Children consider many factors when learning novel information from others (Mills, 2013). One factor is expertise: even 3-year-olds understand that different jobs are associated with different types of knowledge (Lutz & Keil, 2002).

Another influential cue is consensus, or majority agreement (Corriveau, Fusaro, & Harris, 2009). For example, preschoolers are more likely to endorse a novel object label provided by a unanimous majority rather than a lone dissenter (Corriveau et al., 2009).

We examined whether participants would endorse an expert’s evaluation about the quality of a character’s music or art, or whether they would instead defer to a dissenting consensus of laypersons. We also examined whether the type of evaluation provided (positive or negative) influenced children’s acceptance of the information. Previous research indicates that children are sensitive to the valence of information provided when making trait attributions (Boseovski, 2012), behavioral predictions (Boseovski, Chiu, & Marcusitch, 2013), and judgments about friendship (Kinzlet & DeJesus, 2013).

### Study 1

**Method:**

48 4- to 8-year-olds heard stories about an expert informant who judged art or music produced by a target child as either “very good” or “very bad.” Participants were also told about the dissenting (i.e., opposite) opinion expressed by one layperson or three laypersons.

Children were asked:

> "Who do you think is right about [Target’s] picture/song?" for which stories were combined across stories.

> "If you wanted to learn how to draw/play music, who would you rather learn from?"

**Results:**

Correctness question:

2 (age: 4-5 years vs. 6-8 years) x 2 (participant gender: male vs. female) x 2 (expert valence: positive vs. negative) x 2 (layperson consensus: low vs. high) mixed ANOVA revealed a significant effect of expert valence, $F(1, 32) = 17.46$, $p < .001$ (see Figure 2). When the expert provided a positive evaluation, participants judged it as correct irrespective of hearing a negative evaluation from one or three layperson dissenters, $(p > .05)$. When the expert provided a negative evaluation, participants were more likely to judge it as correct when it conflicted with only one positive layperson evaluation vs. three such evaluations, $(p < .001)$.

There was no significant effect of age, $F(1, 32) < 1, p > .05$. Both younger and older children responded at chance levels on this question $(p > .05)$.

Future learning question:

There was a significant main effect of age such that older children were significantly more likely than younger children to want to learn from the expert in the future, $F(1, 32) = 5.79, p = .02$. Older children were more likely than expected by chance to want to learn from the expert $(p = .01)$, whereas younger children responded unsystematically $(p > .05)$.

**Discussion:**

These findings indicate that participants were influenced to a large extent by positive information, rather than expertise or consensus, when judging artistic competence. Indeed, participants accepted positive information from an expert readily irrespective of consensus level, but used consensus selectively to discount the expert’s negative evaluation.

These results suggest that previous findings of an early sensitivity to expertise (e.g., Lutz & Keil, 2002; Keil, Stein, Webb, Billings, & Rizcorbit, 2008) may be qualified in conditions that are evaluative. The current findings are consistent with research that has documented a positive bias in children of this age range (Boseovski, 2010), including reluctance to use consensus information to make negative trait evaluations (Boseovski & Lee, 2008).

Interestingly, older children were more willing than younger children to choose to learn from the expert in the future, suggesting that they were indeed sensitive to expertise, but perhaps unwilling to make a negative assessment of the work (i.e., stating that it was "very bad") due to empathy-related reasons or self-presentational concerns. In Study 2, the phrasing of the feedback was modified to explore this possibility.

---

**References**


---

**Figure 1: Stimuli**

**Figure 2: Mean number of expert selections by evaluation type and consensus level for Study 1.**