PROBLEM SET: THE TATE CURVE AND RIGID GEOMETRY

DANIEL LITT

1. The Tate curve over \mathbb{C}

- (1) Let $E_{\lambda} = \{ [x:y:z] \mid y^2z = x(x-z)(x-\lambda z) \} \subset \mathbb{P}^2_{\mathbb{C}}.$
 - (a) What is the fundamental group of E_{λ} , for $\lambda \in \mathbb{C} \setminus \{0,1\}$?
 - (b) What is the fundamental group of E_0 ?
 - (c) What is the universal cover of E_0 ?
- (2) Let $\Delta \subset \mathbb{C}$ be the open unit disk centered at 0; let $\Delta^* = \Delta \setminus \{0\}$. Let $E = \{([x:y:z],\lambda) \in \mathbb{P}^2_{\mathbb{C}} \times \Delta \mid y^2z = x(x-z)(x-\lambda z), \lambda \in \Delta\}.$
 - (a) What is the fundamental group of E?
 - (b) Let $\lambda \in \Delta^*$. Then there is a natural monodromy representation

$$\mathbb{Z} \simeq \pi_1(\Delta^*, \lambda) \to GL(H_1(E_\lambda, \mathbb{Z})).$$

compute this representation.

- (c) Fix a point 0 on E_{λ} . Show that the map $H_1(E_{\lambda}, \mathbb{Z}) \simeq \pi_1(E_{\lambda}, 0) \to \pi_1(E, 0)$ factors through the $\pi_1(\Delta^*)$ co-invariants of $H_1(E_{\lambda}, \mathbb{Z})$.
- (d) Let \tilde{E} be the universal cover of E, and let $\tilde{\pi}: \tilde{E} \to \Delta$ be the natural map. What is $\tilde{\pi}^{-1}(0)$? What is $\tilde{\pi}^{-1}(\lambda)$ for $\lambda \in \Delta^*$?
- (e) Fix $\lambda \in \Delta^*$. Describe the action of $\pi_1(\Delta^*, \lambda)$ on $\tilde{\pi}^{-1}(\lambda)$ by deck transformations.
- (3) Let $E_{\tau} = \mathbb{C}/\langle 1, \tau \rangle$ where τ is in the upper half-plane (i.e. $\operatorname{im}(\tau) > 0$).
 - (a) Recall that the Weierstrass \mathfrak{P} -function is the unique $\langle 1, \tau \rangle$ -periodic meromorphic function on \mathbb{C} , holomorphic away from $\langle 1, \tau \rangle$ and with poles of order at most 2 on $\langle 1, \tau \rangle$. Write down a formula for \mathfrak{P} .
 - (b) What algebraic relations are satisfied by $\mathfrak{P}, \mathfrak{P}'$? That is, can you describe the ring $\mathbb{C}[\mathfrak{P}, \mathfrak{P}']$?
 - (c) Writing $\mathbb{C}^* = \mathbb{C}/\mathbb{Z}$ (where the identification is made via the map $z \mapsto e^{2\pi i z}$), \mathfrak{P} descends to a function on \mathbb{C}^* . Write down a formula for this function. Note that it holomorphic away from the multiplicative subgroup of \mathbb{C}^* generated by $q = e^{2\pi i \tau}$, and is periodic for this subgroup.

2. Basic algebra and geometry of affinoids

- (1) Let $R = \mathbb{Z}_p[x_1, \dots, x_m]$.
 - (a) Let \widehat{R} denote the completion of R at the ideal p. Describe the image of $\widehat{R}[1/p]$ in $\mathbb{Q}_p[[x_1, \dots, x_m]]$ under the natural map.
 - (b) Describe the image of the natural map

$$(\mathbb{Z}_p[[x_1,\cdots,x_m]])\otimes_{\mathbb{Z}_p}\mathbb{Q}_p\to\mathbb{Q}_p[[x_1,\cdots,x_m]].$$

Is it the same as the answer to part (a)?

(c) What are the maximal ideals of $\widehat{R}[1/p]$?

We call the ring R[1/p] defined above a Tate algebra, and denote it $\mathbb{Q}_p\langle x_1, \cdots, x_m \rangle$.

- (2) Consider the map $\mathbb{Q}_p\langle x,y\rangle \to \mathbb{Q}_p\langle x,y\rangle/(xy-p)$ sending x to px and y to py.
 - (a) What is the image of the induced map $\operatorname{MaxSpec}(\mathbb{Q}_p\langle x,y\rangle/(xy-p)) \to \operatorname{MaxSpec}(\mathbb{Q}_p\langle x,y\rangle)$?
 - (b) Draw a picture of the above map. What does your computation for part (a) mean geometrically? Is the local geometry analogous to the local geometry of problem (1) of Section 1?
 - (c) Let $f \in \mathbb{Z}_p[x,y]$ satisfy f(0,0) = 0, and suppose $V(f)_{\mathbb{F}_p}$ is smooth at (0,0). Again, let $\mathbb{Q}_p\langle x,y\rangle \to \mathbb{Q}_p\langle x,y\rangle/(f)$ be the map sending x to px and y to py. What is the image of the induced map $\operatorname{MaxSpec}(\mathbb{Q}_p\langle x,y\rangle/(f)) \to \operatorname{MaxSpec}(\mathbb{Q}_p\langle x,y\rangle)$? How does it differ from the picture above? What is the complex-analytic analogue of this situation?
- (3) Let $f_i: \operatorname{MaxSpec}(\mathbb{Q}_p\langle x, y\rangle \to \operatorname{MaxSpec}(\mathbb{Q}_p[x, y])$ be the map given by sending x to x/p^i and y to y/p^i . Show that $\operatorname{MaxSpec}(\mathbb{Q}_p[x, y])$ is the rising union of the images of the f_i . Can you give a similar description of \mathbb{G}_m as a rising union of the images of $\operatorname{MaxSpec}(A_i)$, where each A_i is a Tate algebra?

3. Basic deformation theory

- (1) Let A be a commutative ring and B an smooth A-algebra. Let $A' \to A \to 0$ be a surjection of rings with kernel I, and suppose that $I^2 = 0$. (Hint: it might help to do this problem and the next simultaneously.)
 - (a) Show that there exists a smooth A' algebra B' and an isomorphism $B' \otimes_{A'} A \stackrel{\sim}{\longrightarrow} B$.
 - (b) Show that any two such B' are isomorphic.
 - (c) Give an example of the following: X is a scheme, $Y \to X$ is a smooth morphism, and X' is a scheme with X embedded as a closed subscheme $X \hookrightarrow X'$ defined by an ideal sheaf $\mathscr I$ with $\mathscr I^2 = 0$, but there exists no smooth $Y' \to X'$ such that $Y' \times_{X'} X \simeq Y$. (By part (a), there are no examples with X, Y affine.)
 - (d) Now suppose that B is an étale A-algebra. Show that any two lifts B' to A' are canonically isomorphic.
 - (e) Suppose $Y \to X$ is an étale morphism and X' is a scheme with X embedded as a closed subscheme $X \hookrightarrow X'$ defined by an ideal sheaf $\mathscr I$ with $\mathscr I^2 = 0$. Show that there exists Y' étale over X' with $Y' \times_{X'} X \simeq Y$.
- (2) Again, suppose X is a scheme, $f: Y \to X$ is a smooth morphism, and X' is a scheme with X embedded as a closed subscheme $X \hookrightarrow X'$ defined by an ideal sheaf $\mathscr I$ with $\mathscr I^2 = 0$. As above, a deformation of Y over X' is a flat (necessarily smooth) X' scheme Y' along with a choice of isomorphism $\phi: Y' \times_X X'\widetilde{Y}$. A morphism of deformations $(Y_1, \phi_1) \to (Y_2, \phi_2)$ is a morphism $Y_1 \to Y_2$ over X', intertwining the ϕ_i 's.
 - (a) Show that automorphism group of a deformation Y' is isomorphic to $\operatorname{Hom}(\Omega^1_{Y/X}, f^*\mathscr{I}).$
 - (b) Show that if the set of deformations of Y over X' is non-empty, it is naturally a torsor for $\operatorname{Ext}^1(\Omega^1_{Y/X}, f^*\mathscr{I})$.

(c) Show that there is a natural (functorial) class

$$\operatorname{ob}_{Y/X} \in \operatorname{Ext}^2(\Omega^1_{Y/X}, f^*\mathscr{I})$$

whose vanishing is equivalent to the existence of a deformation of Y over X'.

(d) * Now let $X = \operatorname{Spec}(k)$ and let Y be a (proper) nodal curve over X. Is there a sheaf on Y which controls its deformation theory, as Ω^1 controls the deformation theory of smooth schemes? What is the deformation-obstruction theory of an irreducible nodal cubic? What is the deformation theory of a stable curve, each of whose components is isomorphic to \mathbb{P}^1 ?

4. The Tate curve

- (1) Let $q \in \mathbb{Q}_p^{\times}$ be such that $|q|_p < 1$.
 - (a) Describe the Galois action on the Tate module of $\mathbb{G}_m/q^{\mathbb{Z}}$.
 - (b) Let E/\mathbb{Q}_p be a curve with split multiplicative reduction with origin 0; let E' be the special fiber of a semistable model. Describe the specialization map $\pi_1^{\text{\'et}}(E_{\overline{\mathbb{Q}_p}},0) \to \pi_1^{\text{\'et}}(E'_{\overline{\mathbb{F}_p}},0)$. Compare this to the complex-analytic situation.
 - (c) * Show that the quotient $\mathbb{G}_m/q^{\mathbb{Z}}$ exists in the category of rigid spaces over \mathbb{Q}_p .
 - (d) What is the endomorphism group of the Tate curve $\mathbb{G}_m/q^{\mathbb{Z}}$, viewed as a rigid space?
- (2) * Imitate the complex-analytic construction (and the construction in the lecture) to make a version of the Tate curve as a formal scheme over $\mathbb{Z}[[q]]$. (That is, construct a formal scheme over $\mathbb{Z}[[q]]$, such that after base change along any continuous homomorphism $\mathbb{Z}[[q]] \to \mathcal{O}_{K_v}$, with K_v a local field, one obtains a formal model of the Tate curve over \mathcal{O}_{K_v} with uniformizing parameter q.)