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Abstract. This paper is an expository account of some (very elementary) arguments on sums of prime
reciprocals; though the statements in Propositions 5 and 6 are well known, the arguments, to my knowledge,

are original.

Dirichlet’s theorem on primes in arithmetic progression states that if a, b are relatively prime positive
integers, then there are infinitely many primes p satisfying p ≡ a mod b. We present a well-known methods

of proving the special case a = 1, and alter it to obtain an elementary estimate on the sumX
p≡1 mod b, p prime

1

p

in some cases.

1. Introduction

Dirichlet’s theorem on primes in arithmetic progression states

Theorem 1 (Dirichlet). Let a, b be relatively prime integers. Then there are infinitely many primes p
satisfying

p ≡ a mod b.

Consider the degenerate case a = 0, b = 1; then this is simply the claim that there are infinitely many
primes. To prove this, we might consider the sum ∑

p prime

1
p
.

If this sum diverges, then there are certainly infinitely many primes.

Proposition 1. The sum ∑
p prime

1
p

diverges.

Proof. The proof here is similar in spirit to that in Apostol [1], albeit slightly altered. Assume to the contrary
that the sum converges; then there exists N such that

c :=
∑

p>N,p prime

1
p
< 1.

For a fixed prime p, let

Gp = 1 +
1
p

+
1
p2

+ · · · = 1
1− 1

p

.

Now consider the expression
(1 + c+ c2 + c3 + ...)

∏
p≤N,p prime

Gp.

As c < 1, the expression converges absolutely; but by absolute convergence, we may (rearranging terms)
write

(1 + c+ c2 + c3 + ...)
∏

p≤N,p prime

Gp ≥
∑
n∈N

1
n

which diverges by e.g. the integral test. So we have a contradiction. �
1



This proposition suggests another approach—to consider the asymptotics of the sum∑
p prime,p<N

1
p
.

We may easily show the following:

Proposition 2. There exists a constant c, independent of N , such that∑
p prime, p<N

1
p
≥ ln ln(N) + c.

Proof. We have

π2

6
· e

P
p<N

1
p =

(∑
n∈N

1
n2

) ∏
p prime,p<N

e
1
p

≥

(∑
n∈N

1
n2

) ∏
p prime,p<N

(
1 +

1
p

)
≥
∑
n<N

1
n

≥
∫ N

1

1
x
dx

= lnN.

where the second line follows from the Talor series for ex. Taking logarithms on both sides gives the desired
claim. �

How might we generalize these proofs to the situation (a, b) 6= (0, 1)? Consider the following argument:

Proposition 3. There are infinitely many primes p satisfying

p ≡ 1 mod n

for any n > 1.

Before proceeding we need a lemma:

Lemma 1. Let f(x) ∈ Z[x] be a non-constant polynomial. Let

Pf := {p prime | ∃n ∈ N s.t. p|f(n) 6= 0}.
Then Pf is infinite.

Proof of Lemma 1. Assume the contrary, and let p1, ..., pk be an enumeration of Pf . Choose an integer s so
that f(s) = t 6= 0; such an s exists as f is non-constant. Now note that

f(s+ tp1 · · · pkx) = f(s) + tp1 · · · pkg(x) = t(1 + p1 · · · pkg(x))

for some g(x) ∈ Z[x]; in particular, f(s + tp1 · · · pkx) is divisible by t for any x ∈ Z. Now consider h(x) :=
1
t f(s + tp1 · · · pkx) = 1 + p1 · · · pkg(x). But h is non-constant, so we may choose u ∈ Z with h(u) 6= 1. So
h(u) ≡ 1 mod p1 · · · pk, and thus h(u) is divisible by some prime p 6= pi for i = 1, ..., k. But then p ∈ Pf ,
which is a contradiction. �

We now prove the proposition.

Proof of Proposition 3. Let Φn(x) ∈ Z[x] be the n-th cyclotomic polynomial, that is, the minimal polynomial
of a primitive n-th root of unity ζn over Q.

Let a ∈ Z and consider p prime with p | Φn(a) 6= 0, where p - n. Let m be the order of a mod p; we claim
that n = m. Indeed, Φn | (xn− 1), so p | an− 1 and thus m | n. Assume m < n. But then p | Φn(a), am− 1;
but both Φn(x), xm−1 divide xn−1, and the two polynomials are relatively prime mod p (indeed, the former
is irreducible and does not divide the latter), so xn − 1 has a double root mod p at a. But the discriminant
of of xn − 1 is nn, which is non-zero mod p (as p - n), so this is a contradiction. So we must have m = n.
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But note that ap−1 ≡ 1 mod p, so n | p− 1, and thus p ≡ 1 mod n. So any prime in PΦn(x) either divides
n or satisfies p ≡ 1 mod n.

But by Lemma 1, there are infinitely many primes in PΦn(x), and only finitely many primes divide n, so
there are infinitely many primes satisfying p ≡ 1 mod n. �

2. Sums of Reciprocals

Unfortunately, Proposition 3 does not answer the following question: Does∑
p≡1 mod n,p prime

1
p

converge or diverge? Consider the case n = 4.
Our approach to Proposition 3 suggests looking at the number field Q[i], with ring of integers Z[i]. Let

N be the norm map N : Z[i] → Z given by a + bi 7→ a2 + b2, with a, b ∈ Z. Consider the set N(Z[i]) ⊂ Z.
Let r2(n) = |N−1(n)| We claim the following:

Proposition 4. Let n ∈ Z, n = 2sa1a3 where all the prime factors p of aj satisfy p ≡ j mod 4. Then
(1) n ∈ N(Z[i]) only if a3 is a square.
(2) Let b = pq1

1 p
q2
2 · · · p

qk

k be the prime factorization of b. Then

r2(n) ≤ 2q1+q2+···+qk+2.

Proof. (1) First, let p be an odd prime, and assume

p = x2 + y2

for x, y ∈ Z. Noting that the quadratic residues mod 4 are 0, 1, this implies that p ≡ 0, 1, 2 mod 4;
as p is odd we have p ≡ 1 mod 4.

Now consider n ∈ N(Z[i]), that is, n = x2 + y2. As Z[i] is a PID (and thus a UFD), x + iy
factors as (a1 + ib1)q1 · · · (ak + ibk)qk for some primes aj + ibj . Note that N is multiplicative, so
x2 + y2 = (a2

1 + b21) · · · (a2
k + b2k). So we may reduce to the case where n = x2 + y2 with x + iy a

prime. But then N(x+ iy) = (x+ iy)(x− iy) = x2 + y2, so x+ iy divides N(x+ iy). Let p1 · · · pk

be the prime factorization of N(x+ iy) in Z; as x+ iy is a prime, it must divide one of the pj . But
then x− iy = x+ iy must divide pj = pj . So N(x+ iy) = (x+ iy)(x− iy) | p2

j , so x2 + y2 is either
a prime or the square of a prime.

But then by the first paragraph, we have that if x2 + y2 = p an odd prime, p ≡ 1 mod 4. So by
writing n = x2 + y2, x+ iy = (a1 + ib1)q1 · · · (ak + ibk)qk we must have that the odd squarefree part
of n is divisible only by primes p ≡ 1 mod 4, as desired.

(2) Note that the units of Z[i] (e.g. by analysis of the norm) are {1,−1, i,−i}. Note that for p a prime,
p ≡ 3 mod 4, we have r2(p) = 0 and r2(p2) = 4; that is, the preimages are {p,−p, ip,−ip} (as such a
prime cannot split, by the analysis above). For p ≡ 1 mod 4, we have r2(p) ≤ 8 as such a prime may
split into at most two primes (as Gal(Q[i]/Q) = Z/2Z) of the form x− iy, x+ iy. So the preimages
of p are the four units multiplied by these two primes.

Using multiplicativity of the norm and the fact that Z[i] is a UFD, we may write a preimage of
N as x = u(1− i)sa′1a

′
3 where u is a unit and a′1, a

′
3 are the preimages of a1, a3 respectively. We have

four choices for u and one choice for the preimage of 2; having chosen a unit already, each prime
factor of a′3 gives us no choice. Finally, for each prime factor of a′1 we may choose one of the at most
two primes (up to a unit) lying above that prime in Z[i]; let t = q1 + · · · + qk be the total number
of primes (with multiplicity) dividing a1. Then this analysis gives that r2(n) ≤ 4 · 2t = 2q1+···+qk+2,
as desired.

�

Remark 1. Note that Proposition 4(1) is actually an if and only if; we omit the proof of the other direction,
though it follows easily from an analysis of the splitting of primes in Z[i].

We may use this argument to show:
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Proposition 5. The sum ∑
p prime,p≡1 mod 4

1
p

diverges.

Proof. For convenience, let P1,4 denote the set of primes p ≡ 1 mod 4. Assume the theorem is false; then
there exists N such that

c :=
∑

p∈P1,4,p>N

1
p
<

1
2
.

Let Gp be as in the proof of Proposition 1, let

G′p = 1 +
2
p

+
22

p2
+ · · · = 1

1− 2
p

and consider the expression

D := 4 ·

(∑
n∈N

1
n2

)
·G2 · (1 + 2c+ (2c)2 + (2c)3 + · · · ) ·

∏
p≤N,p∈P1,4

G′p.

Note that this expression converges absolutely, by our choice of N . For n = 2sa1a3 as in Proposition 4, with
a1 = pq1

1 · · · p
qk

k , let s2(n) =
∑

j qj , and let t(n) = a1. Then by absolute convergence of D, we may rearrange
terms to achieve

D ≥ 4 ·

 ∑
n∈N,t(n)a square

2s2(n)

n


=

∑
n∈N,t(n)a square

2s2(n)+2

n

≥
∑
n∈N

r2(n)
n

=
∑

z∈Z[i]×

1
N(z)

=
∑

(x,y)∈Z2−{(0,0)}

1
x2 + y2

where the inequality on the third line comes from Proposition 4(2). But this last expression diverges, as∑
(x,y)∈Z2−{0,0}

1
x2 + y2

≥
∑

x≥0,y>0

1
(x+ y)2

=
∑
n∈N

n

n2
=
∑
n∈N

1
n

=∞,

contradicting the claim that D converged absolutely. So we have the desired divergence. �

Remark 2. This argument can easily be extended to the case n = 3, replacing the Gaussian integers with the
Eisenstein integers; it proceeds essentially identically. Unfortunately, we cannot use an identical argument
for primes p ≡ 1 mod n, n > 5 as the estimate in Proposition 4(2) relies heavily on the finiteness of the unit
group of Z[i]. The argument goes through, however, by comparing an expression analogous to D above to the
Dedekind Zeta function of the number field Q[ζn], where ζn is a primitive n-th root of unity—the Dedekind
Zeta function diverges at 1, giving the desired comparison, but the proof of this is non-elementary and thus
we will not exposit it here.

We can, however, find a lower bound on the partial sums of∑
p∈P1,4

1
p
,
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and an analogous argument works for p ≡ 1 mod 3. The proof follows similarly to that of Proposition 2.

Proposition 6. There exists a constant c, independent from N , such that∑
p∈P1,4,p<N

1
p
≥ 1

2
ln ln(N) + c.

Proof. We have

2π2

3
· e2

P
p<N

1
p = 4

(∑
n∈N

1
n2

) ∏
p prime,p<N

e
2
p

≥ 4

(∑
n∈N

1
n2

) ∏
p prime,p<N

(
1 +

2
p

)

≥
∑
n<N

2s2(n)+2

n

≥
∑
n<N

r2(n)
n

≥
∑

0<x2+y2<N

1
x2 + y2

≥
∑

0<(x+y)2<N ; x≥0,y>0

1
(x+ y)2

≥
∑

0<n<N

n

n2

≥ lnN

where the second line follows from the Taylor series for ex and the last line follows by bounding by an
integral, as in the proof of Proposition 2. Taking logarithms on both sides gives the desired claim. �

3. Further Remarks

Unfortunately, it seems that generalizing this argument to large n as in Remark 1 would require estimates
on the partial sums of the Dedekind Zeta function for Q[i]; these estimates are far from elementary. We
might ask how likely such methods are to work for bounding the sum of reciprocals of primes p ≡ a mod b
with a 6≡ 1 mod b.

There are several negative results in this direction:
• First, to have a hope of using norms from the ring of integers of a number field to analyze primes p ≡
a mod b, we must be working in a number field with prime splitting controlled by some congruence
conditions. But by results of Murty in [2], such number fields exist only if a2 ≡ 1 mod b.

• Number fields whose prime splitting is controlled by congruence conditions are Abelian extensions
of Q, by Artin reciprocity; by the Kronecker-Weber Theorem, such fields are subfields of cyclotomic
fields. So a ≡ 1 mod b will often split, and by our own analysis the primes given by this splitting
diverge, dominating or obscuring divergence by primes in other congruence classes mod b. (This is
of course heuristic.)

Note also that Mertens’ Theorem implies that the estimate in Proposition 2 is asymptotically sharp. Consider
the following quantitative form of Dirichlet’s theorem:

Theorem 2 (Dirichlet). Let Pa,b be the set of primes congruent to a mod b, with (a, b) = 1. Then

|Pa,b ∩ {1, ..., n}|
|P0,1 ∩ {1, ..., n}|

tends to 1/φ(b) as n tends to infinity.
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Together with Proposition 2, this implies that the estimate in Proposition 6 is also asymptotically sharp,
as φ(4) = 2.
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