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ABSTRACT

In this work, we study the communication dynamics and informa-
tion propagation of real-world events through the contact networks
of mobile phone users. Previous studies have shown that these
‘bread-crumbs’ of digital traces can act as in situ sensors for human
behavior, allowing for quantifying social actions and conducting
social studies at an unprecedented scale. However, most work in
utilizing these proxies has focused on the study of human dynam-
ics under regular and stationary situations, with little research on
the quantitative understanding of human behavior under extreme
events. In this work, we examine three events with different size
and geographical scope and show that (i) human communications
are both temporally and spatially localized during such events; and
(ii) various types of events produce a distinct human communica-
tions signature both on a temporal and a spatial scale.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Communications Ap-
plications, Miscellaneous

Keywords

Social Norms, Activity patterns, Call Detail Records

1. INTRODUCTION

Humans have an innate need to connect and share information
with others. This is especially profound during times of rare events,
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when we are anxious to communicate with our loved ones. Study-
ing the dynamics of human communications and information shar-
ing behavior in these circumstances has multiple practical benefits;
we are particularly interested in its application to enhance the ca-
pacity of public safety organizations. We motivate this as follows:

Imagine a scenario where some set of individuals witness an ex-
treme event (e.g., heavy rains, a large fire outbreak, etc.). These
individuals then communicate about this event with others in their
social circles. At the same time, various law enforcement and pub-
lic safety organizations are at work trying to quickly assess the
scope and size of the event. Early on, when the situation is volatile
and unclear, these agencies may be able to benefit from tools that
can aggregate and analyze the intensity and dynamics of ‘chatter’
across various communication mediums generated by witnesses on
the ground. In this paper we address the question whether it is
possible for external observers (such as public safety agencies) to
witness the dynamics of this communication, without necessarily
monitoring the actual content, and still be able to make an infer-
ence about the scope and the size of the event?

A sizable portion of the world’s population currently utilizes mo-
bile phones and social media (e.g., Twitter, Facebook) for much
of their communications [1, 8]. Previous work [5, 7, 10, 11] have
shown that these ‘bread-crumbs’ of digital traces can act as in situ
sensors for human behavior; allowing for quantifying social actions
and conducting social studies on an unprecedented scale. However,
most of this work in utilizing such proxies has focused on studying
the human dynamics under regular and stationary situations, with
little work on quantitative understanding of human behavior under
extreme events [6, 12].

In this work, we study the human dynamics and information
propagation of real-world events through the contact networks of
mobile phone users. We utilize a large dataset of Call Detail Records
(CDRs), which are kept by telecommunication companies for billing
purposes, as a proxy into human behavior during emergencies. Ev-
ery time a user makes a phone call, sends a text message, or uses
the Internet, the mobile network keeps a record of their usage infor-
mation and location [2], with all personal data being anonymized.
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We start by extracting three different extreme events from our
CDR dataset. The first is a fire outbreak at a remote waste treat-
ment plant near an industrial city in a Middle Eastern country, re-
sulting in several fatalities and injuries. The second event is a major
sports fixture with more than 25,000 attendees. The third event is
a weather scare event where the forecast of heavy rains prompted
early school closures, creating considerable consternation and in-
convenience among concerned parents. These events can broadly
be categorized into two categories based on prior awareness about
the event as well as its scope and size: (i) events whose existence
was known in advance to a large number of people (both the sports
fixture and the rain scare event in a major metropolitan city); and
(ii) events whose existence was unforeseen and was limited in their
effect (the fire outbreak in a remote factory).

Our results in this paper show that these types of events trigger
an anomalous change in behavior and a spike in the communica-
tion activity of those who witnessed it. Although this phenom-
ena has been observed in previous studies (i.e., [3,4,6] ), we show
that the three events have a unique signature as reflected in their
spatio-temporal analysis. This signature reflects both the size and
the scope of the event in terms of number of people who communi-
cated about it and can be used to distinguish events.

Our main contributions in this paper are as follow: using spatio-
temporal analysis of the human communication signature pattern
across different types of extreme events, we show that:

e Human communications are both temporally and spatially lo-
calized during such events.

e Various events produce a distinct human communications sig-
nature both on a temporal and a spatial scale.

2. DATA DESCRIPTION

The dataset consists of one full month of records for an entire
country, with 3 billion mobile activities to over 10 thousands unique
cell towers, provided by a single telecom service provider. Each
record contains an anonymized user ID, the type of activity (i.e.,
SMS, MMS, call, data etc), the cell tower ID facilitating the ser-
vice, duration, and time stamp of the activity. Each cell tower ID is
spatially mapped to its latitude and longitude. For privacy consid-
erations, user ID information has been anonymized by the telecom
operator.

Previous studies [7, 9] have shown that human communication
patterns are highly heterogeneous, with some users using their mo-
bile phone much more frequently than others. The characteristics
of the dynamics of individual communication activity obtained in
Fig. 1 supports such hypothesis. Fig la shows the Empirical Cu-
mulative Distribution Function (ECDF) of the activities duration.
We find that almost 75% of the duration of the conducted activities
last for 70 seconds or less. Fig. 1b shows the statistical distribution
of the number of communication records generated by the users for
a single day. Fig Ic shows the inter-event time distribution P(Ar)
of calling activity, where Ar is the time elapsed between consec-
utive communication records (outgoing phone calls and SMS) for
the same user. These results conform to the findings of previous
studies [7, 9], which increases our confidence in the validity of our
dataset.

3. PRELIMINARIES

In this section, we introduce the terminology that we use in our
work:

o We first identify the start and end time (#y4,; and t,,,4, respec-
tively) for the three events. For the factory explosion, both

(a)

“#Activities ST A
(b) (©)

Figure 1: Communication patterns in the CDRs dataset

tstare and t,,4 correspond to the time of the explosion. For
the football match, these correspond to the match start and
end times, respectively. For our weather event, we used the
historical hourly weather data to identify #yq,s and t.,; for
the rain in the first half of the day.

e We define event duration as a time interval spanning 30 min-
utes before #44,; and 90 minutes past #,,,.

Witnesses are users in the vicinity of the event who commu-
nicated during the event duration, as registered in our dataset.
While we have no means to verify the content of their com-
munication, considering their proximity and the significance
of the event, we assume that the witnesses chose to commu-
nicate about the event.

o For our baseline reference, we use activities preceding 3 work-
ing days before the event. This was necessitated by several
factors: (i) We use working days since the activity levels on
weekends are considerably different; (ii) we use preceding
working days since some types of events alter user behavior
after the event. For example, following the factory explo-
sion, the closest cell towers show a reduced activity level for
the remainder of the month. We suspect this may be because
some workers were asked to stay at home or report to a dif-
ferent site while the factory repairs were being performed.

4. TEMPORAL BEHAVIORAL CHANGE
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Figure 2: The influence of a fire outbreak, sport fixture, and rain scare on the temporal and spatial patterns of mobile phone activity

In order to analyze the impact of extreme events on communi-
cation patterns, we log the activities observed by the cell towers
closest to location of incidents. We decompose the daily mobile
phone activities into 288 five minutes interval. We quantify the
magnitude of the effect of the incident on the communications ac-
tivity by reporting the variation of the activity level from the norm
at these cell towers. The normal pattern is determined by averag-
ing the activity across three preceding business days, as described
in Section 3. We denote the normalized activity levels during the
day of the event and normal days as Veyenr and Vi,pmar, respectively.
Our results in Fig 2 show that there exists an abnormal behavior in
calling activity where the nature of the event seems to control both
the temporal and spatial propagation of the event.

The first row in Fig 2 shows the temporal behavior of calling
volume for the emergency event Veyen; and normal days V,,,mar-
The second row shows the deviation from the mean for the events
observed. The deviation is quantified as the following:

— ‘Ve\*em —Voormal |

P (t ‘AV) 2. Vaormat

where AV = |Vevenr — Viormat|» the vertical dashed line in the figure
represents the start time of the event . Fixing the spatial dimen-
sion during the analysis highlights the localized temporal behavior
of the mobile phone activity levels.

Fig 2 shows signatures of the three events on the temporal and
spatial dimensions. First, a fire outbreak shows a spike in phone
call activity occurring right after the incident. The plot shows that
the variation in activity from the normal daily activities is signifi-
cantly large. We also observe that the change in activity pattern is

temporally localized, with high activity levels for around 30 min-
utes before returning to normal levels.

For the sports fixture, we observe three distinct spikes in commu-
nication activities. The first spike corresponds to the gradual build-
up with the arrival of spectators prior to #y,,; the second deviation
corresponds to the peak at half time (roughly 45 minutes past #s4,¢),
while the third spike corresponds to the end of the match.

For the rain scare event, we observe that the communication
patterns also reflect a build-up before 7y, the rain start time as
obtained from historical weather records. This is because of the
weather forecast, many schools started calling the parents before
the rains started to alert them that they are cancelling classes for the
day. News reports suggest that this happened earlier in the morn-
ing, at some schools within a short time of when the parents had
just dropped off their children, resulting in traffic congestion and
considerably inconvenience.

5. SPATIAL BEHAVIORAL PROPAGATION

In order to study the spatial propagation of the event, for each
event we observed the deviation in activity between the cell towers
in close proximity of the event to the surrounding cell towers. We
used the Haversine formula to calculate the shortest distance D of
a cell tower from the event (ignoring any hills, etc.)

After observing an event and finding its closest cell tower, we
define the set of towers belonging to a certain radius d as follows:

04 ={c1,¢2,¢3,..cscn & |dist(Coventsci) —d| < o}
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where dist(Cevent,cn) is the Haversine distance between the cell
tower closest to an event c,yen; and any other cell towers denoted as
c;. Hence, G, is the set of cell towers that are of distance between
d — o and d + o from the closest tower to an event Copens. We then
quantify the average deviation around a distance d with a threshold
« as the following:

_ Leeo, P/AV)
oyl

The spatial propagation of the events, as measured, is shown in
the last row of Fig. 2. The correlation coefficient r and the p-value
for each event is also listed. Similar to the temporal behavioral
change, we observe that the spatial behavioral propagation for the
three events also shows a distinct signature. For the fire outbreak
in a remote factory, the plot shows a negative linear correlation
between the variation in calling activity and the distance from the
incident. Events such as fire outbreaks where immediate attention
is required are very highly localized spatially and temporally. Inci-
dentally, the highest change in activity is observed at a tower about
3km from the site of the event, but close to the housing facilities of
the workers at the plant. We suspect that this reflects calls made by
families and friends to inquire about the well-being of their loved
ones.

The sports fixture shows weak spatial localization (r = —0.06
and r > 0.05). We suspect that this is because popular sports fix-
tures with large fan followings are broadcast live on TV, and thus
the impact of such fixtures reflects a wider spatial propagation cour-
tesy of the ‘virtual witnesses’, all of whom may not be at the actual
scene of the event.

While it is easy to identify the geographical point-of-activity for
the fire outbreak and the sports event, such identification may not
be possible for events that impact the entire city, such as severe
weather. For the rain scare event, we show the spatial propagation
of the event from the city center to its periphery in steps of 1km.
Unlike the previous two events, we observe a positive correlation
coefficient with increasing distance; this is because many schools
wishing to expand their facilities are choosing to relocate to new
development areas at the periphery of the city rather than the city
center to save on their costs.

For the three events, we observe that the fire outbreak is most
narrowly localized in space (similar to what has been shown by [4],
in a boom attack event), unlike football matches that are not espe-
cially localized or city scale events such as weather alerts.

u(c4)

6. SUMMARY AND FUTURE DIRECTION

A sound quantitative understanding of human behavior under
duress is essential for a number of practical problems faced by
emergency responders, ranging from emergency detection to traf-
fic control and management. In this work we showed that various
types of events produce a distinct human communication signatures
both on a temporal and a spatial scale.

This analysis using our CDR dataset may reflect some of the
properties specific to our dataset. For example, the mobile phone
penetration rate for our Middle Eastern country is up to 180%.
Thus, it is not uncommon for a person to own two or more mo-
bile phone numbers. Second, our CDR data is spatially mapped to
the locations of the cell towers, and not the actual locations of the
users making the phone calls, and therefore the coordinates of cell
towers are used as a proxy to the locations of users. Finally, since
we have only a one month worth of data, we limit our comparative
baseline to use data for 3 working days prior to the event as some
events occur early during the month.

In our on-going work, we are building quantitative understand-
ing of the dynamics of links creation and network evolution during
extreme events. In addition, we will investigate the universality
of behavioral changes. For example, does it hold across types of
events, cultures and demographics? We will also attempt to under-
stand the dynamics of the social network and on the information
network during extreme events.
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