when
individual opinions are based on the same information, multiplicative pooling is justified in cases of
asymmetric information, when individual opinions are in part based on private information. Their
case is built around the individualwise Bayesianity axiom and the fact that multiplicative pooling
satisfies it (Theorem 4).

Proposition 4. Convex IP pooling functions are not individualwise Bayesian.

We regard Proposition 4, however, as stating a feature and not a bug of convex IP aggregation. At
least insofar as the idea is to reach a consensus, it is not desirable for features of one individual’s
probability distribution to be unilaterally imposed on the group. In the case of full belief, the
initial consensus does not adopt just any belief of any member. Better, in our view, for group
opinion to change through efforts in intelligently conducted inquiry from initial common ground
(in inquiry, a group may designate a subgroup as an information source on a given topic, but this
process requires a richer representation). Dietrich and List motivate individualwise Bayesianity by
pointing out that if the constraint is not satisfied, then it makes a difference if an individual first
learns some information and opinions are then pooled, or if the opinions are pooled and then the
information is acquired by the group as a whole. But for consensus, this is as it should be. If the
opinions of the group members do not reflect some piece of information, that information is not

6We include a proof of the observation because we appeal to it several times in the other proofs, because it is a
simple special case (but all we need) of a more general result concerning convexity (Rockafellar, 1970), and because
some readers may not have a conceptual handle on the property.
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common ground. The consensus among group members depends on the probabilistic opinions of
the members.

None of this is to say, of course, that features of individual probability distributions are irrelevant
to group consensus. On the convex [P view, the kernel of truth in individualwise Bayesianity can
be formulated by the inequalities below, stated here for standard conditionalization.

mzn{p(B) !pE Jr(pla ’pn)}
< mm{p(B) :pE f(pla-'-vpiBa'“apn)}
< min{p(B) :pe FB(py,...p,)}

And similarly,

max{p(B) PE F(ph 7pn)}
< maz{p(B):pe f(pp---,P?a s D)}
< max{p(B) :pE fB(ph 7pn)}

The consensus probabilities for B shift up (at least not down, more precisely) if one individual con-
ditionalizes on B, and shift more if the consensus itself conditionalizes on B. But these inequalities
simply reflect facts about what the common ground is and do not reflect group “learning” from
one individual’s probability function.

Convex IP pooling also inherits some of the challenges facing linear pooling. SSFP conflicts
with probabilistic independence preservation. As Theorem 5 states, the only pooling functions
that preserve probabilistic independence and satisfy SSFP are dictatorial. The loss of probabilistic
independence presents both epistemic challenges as well as decision theoretic ones (Kyburg and
Pittarelli, 1992; Seidenfeld et al., 2010).

In the case of convex IP pooling, however, there is more leeway to address the challenges. Several
generalizations of the concept of independence for IP have been proposed and studied (de Campos
and Moral, 1995; Cozman, 1998). We consider Levi’s notion of confirmational irrelevance.

Confirmational Irrelevance Preservation. If p,(A|B) = p,(A) for i = 1,...,n, then
‘F(plv 7pn)(A) = fB(plv 7pn)(A)7

Irrelevance preservation is a generalization of probabilistic independence preservation. It is clear
that when F(py,...,p,) is a single probability function, irrelevance preservation reduces to inde-
pendence preservation. According to some decision theories for IP, it is the whole set P that is
relevant for inquiry and decision making (Levi, 1980; Seidenfeld et al., 2010). Irrelevance is a sen-
sible generalization of independence because it allows us to identify when some information will
not make a difference to certain inquiries or deliberations, namely, those inquiries and deliberations
concerning events to which the information is irrelevant.

It also does not take much work to show that confirmational irrelevance preservation is satisfied by
any IP pooling function (not necessarily convex) that satisfies stochastic independence preservation.

Stochastic Independence Preservation If p,(A n B) = p;(A)p;(B), for i = 1,...,n, then, for
all p € F(py, ... pn), P(A N B) = p(A)p(B).

It turns out that confirmational irrelevance is, but stochastic independence is not, preserved by
convex [P pooling functions. Suppose that A and B are probabilistically independent according to
p;, © =1,...,n. Since linear pooling does not preserve independence, independence is not preserved
at some of the interior, non-extreme points of P. However, the whole set of probability values for
A, F(py, ..y Py)(A), is the same before and after conditionalizing on B.

Proposition 5. Convex IP pooling functions satisfy irrelevance preservation.

is binary case of irrelevance can be generalized to non-binary partitions. Let A, ..., Ax be a partition of Q.
"This bi f irrel b lized t bi titions. Let A1, ..., Ax b tition of Q
In Levi’s setup, a question is represented as a partion, each element of which is a potential answer. Information B is
pairwise irrelevant to Ai, ..., Ag if B is irrelevant to each cell of the partition.
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So, while stochastic independence and confirmational irrelevance are equivalent in the precise setting
(when p(B) > 0), they come apart in the IP context.® Because irrelevance preservation reduces
to probabilistic independence preservation when the output of the pooling function is a unique
probability function, and linear, geometric, and multiplicative pooling functions do not satisfy
probabilistic independence preservation in general, we have that linear, geometric, and multiplica-
tive pooling functions do not satisfy irrelevance preservation either. If there are good reasons to
require IP pooling functions to satisfy the stronger stochastic independence preservation property,
then convex IP pool does not deliver (though there are IP formats that do (Proposition 7)).

Finally, convex IP pooling admits of a simple characterization in terms of the set of universally
admissible means.” We call a function m : [0,1]® — [0,1] a mean on the interval [0,1]. We first
define a mapping M, : P* — 2([0,1]1%U") by setting for every (py, ..., p,) € P™:

M (1 Pp) = {me (0,10 m(py (), .. P, () € P

Call a mean admissible for (py,...,p,) if m(pl(-),...,pn(-)) € P. Then, M,(py,...,p,) is the set
of admissible means for (py,...,p,). Using M,,, we define another mapping M,, : P — Z(P) by
setting for every (py,...,p,,) € P™:

Mn(pla"'apn) = {m(pl()vapn()) tme ﬂ mn(q)}

M, (py,...,p,,) is the set of probability functions that results from composing each universally
admissible mean with (p;(-), ..., p,(+))-

Proposition 6. Suppose that o/ contains at least three pairwise incompatible events. A mapping
F :P" - P(P) is a convex IP pooling function—that is, F(p;, ..., P,) = conv(py,...,p,) —if and

only if Myn(py,...,p,) = F(Dy,..,D,) for all (py,...,p,,) € P".

An interesting line of research to pursue would be to consider pooling from the perspective of
an analysis of means (e.g., Kolmogorov, 1930; de Finetti, 1931; Aczél, 1948). Perhaps such an
analysis could shed light on issues like the propriety of qualitative conditions on pooling rules, or
the function of convexity in reaching a consensus in inquiry and deliberation.

6. EPISTEMIC AND PROCEDURAL GROUNDS FOR
IP ACCOUNTS

In their review article, Dietrich and List claim that the question of how probabilities should be
aggregated admits of no obvious answer, and, ultimately, the appropriateness of the pooling method
depends on the purpose and context of aggregation (2014). They raise the question of whether a
pooling method should be justified on epistemic or procedural grounds. To be justified on epistemic
grounds, “the pooling function should generate collective opinions that [...] respect the relevant
evidence or track the truth, for example.” In order to be justified on procedural grounds, a pooling
method should yield a collective opinion that is a “fair representation of the individual opinions”
(2014, p. 2). Dietrich and List claim that, while linear pooling can be justified on procedural
grounds, it cannot be justified on epistemic grounds. By satisfying WSFP, linear pooling functions
reflect “the democratic idea that the collective opinion on any issue should be determined by
individual opinions on that issue” (2014, p. 6). Geometric pooling, however, can be justified in

8Pedersen and Wheeler show how logically distinct independence concepts are teased apart in the context of
imprecise probabilities. They write, “there are several distinct concepts of probabilistic independence and |[...] they
only become extensionally equivalent within a standard, numerically determinate probability model. This means
that some sound principles of reasoning about probabilistic independence within determinate probability models are
invalid within imprecise probability models” (2014, p. 1307). So IP provides a more subtle setting in which to
investigate independence concepts.

9We thank the referee for suggesting that we include a result along these lines.
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epistemic terms “by invoking the axiom of external Bayesianity” (2014, p. 13). The idea seems to
be that since updating is a response to the evidence, a pooling method that is well-behaved in the
sense of commuting with updating “respects the relevant evidence” by not allowing the order of
operations to distort evidential impact.

Convex IP pooling, then, can be justified on Dietrich and List’s procedural grounds in virtue
of satisfying WSFP. Concerning procedural grounds in general, it is difficult to think of a more
fair or democratic representation of individual opinions than a representation that includes each
opinion and all of the compromises between opinions. But since convex IP pooling functions also
satisfy external Bayesianity, it would thus appear that the alleged tension between epistemic and
procedural criteria for probabilistic opinion aggregation can be resolved by simply moving to an IP
account.

We endorse the basic motivation for Dietirch and List’s discussion. Like other deliberate activ-
ities, pooling is goal-directed. How one should approach pooling depends on, among other things,
one’s goals. One may have multiple goals, in which case, tensions in jointly satisfying them may
require tradeoffs. Nevertheless, we find it rather opaque precisely how WSFP encodes an intuitive
procedural constraint on pooling. Similarly, how commutativity of pooling and updating ensures
that the collective opinion respects the relevant evidence or tracks the truth stands in need of
further clarification. Even if the philosophical distinction and interpretation of WSFP and exter-
nal Bayesianity does not admit of further clarification, however, our point stands that the tension
between satisfying the formal desiderata can be resolved in the IP setting.

7. OBJECTIONS TO IP POOLING

Perhaps the relative neglect of IP in discussions of pooling can be explained in part by a skepticism
concerning the use to which IP sets can be put. In their very nice overview of work on pooling,
Genest and Zidek write, “the jury remains out on the theory of Walley [...] In particular, it is
unclear how [the IP set] could be used ‘at the end of the day’ (1986, p. 124). There are essentially
two types of uses to which an account of probabilities may be put: those concerning epistemic
issues like inference, and those concerning issues in decision making.

7.1. Epistemology. Some degree of the skepticism about the epistemic usefulness of IP may
be dispelled by considering recent work. For instance, after Genest and Zidek’s article, Walley
published his magisterial book addressing applications of IP to issues in statistical reasoning (1991).
Fabio Cozman explores the application of IP to issues in Bayesian networks in a number of papers
(1998; 2000).

But let us consider some epistemological challenges of a general sort. In reviewing some difficulties
for the few available accounts of pooling IP sets of probabilities (accounts allowing imprecision at
the individual level), Robert Nau claims that neither taking the union nor the intersection of convex
sets of imprecise probabilities yields a satisfactory account of pooling. He writes,

As more opinions are pooled, the union can only get larger, and it reflects only
the least informative opinions, whereas intuitively there ought to be (at least the
possibility of) an increase in precision as the pool gets larger. On the other hand,
the intersection of convex sets of measures may be empty if experts are mutually in-
coherent, and it generally yields too tight a representation of aggregate uncertainty.
As more opinions are pooled, the intersection can only shrink, and it reflects only
the most extreme among those opinions, whereas intuitively there should be some
convergence to an average opinon when the pool gets sufficiently large. Moreover,
neither the union nor the intersection provides an opportunity for the differential
weighting of opinions, which would be desireable in cases where one individual is
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considered (either by herslef or by an external evaluator) to be better or worse in-
formed than another individual about a particular event under consideration. (2002,
p. 267)

Similar concerns could be expressed about the account of pooling under examination in this essay
since uncertainty never decreases by mere pooling on our account. But we think they would mis-
placed. The appropriateness of the behavior of a pooling function cannot be assessed in abstract,
without specifying the point of pooling probabilities in the first place. If the point is to find com-
mon ground among the opinions being pooled, increasing uncertainty is to be expected. In general,
the more opinions among which we try to find common ground, the less common ground there will
be.!% One might not wish to seek consensus among certain opinions, but that is a different matter.
On our account uncertainty can be reduced, but through inquiry and not through pooling. As the
group acquires sufficient information, conditionalization generally leads to a reduction of impreci-
sion. In the IP setting, it is also possible, however, for conditionalization to increase imprecision
in the short run, a phenomenon known as dilation (Seidenfeld and Wasserman, 1993; Wasserman
and Seidenfeld, 1994; Herron et al., 1997; Pedersen and Wheeler, 2014, 2015). But our point here
is not that conditionalization invariably decreases uncertainty, but that it can and that decreas-
ing uncertainty through conditionalization has familiar Bayesian “learning” foundations whereas
pooling (averaging) does not.

Furthermore, in the case of pooling imprecise probabilities, we would not endorse taking intersec-
tions for the purpose of finding consensus. In the case of mutual incoherence, intersections yield the
empty set. But the lack of any consensus concerning which probability functions can be ruled out
means that the group in consensus cannot rule any probability functions out. Taking the convex
hull of the union would reflect this, yielding complete uncertainty.'!

We think it is important to distinguish between finding consensus among some opinions and
taking those opinions as evidence. In the latter case, if an agent outside the group considers
some members of the group to be less informed than others, that opinion should be reflected
in conditionalization through the likelihood for the experts’ opinions (Cf. the Supra-Bayesian
approach to pooling (Genest and Zidek, 1986, p. 120)). In the former case, if a group member is
considered, by herself or other group members, to be less informed, consensus is often not sought.
Finding what common ground the group members share is unproblematic when consensus is sought,
regardless of the social, political, or intellectual clout members accord each other. It is also open to,
and perhaps rationally obligatory for, the modest group member to allow her opinion concerning
her relative informedness to be reflected in her probabilistic opinion before pooling.

Finally, one might object that IP pooling amounts to declining to really aggregate. In a sense,
that is true, if pooling is restricted to taking some sort of average of individual probabilities. But,
again, what is the theoretical basis for only considering precise averages of subjective probabilities?
An IP set clearly represents group opinion, and can be employed in inference and decision making.

7.2. Decision Theory. Because decision theory is a very involved topic and we do not treat it in
this paper, we limit ourselves to pointing out that sophisticated decision theories for IP have been
developed and extensively studied. These include Levi’s E-admissibility and tie-breaking decision
rule (1980), Girén and Rios’ quasi-Bayesian decision theory (1980), Gilboa and Schmeidler’s I'-
Maximin (1989), and Walley’s Mazimality (1991). Seidenfeld, Schervish, and Kadane axiomatize
their theory of coherent choice under uncertainty in the framework of set-valued choice functions
(2010). Though saying so overcommits us for our project in this essay, we hold the view that

10We suspect that Nau is not targeting consensus because his models of pooling involve game-theoretic bargaining
scenarios pitting the opinions to be aggregated against each other.

Hgee Larry Wasserman’s review of Walley’s book for objections to this representation of complete uncertainty
(1993), and Levi’s concept of confirmational commitment as a potential means of addressing the objections (1974).
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theoretical disputes about probability cannot be adjudicated without thorough decision theoretic
considerations.

7.3. Convexity Revisited. How much do the results in this paper depend on the convexity
of the IP set? Not much! To see why, consider the following very simple IP pooling function,
F : P — Z(P), such that

F(p1yPp) ={pj:i=1,...,n}
So defined, F takes as input a profile of probability functions and returns the set of functions in
that profile.

Proposition 7. Let F : P* — P(P) be an IP pooling function such that, for each profile in
P, F(pi,..sp,) = {p; : i = 1,...,n}. Then, F satisfies SSFP, WSFP, ZPP, MP, unanimity
preservation, external Bayesianity, and confirmational irrelevance preservation. Moreover, F sat-
isfies stochastic independence preservation.

The proof of Proposition 7 is straightforward and so is omitted here. The upshot is that pooling
with imprecise probabilities is promising in a robust sense. So, while the convex IP pooling model
is the chief subject of our philosophical approbation and mathematical analysis in this essay, our
case for the consideration of IP in the context of pooling does not rest exclusively with that model.

7.4. Dynamics. As we have presented convex IP pooling functions, the input is a profile of in-
dividual probability functions and the output is a convex set of probability functions. What if
individual probabilities are themselves imprecise? Or what happens if we attempt to pool the
probabilistic opinions of agents that are themselves groups?'? As it stands, our account is silent.
There is, however, a natural extension of the account on offer. Consonant with the philosophical
position staked out here, the idea is to convexify the union of sets of probability functions.

F: 2([P)" — 2(P)

Where the profile consists of n sets of probability functions, (Pq,..., P,), the pool is given by
F(Py,...,Py) = conv{ J; Pi}. We leave examination of this more complete account to future
work.

8. CONCLUSION

According to standard Bayesian theory, personal probabilities are subjective. One route that
has been explored for recovering some objectivity is establishing intersubjective agreement. There
are, for example, the famous convergence theorems to the effect that, given non-extreme priors
and a suitably large amount of evidence upon which to conditionalize, posteriors converge (Savage,
1954; Gaifman and Snir, 1982). Consensus in the (very) long-run, however, is not the only kind
of consensus we may seek. Prior to inquiry, consensus as shared agreement is still possible, and
desirable for joint efforts in inquiry. Convex IP pooling can be philosophically motivated as an
account of such consensus.

Our objective has been to undermine the preconception that probabilistic opinion pooling should
result in a representative probability function for the group. Our tack has been to explore another
option, arguing that, even by the very lights of those working in pooling, this option is promising.
We have the following summary (an “X” means the pooling method does not generally satisfy the
property):

12Tpe problem being raised is similar to one in the literature on AGM belief revision. The principle of categorical
matching requires that the output of a belief revision operator be of the same format as the input. Otherwise, the
account of belief revision, constructed for a certain input format, is silent about iterated belief revision (Gardenfors
and Rott, 1995). In the case of convex IP pooling functions, dynamics of pooling are defined so long as we are never
pooling sets of probabilities.
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TABLE 1. Pooling Method Report Card

Linear Geometric Multiplicative Convex IP

SSFP

ZPP

MP

WSFP

Unanimity Preservation
External Bayesianity
Individualwise Bayesianity

SRS IENENENENEN
SENENESEENG
RN N
A RN N N SRNRN

Irrelevance Preservation

Perhaps the most sensible representation of group opinion, especially when pooling is interpreted as
reaching consensus, is not in terms of a single probability function. At the very least, the arguments
and results above may be read both as an exploration of extending the mathematical framework
of opinion pooling to cover IP pooling, and as a plea for liberalism about pooling formats.
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APPENDIX: PROOFS
PROOF OF PROPOSITION 1

Proof. We carry out McConway’s proof with minimal adjustments made for our framework (pp
411-412 1981, Theorem 3.1).

WSFP = MP Assume that F has the WSFP, i.e., there is a function G : &/ x [0,1]" — 22(]0, 1])
such that F(py, ., p,)(4) = G(A,p (A), ., pu(A)). By WSFP, we have F([py Lyl . [Py Lo ])(A)
= G(A, [pi1a](A), ..., [P, la](A)). Since G is a function and p;(A) = [p; 1 »](A) for any A € o'
(all such A € &7 are also in &), it follows that G(A, [p; | o/ ](A), ..., [P L] (A)) = G(A, p1(A), ..., D, (A))
= ]:(pla 7pn)(A) Hence, f(pb >pn)(A) = *F([pl rﬁf’]a ey [pn r%’])(A)

MP = WSFP. Assume that F has the MP. Let A € /. We want to show that F(py,...,p,,)(4)
depends only on A and p,;(A),i =1,...,n

First, if A = & or A = , then, since the range of F is Z(P), F(py, ..., p,,)(A) depends only on A
and p;(A),7 = 1,..,n, for any profile because, setting F(py, ..., p,)(A4) = G(A,p(A),...,p,(A4)) and
F (D P)(A) = G(A, P (A), .., l,(A)), it follows that G(A, py (A), .., p, (4)) = G(A, PL(A), ... P, (4).

Next, suppose that ¢§ # A # Q. Consider the o-algebra o’ = {7, A, A°,Q}. &/ contains A and
has &/’ as a sub-algebra. By MP, then

F(@1, ) (A) = F([Prlar]s s [Po T 1) (A).-

&/’ is uniquely defined by A and any probability over 7’ is uniquely determined by the probability
of A under that distribution. So the righthand side of the equation above is determined by A and

il (A) = [p;|o](A) = p;(A). .

PRrROOF OF LEMMA 1

Proof. Let Y = {p :p = >,;" ; a;p; such that oy > 0 for ¢ = 1,...,n and " ; a; = 1}. We want to
show the following:
F(py,-yp,) = convi{p; :i=1,...,n} =

The first equality we have by definition. In order to show the second equality, we have to show
that Y is the smallest convex set containing {p; : i = 1,...,n}. To show convexity, we show that
for any two functions in Y, any convex combination of those functions is in Y. Suppose that
p,p’' € Y. By assumption, p = " | a;p; and p' = > | Bip;. Consider p* = yp + (1 —)p’ =
V(e i) + (1 =) X, Bips.

*

= 2l cip + (1—7) XL, Bips
= it vaipi + 25 (1= 7)Bip;
= Yilap; + (1 —7)8ipi]

= Yiti[vai + (1 =)Bilp;

= Z?:l 6jpj
where 0; = va; + (1 —7)B;. 0; = 0 for j = 1,...,n because every term is nonnegative. Z?Zl d; =
i [vai+(1=7)B8i] = X, 70‘2 +Zz’:1(1 7)@ =72 i+ (1=7) 2y B = v(D)+(1-y)1 = 1.
Hence, p* € Y, so Y is convex. If Y were not the smallest such set, then there would be some
convex Z & Y such that {p, :i =1,....,n} € Z. But for any p € Y, p is a convex combination of the
elements in {p, : i = 1,...,n}. Since Z is convex and contains the p,, it follows that p € Z, which is
a contradiction. O
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PROOF OF PROPOSITION 2

Proof. Since F(py,...,pn)(A) = {p(4) : p € F(py,...,P,)}, we let G of the SSFP be the convex
hull operation applied to {p;(A) : i = 1,...,n}. It is clear that G depends just on the individual
probabilities for A. We need to show that

{p(A) :pe F(py,...p,)} = conv{p;(A) :i=1,...n}.

Trivially, the lefthand side includes {p;(A) : i = 1,...,n}. Suppose p(A),p'(A) € {p(4) : p €
F(p1,---sPp)}- Since F(py, ..., p,) is convex, it follows immediately that any convex combination
of p(A),p'(A) is in {p(A) : p € F(py,....p,)}- Finally, suppose that there is some convex Z <
{p(A) : p e F(p;,....,p,,)} which contains {p,(A) : i = 1,...,n}. But for any p(A) € {p(A) : p €
F(py,--sPpn)}, P(A) is a convex combination of the p,(A) since every p € F(py,...,p,,) is such a
convex combination of the p, (Lemma 1). Hence, p(A) € Z, contrary to our supposition. So, the
equality holds and the SWFP is satisfied.

But since SWFP clearly implies WSFP, WSFP is satisfied, too. By Proposition 1, it follows
immediately that F has the MP.

Because F(py,...,p,) is a set of probability functions, F(py,...,p,)() = {0}. Let p;(A) =
0, ¢ = 1,...,n. Since there is a function, G, such that F(py,...,p,)(A) = G(p,(A),...,p,(A)), we
have it that

So, ZPP follows from SWFP.
For any profile (py,...,p,,) € P, if all p, are identical, then the convex hull is just {p;}. So F
satisfies unanimity preservation.

0

PROOF OF LEMMA 2

We generalize a proof of a result due originally to Girén and Rios and Levi (Levi, 1978; Girén and
Rios, 1980) for updating on an event to updating on a common likelihood function.

Proof. We want to show that F*(py,...,p,,) is convex. That is, given any two members, p*, p'* €
FMpy,...,p,) and a € [0,1], p* = ap® + (1 — a)p™ is in FA(py,...,p,). If there is a convex

*

combination of p and p’, p,, such that p} = p*, then the convexity of .7-"/\(p1,...,pn) is es-

. . A — L (DA() _

tablished as a consequence of the convexity of F(py,...,p,). Where p}(-) = m =
BP()AC)+(1=B)pP'()A()

BYwreq PWHMNW)+(1-B) Xyreq P/ (W)AW)

, for any a we want to find some S such that

NN BPOINC) + (1= AP (A iy
PO = e+ 1=t = s @) (L B) S P @) P

«a "(wH)A(w* o . . .
For 8 = ) S pf(w*gfff)ﬂﬁl(fa; z(:w*iﬂ p(WF)A (W)’ the equality is verifiable with some tedious alge-

bra. O

PROOF OF PROPOSITION 3

Proof. We must show that convex IP pooling functions are externally Bayesian, i.e., F (p{‘, - p,);) =
FNpy, ..., py) (provided the relevant profiles are in the domain of F).
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F(p},....p)) < FMNpy, -y pp). Trivially, for each i = 1,...,n, p} € FNpy,...,p,). By Lemma 2,
FNDy, -, Py, is convex. It follows that conv{p} :i = 1,...,n} = F(p},...,p}) € FN(Dy, ., Pp)-

FNpy, -y Pn) € F(P}, ..., p)). By Lemma 1, any p € F(py,...,p,,) can be expressed as the convex
combination of the n extreme points generating F(py, ..., p,), i.e., p = >, a;p; where a; = 0 for
i=1,..,nand )" ; o; = 1. By definition,

P()AC)
.7:)‘p,...,pn = p’\:pe]:p,...,pn and p*(+) =
( 1 ) { ( 1 ) ( ) Zw’eQ p(w/))\(w/)}
We show that any member of F*(py, ..., p,,) is identical to some member of F(py, ..., p}).
A P(W)A(W) "
pNw) = [Definition]
2rea PWHA(W)

iy aipi(W)A (W)
e Z?=1 aip;(w)A (W)

- ZHZO"’ ’ %"2 gfpe?j)&“zl,)(“) [PL@AW) = Py(@)* - Xy Pol&)AW)]
w/'ef) =1 “g

Y1 Bipj(w) € F(PYs - P)) [Algebral

[Lemma 1]

/

D Pi(W)A(w
e 2iet @iPy (WA (W)

where f3; = with 8; = 0 for all j = 1,...,n and 2?21 Bj = 1.

PROOF OF PROPOSITION 4

Proof. We provide a very simple type of counterexample to individualwise Bayesianity, though coun-
terexamples are plentiful. Consider the profile (p;, py) for n = 2 agents such that p; = p,. Individ-
ualwise Bayesianity requires that F(p;, p3) = F(py, ps) (provided both (py, py) and (py, p3) are in
the domain of F). By Proposition 3 (external Bayesianity), it follows that F*(p;, py) = F(p7, p3).
But since p; = p,, it follows that p{‘ = p%‘. By unanimity (Proposition 2), then, we have
F(pY,p3) = {pi’}, where p}? = p} = p). However, in general p; # p} and so F(py,p3) is
not a singleton. It follows that, in general, F(py,p3) # F*(py, Ps)-

O

PROOF OF PROPOSITION 5

Proof. Suppose that p;,(A|B) = p;(A) for i = 1,...,n. We want to show that F(py,...,p,)(4)
= FB(py,...,p,)(A). Consider p*(A) € F(py,...,p,)(A) and p,(A) € FB(p,,...,p,)(A). By
Lemma 1, p*(4) = > a;p;(A), for appropriate «;. By Proposition 3 (external Bayesianity),
FB(py,....pp)(A) = F(pP,...,pB)(A) (Proposition 3 holds for standard conditionalization since
standard conditionalization is a special case of updating on a likelihood function, as noted in the
body of the paper). So, we have p,(A) = >, 3;pP(A), for appropriate 3;, again by Lemma 1. By
hypothesis pP(A4) = p;(A) for i = 1,...,n. Hence, p,(4) = 3", BipP(A) = X, Bipi(A). Letting
a; = f3;, it follows that F(py, ..., p,)(A) = FB(py, ..., p,)(A). O

PROOF OF PROPOSITION 6

Proof. We show first that M, (py,...,p,,) S conv(py,...,p,) for all (py,...,p,) € P". Since there
are at least three disjoint events, Ay, Ay, A3 € o7, following (Lehrer and Wagner, 1981, Theorems
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6.4, 6.7) and (McConway, 1981, Theorem 3.3), we can exploit techniques and results for functional
equations. For any numbers a;,b; € [0,1] with a; + b; € [0,1], define a sequence of probability
measures, p;, ¢ = 1,...,n by setting

Pz‘(Al) = G

pi(Az) = b

pi(43) = 1—a;—b
Since it is the case that m(py(-), ..., p,(-)) € P for all (py,...,p,) € P" and every m(p,(*), ..., p,(-)) €
My (py, ..., P,), we have it that m(p;(A), ..., p,(A)) = p(A), for some p € P and all A € &/. Now,
by the additivity of probability measures, p(A4; U A2) = p(A1) + p(Az). Hence, m(ay + by, ...,an +
by) = m(al, e an) + m(bl, - bn). So, m satisfies Cauchy’s multivariable functional equation. For
each i = 1,...,n, define m;(a) = m(0, ..., qa,...,0), where a occupies the i-th position of the vector
(0,...,a,...,0). It is clear that m;(a + b) = m;(a) + m;(b) for all a,b € [0,1] with a + b € [0, 1].
Because m is nonnegative, so is m;, i = 1,...,n. By Theorem 3 of (Aczél and Oser, 2006, p. 48), it
follows that there exists a nonnegative constant «; such that m;(a) = a;a for all a € [0, 1]. By the
Cauchy equation we have

m(ay,...,an) =m(ay,0,...,0) + m(0,aq, ..., an)
=m(ay,0,...,0) + m(0, az,0,...,0) + ... + m(0, ..., 0, ay,)

So we have m(aq,...,a,) = my(ar) + ... + my(an) = a1a; + ... + @pa,. And since m(1,...,1) = 1 (by
consideration of the probability of ), it follows that »"" ; a; = 1. Thus, m is a convex combination.

Now, we want to show that conv(py, ..., p,) € Mu(py, ..., P,,)- Let p be an element of conv(py, ..., p,,)-
It is clear that there exists an m € MM, (py, ..., p,) such that m(p,(*),...,p,(-)) = p. And since p
is just a convex combination, there exist weights a1, ...,y € [0,1] such that > ;a; = 1 and
p = Y, a;p;. But for any other profile (g, ...,q,) € P", taking any convex combination yields
a probability measure. In particular, >, a;q; € P. It follows that m € (zpn Mn(g). So,

p=m(p(-),....py(")) € My (p1, ..., p,), as desired.
The two inclusions above show that M, (p,...,p,) = conv(py,...,p,). Hence, F(p;,...,p,) =

conv(py, ..., p,,) is equivalent to F(py,...,p,) = Mu(D1, -, D,)- O
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