THE STATUS OF GILIA TENUIS

LATIN NAME: *Gilia (Aliciella) tenuis* Smith and Neese

COMMON NAME: Mussentuchit gilia

FAMILY: Polemoniaceae

STATE OF OCCURRENCE: Utah

CURRENT FEDERAL STATUS: Former Category 2 (but Porter and Heil 1994 say “Federal Candidate Priority 1.”)

AUTHOR OF REPORT: Allison Jones

DATE: January, 2003
TABLE OF CONTENTS

1. GENERAL SPECIES INFORMATION ..

 Nomenclature and Taxonomy ..

 History of knowledge of taxon ...

 Species Description ..

 Non-technical description ..

 Technical description ...

 Habitat ...

 Life History and Ecology ...

 Competitive interactions, and herbivory

 Pollination, reproduction and seed dispersal

 Niche, and rarity

 Summary, life history and ecology

II. SPECIFIC SPECIES OCCURRENCES

 Range/geographic distribution ...

 Known, Current Occurrences ...

 Last Chance population

 Chimney Canyon population

 Seger’s Hole population

 Coal Wash population / Secret Mesa population

 Prickly Pear Bend population
Capitol Reef population
Split population
Lost & Found population
Seger’s Road population
Bighorn Pocket population
Erin’s Flat population
Gypsum Theory population
Horsefly Hell population
Lost Wash population
Keyhole population
South of Slaughter population
Seger’s Overlook South population

Potential Occurrences ..

Occurrence Summary/Current Population Status

III. CURRENT MANAGEMENT

Present Legal Status ..

Past and Present Conservation Efforts

Inadequacy of Existing Regulatory Mechanisms

IV. CURRENT AND FUTURE THREATS

Livestock Grazing ...

Recreation/ORV Use ..

Oil and Gas exploration and development

Mineral Extraction ..
Other Threats

Collection
Sand or gravel quarrying
Road building and maintenance
Pesticide Use
Exotic weed infestations

IV. ASSESSMENT AND CONSERVATION RECOMMENDATIONS

V. LITERATURE CITED
SPECIES STATUS REVIEW

Mussentuchit gilia (Gilia tenuis)

This report is a synthesis and summary of the best available information on the biology, ecology, and current status of the Mussentuchit gilia (Gilia tenuis). The Mussentuchit gilia is a rare upland forb species, endemic to Utah and restricted to the western slope of the San Rafael Swell, in eastern Sevier County, northern Wayne Country, and western Emery County, Utah. This report contains the best available information about the plant’s biological characteristics and the condition of each known population. Any gaps in the information available about the species have been noted where appropriate in the body of the report. Such gaps represent topics deserving for further research and monitoring by various agencies and individuals and are noted in part to identify areas in need of further study.
I. GENERAL SPECIES INFORMATION

Nomenclature and Taxonomy

Mussentuchit gilia (*Gilia tenuis*) Smith and Neese, originally named by F.J. Smith and E.C. Neese in 1989 (Smith and Neese 1989), belongs to the Polemoniaceae family and to the (former) *Gilia* section of the genus *Giliandra* (the formerly recircumscribed genus *Aliciella*), which is comprised of between 19 and 23 species (Porter and Heil 1994). The remainder of (former) *Gilia* (a polyphyletic assemblage), portions of which are neither related to each other nor to *Giliandra*, contains between 75 and 103 species in both North and South America.

Recent phylogenetic analyses within Polemoniaceae have provided evidence that the current circumscription of *Gilia* recognizes and gives taxonomic status to a polyphyletic assemblage of species. As a first step to rectifying this problem, Porter (1998) resurrected the genus *Aliciella* and recircumscribed it to include the *Gilia* section *Giliandra*. The recircumscription of *Aliciella* was part of a larger reorganization of the family Polemoniaceae as a result of recent genetic work (Porter and Johnson 2000). While the recircumscribed genus *Aliciella* is likely to be adopted by the Botanical Congress (personal communication, Mike Windham) and included in the next revision of *A synchronized checklist of the vascular flora of the United States, Canada and Greenland* (Kartesz, 1994) as the true, global nomenclature (rather than *Gilia*), for the purposes of this status review the original name given the species (*Gilia*) is retained. This is in keeping with the current policies of the Utah Department of Natural Resources’ Natural Heritage Program and the Salt Lake Office of the U.S Fish and Wildlife Service (USFWS), which are, for now, retaining *Gilia tenuis* at the state level for monitoring and management purposes (personal communication, Ben Franklin and Larry England).

According to Thorne (1992), the overall taxonomy of *Gilia tenuis* is listed as the following: Class Angiospermae; Subclass Dicotyledoneae (Magnoliidae); Superorder Solanae; Order Solanales; Suborder Polemoniineae; Family Polemoniaceae. It is likely that none of the existing classifications accurately reflect the inter- and intra-phylogenetic relationships of Polemoniaceae, which has been difficult for taxonomists to classify. Gene sequence data has provided evidence that Polemoniaceae is part of a lineage of “Ericalean” groups (Olmstead et al. 1992) closely related to Diapensiaceae and Primulaceae (Chase et al., 1993, Porter and Heil 1994).

A preliminary analysis of phylogenetic relationships within *Gilia* section *Giliandra* provides evidence that *Gilia tenuis* is most closely related to *G. Caespitosa* (Porter 1993, personal communication, Porter, 2002), a narrow endemic species of Wayne County, Utah. The distribution of these two species relative to other *Gilia* section *Giliandra* species shows that these two rare species are at the northwestern extreme of the distribution of this monophyletic lineage of the species (Figure 1). There is also evidence that these two species share a more recent common ancestor than with other *Gilia* section *Giliandra* species, and
this represents recently diverged lineages that are geographically adjacent to populations of their closest relative (G. subnuda, Porter and Heil 1994).

Here insert Figure 1 which neatly shows cladogram depicting the other Gilia spp and their phylogenetic relationships to one another.

History of knowledge of taxon: As far as is known by the literature, Gilia tenuis was likely first collected in 1932 by Walter P. Cottam, in the “San Rafael Swell,” and identified only as Gilia. Cottam’s specimen(s) were subsequently re-analyzed by botanists in the 1950’s and 1960’s and were recognized as being related to either G. subnuda A. Gray or G. leptomeria A. Gray. What was likely to be Gilia tenuis was not collected again until 1980 when Duane Atwood and Robert Thompson found the plant near Last Chance Creek (Smith and Neese 1989). They also suggested it was closely related to G. subnuda. During a Threatened and Endangered plant survey in the Bureau of Land Management (BLM) Richfield Field Office District in the 1980’s, this species was again collected along Mussentuchit Creek (a tributary of Last Chance Creek) by Frank Smith. Within three years of Smith’s Mussentuchit collections, additional collections were made both near Last Chance Creek and near Muddy Wash at the west base of the San Rafael Swell. As a result, G. Tenuis was described as a new species (Smith and Neese 1989). The type specimen was collected on May 14, 1987 at the head of Mussentuchit Creek, 0.9 miles west of the Emery County line, and 6.8 air miles south of Fremont Junction, T25S, R5E, Sect 1, NW ¼, at 1900 m. elevation.

Following the description of G. Tenuis, additional field surveys for the plant were conducted between 1989 and 1993 by Ron Kass (Kass 1990a, 1990b) and J. Mark Porter. In 1994 a status review of G. Tenuis was conducted by J. Mark Porter and Kenneth Heil (Porter and Heil 1994). Since the status review was completed, Debra Clark, working for both the National Park Service (NPS) and the BLM, has conducted recent surveys for the species in the San Rafael Swell and Capitol Reef National Park.

In general, based on the various survey work detailed above, there are no alternative taxonomic treatments at present for Gilia tenuis. There is no question that G. Tenuis is sufficiently distinct from other members of the Gilia subnuda lineage (G. Subnuda A. Gray, G. Caespitosa A. Gray, G. haydenii A. Gray, G. Formosa Greene ex Brand), based on both morphology, and genetic work (Wolf and McCracken 1998, McCracken 2001, personal communication Mark Porter, personal communication with Carrie McCracken).
Species Description

Non-technical description: *Gilia tenuis* is a flowering plant with 1 to 5 or more stems which have a cluster of small leaves at the base (Figure 2). The stems are either naked or have very small leaves. Both the stems and the leaves have small, sticky hairs which can cause sand to adhere to them...in some cases making the plant actually appear to be almost white. Anywhere from two to five tube-shaped flowers cluster at the end of each stem. Flower color varies from white to deep blue, but it is usually pale blue (Porter and Heil 1994).

Here insert Figure 2 - digital photo of G. tenuis

Gilia tenuis looks very much like a dwarf *G. subnuda*, but with pale blue flowers rather than red. Likewise, the tendency to have more entire leaves and more perennial habit will cause one to confuse this plant with *G. caespitosa*, but *G. tenuis* has pale blue flowers rather than red.

Technical description: Perennial herbs from taproots and a commonly branched caudex, this clothed with brownish, marcescent leaves; stems 0.5-2 dm tall; herbage densely glandular-puberulent and typically with adhering sand grains; becoming stipitate-glandular above; basal leaves 0.4-5 cm long, 0.1-0.9 cm wide, spatulate to narrowly oblanceolate or obovate, merely toothed or pinnately lobed to entire, the blade much broader than the length of the teeth or lobes; inflorescence paniculately cymose, inconspicuously bracteate, the flowers typically solitary or few near branch ends, calyx 4-6 mm long, the triangular to lance-attenuate lobes mainly shorter than the tube; corolla pale blue, the tube 9-13 mm long, the limb 3-10 mm wide; stamens equally inserted, the anthers exserted from the corolla tube or barely included; capsules included in the calyx; seeds few per locule, slightly mucilaginous when wet; 2n=16 (Welsh et al 1987).

Habitat

(geography, geology, abiotic factors) *G. tenuis* is restricted to the sandstone outcrops and sandy detrital slopes between 5,000 and 7,000 feet elevation on the west slope of the San Rafael Swell on the Colorado Plateau. The San Rafael Swell occurs in a relatively arid, temperate region characterized by arid to semi-arid climates where potential evaporation greatly exceeds precipitation. Mean annual precipitation, which arrives as both summer and
winter precipitation, ranges from 12 cm to 25 cm. Mean annual temperatures also vary depending on elevation, and range from winter lows between -8°C and 0°C and summer highs between 30°C and 37°C (Loope 1977, Kass 1990). This region is also characterized by very low average relative humidity, which contributes to great fluctuations between diurnal and nocturnal temperatures.

G. tenuis can occur at any aspect and is most frequently associated with light-colored, coarse-textured sandstone (Porter and Heil 1994). The original paper by Smith and Neese (1989) describing the species describes it as occurring on “sparsely vegetated, fine-textured, pale, poorly cemented, Jurassic and lower Cretaceous sandstones.” It frequently occurs on cliffs, ledges and other exposed outcrops, where it grows in detritus, eolian sands or cracks in the sandstone bedrock. The plant is not restricted to a specific geological formation, but rather it is associated with a class of formations which share similar characteristics such as the Dakota, Curtis and Navajo sandstone formations (Clark 2000 and 2001), and which can range from calcareous substrates to pure sand. In all cases, *G. tenuis* is found on fine to course textured, easily erodible, light colored sandy substrates. Although described by other authors as occurring on limestone (Smith and Neese 1989, Atwood et al. 1991), this has been shown to essentially be incorrect (Porter and Heil 1994), even by one of the original authors that once described it as such (Smith and Neese 1989).

(floristic associations) *G. tenuis* occurs on the San Rafael Swell, which lies within the Canyonlands section of the Colorado Floristic Division of the Intermountain Region (Cronquist et al. 1972). The Canyonlands section is characterized by broad desert plains dissected by deep canyons, low structural upwarps and laccolithic mountains. The flora of the Canyonlands section has its origins with both montane and desert floras (Welsh 1978), with close floristic relationships with the Mojave, Navajoan and Great Basin deserts, as well as with the montane flora from the Wasatch and Utah High Plateau ecoregions.

G. tenuis is associated with a rather unusual mixture of mountain brush, pinyon-juniper (PJ) woodlands, and cushion plants of the desert shrub association. It is most usually found in association with open pinyon pine (*Pinus edulis*) and Juniper trees (*Juniperus ostersperma*), which are in turn often mixed with some elements of Mountain Brush communities such as *chrysothamnus nauseosus* and *Cercocarpus intricatus* (Porter and Heil 1994; Clark 2000, 2001). Multiple species of desert cushion plants are commonly associated with *G. tenuis*. This makes the habitats containing *G. tenuis* aberrant, as most PJ woodlands are not known to contain cushion plants. Other species often associated with *G. tenuis* include *Cercocarpus montanus*, *Amelanchier utahensis*, *Shepherdia rotundifolia*, *Atriplex confertifolia*, *Ephedra toreyyana*, and *Wyethia scabra*. In general, *G. tenuis* is never a dominant species in the communities where it occurs; rather it is considered an occasional to infrequent member of those communities.

There are a number of endangered plants and candidate species that have been found in association with, or nearby populations of, *G. tenuis*. These include despain footcactus (*Pediocactus despainii*), Barneby thelypody (*Schoencrambe barnebyi*), Wright’s fishhook cactus (*Sclerocactus wrightiae*), and Maguire’s daisy (*Eriogeron maguirei*, Kass 1990a, 1990b, personal communication, Larry England). Of these, *E. maguirei* is found significantly
more often with *G. tenuis* than with almost any other plant (personal communication, Ron Kass).

(*moisture requirements*) Like all members of *Gilia* sect. *Giliandra*, *G. tenuis* occurs in habitats associated with reoccurring, if not constant, wind and water erosion. Erosion may be largely responsible for the presence of the type of habitat *G. tenuis* prefers, which is characterized by cracks in sandstone often filled with eolian sand and detritus. These sand-filled cracks, while seeming to be a transitory habitat, may actually offer a rather stable and relatively mesic micro-habitat (Porter and Heil 1994). In addition, *G. tenuis* has been documented at least twice on arroyos (Kass 1990, Clark 2000, 2001). Arroyos experience periodic, often annual, water-driven erosion associated with spring runoff and summer thunder showers.

While considered an upland plant, the habitats where *G. tenuis* are found can actually be more mesic than one would typically think (based on the sandy locations). This is because the arroyos, washes and other areas with eolian deposits are often areas of deposition because they are situated beneath areas that typically receive high runoff, such as natural washes, gullies, and flow zones beneath large areas of slick rock. Water that flows into these areas and fill cracks, crevices and ledges with sand, also bring water and leaves these eolian soils moist for considerable periods (personal communication, Mark Porter).

Life History and Ecology

Competitive interactions, and herbivory: Competitive interactions between *G. tenuis* and other plants are seldom observed, as the plant has such narrow habitat requirements and thus resides in areas where not many other species would be expected to establish (personal communication, Ron Kass, personal communication Stan Welsh, personal communication Duane Atwood). That said, if an aggressive, exotic species of plant were to get established and spread through the areas of the San Rafael Swell that contain *G. tenuis*, it would certainly be conceivable that *G. tenuis* would suffer from competition with this species (personal communication, Mark Porter). Again, the level of competition between *G. tenuis* and other species is an avenue of research that has not been studied at all.

Similarly, very little is known about the role herbivory or seed predation may have in the life history of this plant. It is not likely that this species would be very palatable to herbivores because of the sand that is nearly always attached to the sticky stems of *G. tenuis* (personal communication, Mark Porter). Moreover, the individual that has spent perhaps the most time surveying for this species, Debra Clark, has never seen any sign of herbivory on any individuals (personal communication, October 2002). That said, there is known herbivory on the species by an unidentified species of caterpillar (personal communication, Mark Porter). While Duane Atwood agrees that herbivory by native herbivores is likely not to be a problem for the plant, grazing by domestic livestock is likely to have more of an impact than grazing by native herbivores (personal communication, October 2002). And Ron Kass pointed out that many other species of Gilia are readily eaten by deer (personal communication, October 2002). Stan Welsh doubts the importance of this species in the diet of any large herbivores but points out that if it is determined that *G. tenuis* is an important
food source for a rare or unnamed moth or butterfly, this would pose an additional reason to protect *G. tenuis*.

Pollination, reproduction and seed dispersal: *G. tenuis* is a self-incompatible, obligate out-crossing species, pollinated by a suite of vectors, including bee, beefly, and hawkmoth (Smith and Neese 1989, Porter 1993). This is a very different situation than that of its close relatives, which are primarily pollinated by hummingbirds (Porter and Heil 1994). This phenomenon indicates a significant evolutionary shift in pollination mechanisms within the *Gilia* genus. However, very little information exists on the specific pollinators for this plant. Until detailed studies are conducted to ascertain the chief pollinators and the status of those species, there is a possibility that unidentified threats to *G. tenuis* pollinators may be jeopardizing the persistence of *G. tenuis* (Tepedino 2000).

Flowering phenology can vary slightly from year to year based on weather patterns, but generally flowering begins in mid to late May, and continues through June. Setting of fruit closely tracks flowering, and also begins in late May. The plant overwinters as a basal rosette of leaves. In the spring, the primary axis elongates to prepare for flowering. After the plant flows and sets fruit, axial buds of the lower leaves of the rosette develop into new basal rosettes of leaves, which must again overwinter.

Flowering may not occur every year (personal communication, Duane Atwood). Rather, it is likely induced to flower when the individual attains a certain size or carbohydrate storage level (Kass 1990b, citing Werner 1975). When Debra Clark revisited the Coal Wash population / Secret Mesa population (see Known, Current Occurrences section below) in May 2000, she estimated that 100% of the individuals were second year plants. This means that flowering would be expected, but only 5% of them were flowering (Clark 2000). This erratic flowering is a potential problem because it limits reproduction to those individuals that do flower in a given year. It also makes it uncertain whether a population has been extirpated or is simply not flowering in a given year because the plants are more inconspicuous when not in flower, and are also harder to identify.¹ (personal communication, Duane Atwood; personal communication, Ken Heil; personal communication, Stan Welsh). To further compound the situation, less reproduction occurs in dry years because less flowers are produced (personal communication, Ron Kass, personal communication, Duane Atwood). Of additional note is the fact that *G. tenuis* produces many fewer ovules than does its closest relatives, *G. caespitosa* and *G. subnuda* (Porter and Floyd 1993). This combination of erratic flowering and low fecundity translates into low reproductive rates, and could, combined with other natural and unnatural stressors, make *G. tenuis* vulnerable to extinction.

Little is known of the means of seed dispersal, nor exact germination requirements, for *G. tenuis*. It is not known what role seed banks play in recruitment of this species. It is likely dispersed through wind and rain activities. However, unlike nearly all members of the Polemoniaceae family, *G. tenuis* and other members of the *Gilia* section *Giliandra* lacks a densely mucilaginous seed coat, which likely to aid in seed dispersal (Grant 1959), and which

¹ though skilled surveyors familiar with the growth form and preferred geologic strata of the plant should still be able to identify the plant – even when not in bloom (personal communication, Duane Atwood).
is also probably helpful with binding water to the seed coat to aid with germination (Porter and Heil 1994). Therefore, the germination requirements for *G. tenuis* are probably different than those of other members of the Polemoniaceae which do have the mucilaginous seed coat. Overall, potential dispersal distance for this species may be quite limited. This is supported by the general isolated nature of known, extant populations.

Niche, and rarity: *G. tenuis* is an important member of a very unusual vegetation association of the desert scrub community. Interestingly, it came to be a part of its current desert community via radiation from more mesic, high-elevation montane habitats into hot, low-elevation deserts.

G. tenuis is a member of a closely related group of species which display a reoccurring pattern of endemism and rarity. As noted above, *G. tenuis* and its most closely related sister species (*G. Caespitosa*) are at the northwestern extreme of the distribution of the *Gilia* section *Giliandra*. There is also evidence that these two species represent recently diverged lineages that are geographically adjacent to populations of their closest relative (*G. subnuda*, personal communication, Mark Porter). This recent speciation event, combined with perennial life-history, mode of dispersal, and lack of sufficient time to expand its range after its recent divergence from other lineages, may all contribute to the causes of rarity of *G. tenuis*. As a member of the *Gilia* section *Giliandra*, this species is helpful in understanding the origin and evolution of this unique group, as well as providing possible explanations for the high frequency or rarity in *Giliandra*. Similarly, *G. tenuis* is a member of a group that shows considerable variation in life history, suggesting that this species and its congenetics may provide insight into shifts between annual and perennial habits among taxa.

In his 1990(b) survey report, Ron Kass explains that *G. tenuis* meets all the criteria for being classified as a rare taxa: 1) its small and probably fluctuating population size, 2) its edaphic specialization, and 3) its narrow geographic range (Kass 1990b). Being a perennial plant, the species is relatively long-lived (personal communication, Duane Atwood, though Stan Welsh maintains that it’s difficult to put a “short-lived” or “long-lived” label on a species when the real critical factor in longevity is the amount of precipitation each year, personal communication October 2002). At any rate, longevity is a trait that has been connected to rarity. Longer-lived species that are relatively slow to reproduce and have lower reproductive rates, such as *G. tenuis*, may be susceptible to extinction (Nelson et al. 2002) because they cannot recover quickly following a population declines (Beissinger 2000). Both theory and applied research support the general conclusion that low rates of reproduction and “slow life histories” render species more at risk of extinction (Wilson and Willis 1975; Marzluff and Dial 1991).

Summary, life history and ecology: In summary, the knowledge we have on the natural history and ecology of this species paint a picture of unique and narrow endemic, with specific ecological requirements. Though limited, the knowledge that we do have on the reproductive ecology of *G. tenuis* informs us that this species may flower rather erratically, produces relatively few seeds compared to its closest relatives and other desert forbs, and does not appear to disperse across long distances. These factors could increase the extinction risk faced by the Mussentuchit gilia – especially in light of natural and human-caused
disturbances in the San Rafael region. In general, the overall lack of available information on natural history and basic ecology is alarming, and strongly underscores the severe need for much more ecological research on this plant.

II. SPECIFIC SPECIES OCCURRENCES

Range/geographic distribution

G. tenuis has been found in only 17 locations in the world (*Figure 3*).² All of these are in Utah, mostly within the western slope of the San Rafael Swell, in extreme eastern Sevier county, western Emery County, and northern Wayne County. The species ranges from near the intersection of Interstate 70 across the San Rafael Swell in the north to the Waterpocket Fold in the south. The largest and apparently healthiest population has been found at the Lost and Found population site in the northern vicinity of the Last Chance Desert (Kass 1990b, Clark 2000, Clark 2001). To our knowledge, one population, in Capitol Reef National Park, has nearly been extirpated recently. Specific descriptions of each known occurrence follow below, and the numbers of the occurrences correspond to Figure 3

Known, Current Occurrences

There are no records of historic populations of *G. tenuis* that are known to be extirpated.³ Currently, there are only 17 occurrences known. In general, these populations occur along a roughly 30 mile span of the rugged, exposed “reef” on the west side of the San Rafael Swell. Some of these “populations” are very close to each other, and may in fact represent a meta-population. Occurrence numbers below correspond to those in Figure 3. The populations are generally listed in the order that they were discovered:

1. Last Chance population. T25S, R5E, Sect 1, Willow Springs, Utah 7.5’ Quad. This population occurs in Sevier county, 11 km south of Freemont Junction, and 1.5 km west of the Emery County line, at the head of Mussentuchit Creek, on the road to Last Chance Canyon. The elevation of the site is estimated to be 6000 ft (1900 m).

 This location is both the type, and paratype location (Smith and Neese 1989). The type location is described as “a semi barren minor ridge of fine pale sand, Dakota formation, with scattered pinyon, juniper, and other ‘mound plants’” (Smith and Neese 1989). The collectors of the type were E. Neese, F. Smith and L. Shaw, and the collection was made in May of 1987. Most of the paratype locations were also collected at the Last Chance population site, and were collected by the same individuals mentioned above, plus K. Thorne, D. Atwood, and B. Thompson.

² At the time this report was written, the 2002 survey report was not yet written and so the ___new populations discovered this year by D. Clark are not featured in this status review

³ There was one population discovered in 1997 in Capitol Reef National Park, that was then discovered in 2000 to be nearly completely wiped out (Clark 2000).
It is possible that the Last Chance population, along with the nearby Split population (see #7, below) comprises a single meta-population, as these populations are within one mile of one another.

When this population was visited by Ron Kass in the late 1980’s (Kass 1990a, 1990b), it was estimated to be around 200 individuals. Debra Clark revisited this population in May of 2000 and estimated its population to be 53 individuals. She rated the population as having the highest possible vulnerability rating (1), meaning that the population is at high risk, and that the plants may be in danger of being trampled, flowers picked, and the population is within a ¼ mile of a maintained primary road (Clark 2000). Because of this perceived threat, the population was rated as marginal for defensibility in the 2000 survey - meaning that there is a low likelihood of this population being protected from extrinsic human factors. Frank Smith, one of the botanists who originally named the plant, has expressed considerable concern over these threats to the type population (personal communication, January 2003). Another potential threat to this population, detailed in the management section below, is that the BLM land containing this population is not currently covered by any management plan.

2. **Chimney canyon population.** T25S, R8E, Sect 22, Frying Pan 7.5’ Quad. This population occurs on the northern rim above chimney Canyon, at 1800 m elevation. This population was one of the original paratype populations in Smith and Neese’s (1989) original naming paper for the species. This population was not revisited by D. Clark during her 2000 and 2001 surveys. Therefore, there are currently no data available on population numbers at this site. It is imperative that surveys be done soon at this site, to ascertain if individuals still exist there, and if so, in what numbers.

3. **Seger’s Hole population.** T25S, R8E, SE ¼ of SE ¼ of Sect 34, Frying Pan 7.5’ Quad. This population occurs northwest of Seger’s Hole, west of Muddy Creek and north of the County line with Wayne County. This population was mentioned in Porter and Heil’s (1994) status report, and was visited by Ron Kass during his surveys in the late 1980’3 (Kass 1990b), but his survey report does not comment on population status or numbers of individuals at this site.

In 2000 Debra Clark documented 160 plants at the site, and 100% of them were flowering at the time (Clark 2000), probably because of the timing of her visit (late May). She rated the population as having a moderate vulnerability rating (2), meaning that the population is at moderate risk, that the plants may be in danger of being trampled, flowers picked, and the population is within a ½ mile of a road (Clark 2000). Clark also documented Off Road Vehicle (ORV) activity in the area, as well as tracks from foot traffic. Because of these perceived threats, the population was rated as marginal for defensibility in the 2000 survey - meaning that there is a low likelihood of this population being protected from extrinsic human factors. Clark revisited the site in 2001 (the only one of the 2000 sites revisited in 2001), and this time she documented only 103 plants (Clark 2001).
It is possible that the Seger’s Hole population, along with the nearby Seger’s Road, Bighorn Pocket, Erin’s Flat, Gypsum Theory, and Seger’s Overlook South populations (see #9, #10, #11, #12, #17 below) comprise a single meta-population, as these populations are within one mile or so of one another.

4. **Coal Wash population / Secret Mesa population.** T22S, R9E, Sect 24, the Blocks 7.5’ Quad. This population occurs about ½ mile south of Coal Wash, and about ½ mile NW of Secret Mesa, at 6400 - 6500 ft. elevation. A survey in 1989 by Ron Kass split this population into two adjacent populations that together consisted of only 10 or 20 individuals (Kass 1990a, and unpublished data provided by Larry England). Kass found the population growing on eroded sandstone slopes of the Navajo formation, in the pinyon-juniper/mountain shrub zone, in a shaded, sandy wash bottom. It was growing chiefly on north-facing slopes, and slope inclination was estimated to be 15 degrees (Kass 1990a).

 D. Clark revisited this population in May 2000, she estimated its population to be 57 individuals. She determined that 100% of the individuals were second year plants (so, neither mature, nor immature plants), and that only 5% of them were flowering. She noted in her 2000 survey report that an Off Highway Vehicle (OHV) trail is sited just below (120 yards away from) the Secret Mesa/Coal Wash population site (Clark 2000). This is the popular Eva Connover trail, and the significance of this threat is detailed in the threats section below.

5. **Prickly Pear Bend Population.** T24S, R8E, South half of Sect 28, Ireland Mesa 7.5’ Quad. This population occurs near Prickly Pear Bend on Muddy Creek. When this population was documented by Ron Kass in the late 1980’s (1990b), it was separated into the North Prickly Pear Bend occurrence and South Prickly Pear Bend occurrence but actually determined to constitute a single population. He estimated the total population to be around 500 individuals total. At the time Kass conducted the survey, he stated that, “to date, this is the largest population in the San Rafael Swell” (Kass 1990b).

 Deb Clark revisited this population in 2000. A nearby occurrence was named “Gilia Canyon”, and the Prickly Pear Bend occurrences were surveyed separately and summarized on separate data sheets, though the two sites are thought to comprise one population (personal communication, Debra Clark). Clearly, Clark’s Gilia Canyon and Prickly Pear sites correspond with Kass’s north and south Prickly Pear occurrences. Clark estimated the “Prickly Pear” population to be comprised of 134 individuals, and the Gilia Canyon population to be comprised of 64 individuals, for a total combined population of 198 individuals at the Greater Prickly Pear Site. Overall, she did not feel that either occurrence that comprises the greater Prickly Pear population was significantly threatened by human activities or impacts (Clark 2000).

6. **Capitol Reef Population** T27S, R5E, Sect 25, Cathedral Mountain 7.5’ Quad. This population was documented in the Waterpocket fold, south of the Cathedral Valley Road, at the mouth of Trail Canyon at an elevation of 6170 feet, in Capitol Reef National Park.
It was documented by Carrie McCracken of Utah State University in 1997 (McCracken 2001).

D. Clark revisited this population during her 2000 survey and found no trace of a population (Clark 2000). She suspects that the population was wiped out by a flood, in either the spring of 1999 or 2000 (Clark 2000, personal communication, October 2002). However, additional surveys performed by National Park Service staff in recent years have found a few plants in the vicinity where the original population was, and so the Capitol Reef population is not considered to be completely extirpated (personal communication, Debra Clark). The NPS has not released the exact location of these individuals, nor the exact number, but the number is assumed to be very small.

7. **Split population** T25S, R5E, SE1/4 of SW ¼ of Section 1, Willow Springs, 7.5’ Quad. Debra Clark discovered this population in May of 2001, near the type locality (Last Chance population), north of the Last Chance desert. The site is at 6060 ft elevation. It is estimated to be 104 individuals total. The population was determined to be at high risk due to proximity to a maintained road. It is possible that the Split population, along with the nearby Last Chance population (see #1, above) comprises a single meta-population, as these populations are within one mile of one another. A potential threat to this population, detailed in the management section below, is that the BLM land containing this population is not currently covered by any management plan.

8. **Lost & Found population**. 25S, R5E, SE ¼ of NW ¼ of Sect. 11, Willow Springs, Utah 7.5’ Quad. Debra Clark discovered this population in May of 2001, near the type locality (Last Chance population), northeast of the Last Chance desert. The site is at 6520 ft elevation. It is estimated to be over 1300 individuals. Currently, this is the largest population of *G. tenuis* ever documented. A potential threat to this population, detailed in the management section below, is that the BLM land containing this population is not currently covered by any management plan.

9. **Segers Road population**. T26 S, R8E, SW ¼ of NW ¼ of Sect 2, Frying Pan 7.5’ Quad. Debra Clark discovered this population in May of 2001, northwest of Seger’s Hole, west of Muddy Creek and north of the County line with Wayne County. The site is at 6560 ft elevation. It is estimated to be 50 individuals total. Clark reported a road traversing directly through the population site. She estimated that over 100 acres of additional potential habitat exists in the immediate area.

 It is possible that the Seger’s Road population, along with the nearby Seger’s Hole, Bighorn Pocket, Erin’s Flat, Gypsum Theory and Seger’s Overlook South populations (see #3, #10, #11, #12, #17) comprise a single meta-population, as these populations are within one mile or so of one another.

10. **Bighorn Pocket population**. T25 S, R8E, NE ¼ of SE ¼ of Sect 34, Frying Pan 7.5’ Quad. Debra Clark discovered this population in May of 2001, northwest of Seger’s Hole, west of Muddy Creek and north of the County line with Wayne County. The site is
at 6550 ft elevation. It is estimated to be 40 individuals total. Clark reported that the site was accessible to All Terrain Vehicles (ATVs), and that 6 plants were found dead.

It is possible that the Bighorn Pocket population, along with the nearby Seger’s Road, Seger’s Hole, Erin’s Flat, Gypsum Theory, and Seger’s Overlook South populations (see #9, #3, #11, #12, #17) comprise a single meta-population, as these populations are within one mile or so of one another.

11. Erin’s Flat population. T25 S, R8E, SW ¼ of NW ¼ of Sect 34, Frying Pan 7.5’ Debra Clark discovered this population in May of 2001, northwest of Seger’s Hole, west of Muddy Creek and north of the County line with Wayne County. The site is at 6440 ft elevation. It is estimated to be comprised of only three individuals. Yet, she estimated that over 100 acres of additional potential habitat exists in the immediate area.

 It is possible that the Erin’s Flat population, along with the nearby Seger’s Road, Seger’s Hole, Bighorn Pocket, Gypsum Theory, and Seger’s Overlook South populations (see #9, #3, #10, #12, #17) comprise a single meta-population, as these populations are within one mile or so of one another.

12. Gypsum Theory population. T25 S, R8E, SW ¼ of Sect 34, Frying Pan 7.5’ Debra Clark discovered this population in May of 2001, northwest of Seger’s Hole, west of Muddy Creek and north of the County line with Wayne County. The site is at 6640 ft elevation. It is estimated to be comprised of 60 individuals total. Clark found ATV tracks 20 yards from some of the plants.

 It is possible that the Gypsum Theory population, along with the nearby Seger’s Road, Seger’s Hole, Bighorn Pocket, Erin’s Flat, and Seger’s Overlook South populations (see #9, #3, #10, #12, #17) comprise a single meta-population, as these populations are within one mile or so of one another.

13. Horsefly Hell population. T24S, R8E, SW ¼ of NW ¼ of Sect 18, Ireland Mesa 7.5’ Debra Clark discovered this population in June of 2001, upstream from Prickly Pear Bend, on Muddy Creek The site is at 5320 ft elevation. It is estimated to be comprised of 175 individuals total. 50% of the population was determined to be immature, and 50% mature.

14. Lost Wash population. T25S, R8E, NW ¼ of NW ¼ of Sect 10, Ireland Mesa 7.5’ Debra Clark discovered this population in September of 2001, near John’s Hole Overlook, north of Chimney Canyon and west of Muddy Creek. The site is at 6140 ft elevation. It is estimated to be comprised of 75 individuals total. Plants were documented in the wash.

 It is possible that the Lost Wash population, along with the nearby Keyhole and South of Slaughter populations (see #15 and #16, below) comprise a single meta-population, as these populations are within one mile of one another.

15. Keyhole population. T25S, R8E, SW ¼ of SW ¼ of Sect 10, Ireland Mesa 7.5’ Debra Clark discovered this population in September of 2001, near John’s Hole Overlook, north
of Chimney Canyon and west of Muddy Creek. The site is at 6480 ft elevation. It is estimated to be comprised of 25 individuals total.

It is possible that the Keyhole population, along with the nearby Lost Wash and South of Slaughter populations (see #14 and #16) comprise a single meta-population, as these populations are within one mile of one another.

16. South of Slaughter population. T25S, R8E, SW ¼ of Sect 10, Ireland Mesa 7.5’ Debra Clark discovered this population in September of 2001, near John’s Hole Overlook, north of Chimney Canyon and west of Muddy Creek. The site is at 6120 ft elevation. It is estimated to be comprised of 89 individuals total.

It is possible that the South of Slaughter population, along with the nearby Lost Wash and Keyhole populations (see #14 and #15) comprise a single meta-population, as these populations are within one mile of one another.

17. Seger’s Overlook South. T25 S, R8E, SE ¼ of Sect 34, Frying Pan 7.5’ Debra Clark discovered this population in May of 2001, northwest of Seger’s Hole, west of Muddy Creek and north of the County line with Wayne County. The site is at 6720 ft elevation. It is estimated to be comprised of 21 individuals total.

It is possible that the Seger’s Overlook South population, along with the nearby Seger’s Hole, Seger’s Road, Bighorn Pocket, Erin’s Flat, Gypsum Theory and Seger’s Overlook South populations (see #3, #9, #10, #11, #12, above) comprise a single meta-population, as these populations are within one mile or so of one another.

Potential Occurrences

Potential habitat could occur in many locations throughout the San Rafael Swell, including northern Capitol Reef National Park to possibly as far north as the Wedge overlook region along the western exterior slope of the Swell. Because of the nature of G. tenuis, new locations of the plant are likely to be isolated from one another as well as from known populations. The most likely areas to contain populations of G. tenuis that are not yet discovered would include areas where the principle geologic strata that are known to support the plant (i.e. Dakota, Curtis and Navajo formations) emerge (Figure 4). In particular, areas adjacent to places already containing known populations of the plant are the most likely places to find new populations; D. Clark reported in her 2000 and 2001 survey reports that up to approximately 675 additional acres of potential habitat exists in the areas adjacent to where surveys were conducted (Clark 2000, 2001).

Occurrence Summary/Current Population Status

According to the information available about the known occurrences of G. tenuis, the species now exists only in a small area of Utah. The habitats containing G. tenuis are comprised of sandstone outcrops, sandy detrital slopes and other exposed outcrops, where it grows in detritus, eolian sands or cracks in the sandstone bedrock. Because of these very specific microhabitat requirements, it is highly sensitive to disturbance.
Currently there is a total of 2,353 individual *G. tenuis* plants thought to exist. Of the 17 known occurrences of *G. tenuis*, only 25 percent (four occurrences) may be considered even of moderate size (over 100 individual plants, which is certainly not large by any standard other than comparison with most known populations). Of all the remaining known populations, 19 percent (three occurrences) are very small -- less than 25 individual plants confirmed at each location. The population size is unknown for two of the occurrences (Chimney Canyon, and the nearly extirpated Capitol Reef population) and so these sites should be resurveyed in the near future. Overall, this means that many of the known populations of *G. tenuis* are small compared to other forbs in similar environments; therefore they could be additionally vulnerable to disturbances. The specific disturbances to which this species is known and suspected to be susceptible to are outlined in detail below.

D. Clark’s recent survey (2000) that sought to document and report on status of previous known populations found only 510 individuals out of a previously known 720 individuals. Further, in 2000 no plants were found at the previously recorded site in Capitol Reef National Park, due to a large flood that washed out this small population (Personal communication, Debra Clark). While the 2001 surveys were more intensive (the person/search hours were more than quadrupled), and did result in a number of new populations being discovered, the survey report states, “this is the most amount of time spent searching for a species resulting in the least number of plants found” (Clark 2001). The intrinsic rarity of this plant can certainly be deduced from this statement alone.

Another important point to consider when determining status of a plant species is its general reproductive success from year to year. The problem is that most, past surveys for *G. tenuis* have not adequately collected demographic data on the species. Many assessments (i.e. Shultz and Shultz 1984; Kass 1990a, 1990b) suggest that the presence of rosettes of leaves denotes high seedling establishment and survival. However, reproductive success cannot really be assessed in this fashion, as these rosettes may be juveniles, or persisting rosettes from old, senescent individuals - not actively reproducing plants. Furthermore, *G. tenuis* is expected to have seeds that germinate in the spring (as do all other members of *Gilia* section *Giliandra* for which information exists). Because most surveys for *G. tenuis* are conducted in the spring, it is easy to grossly over-estimate reproductive success by failing to capture any of the summer seedling mortality.

Currently, all known sites for this plant are on federal lands, primarily on lands managed by the Price Field Office of the BLM, and one (nearly extirpated) occurrence in capitol Reef National Park (Clark 2000 and 2001). While some would consider a plant where the majority of the species occurs on federal lands to be secure, this species does not experience this security, and in fact is very threatened. As is pointed out in the threats section below, the nature of the San Rafael Swell, where all extant populations are found, is such that much of the area is considerably threatened by overgrazing, ORV activities, and Oil and Gas exploration and development.
III. CURRENT MANAGEMENT

Present Legal Status

G. tenuis is categorized by the Utah Natural Heritage Program as a G1 species globally and an S1 species statewide, though neither of these rankings are legal designations. These rankings indicate extreme rarity or other factor(s) making the species especially vulnerable to extinction or extirpation (typically 5 or less occurrences or very few remaining individuals or acres, Utah Natural Heritage program website 2001).

G. tenuis was listed as a Category 2 species by the U.S. Fish and Wildlife Service until the elimination of that category several years ago (personal communication, Larry England). This designation indicated that a threatened or endangered listing under the Endangered Species Act may be appropriate. Listing under Category 2, before Category 2 was done away with, afforded no formal protections, so as yet this species has not received any formal legal protection.

All known population sites for this species are on federal lands - chiefly BLM lands. *G. tenuis* is listed as Sensitive by the BLM State Office, and thus is included on the BLM Special Status Plant Species within the Price BLM Field Office (where the plant may be found). Under this designation, the BLM has an official policy to ensure that actions authorized on BLM administered lands do not contribute to the need to list any Special Status Species (BLM Manual Section 6840.06C&E).

Past and Present Conservation Efforts

Since most of the occurrences of *G. tenuis* are on BLM land, the BLM has been responsible for much of the monitoring and study of the species to date. The Richfield District of the BLM conducted surveys for plant species of concern in the San Rafael Swell, including *G. tenuis*, in the late 1980’s (Kass 1990a, 1990b). As discussed above, D. Clark has been surveying for the species in recent years.

As discussed below, there are several current, and imminent future threats to the current *G. tenuis* populations, but so far only some of these have been given the research attention they deserve. In addition, very little, if any, direct action has been taken to protect known *G. tenuis* populations from threats or disturbances.

There have been numerous conservation efforts to preserve all or portions of the San Rafael Swell. This includes: the original six (and part of a 7th) Wilderness Study Areas (WSAs) the BLM designated in the region as a result of their original 1982 wilderness inventory on BLM lands; a counter proposal by the Utah Wilderness Coalition for additional wilderness units - many of which are located in the San Rafael Swell; a short-lived effort to designate a portion of the Swell as a National Park in the mid 1980’s; a recent (1999) Congressional effort to designate the area as a National Conservation Area; and a push to designate much of the Swell as a National Monument, though this was not successful. The interest shown by Congress, the State, Emery County, native Utahans and local
environmental groups underscores the fact that most of these interests acknowledge the biological and ecological importance of this part of Utah. This includes its role as a storehouse for what is largely considered to be one of the greatest concentration of rare endemic plants in the state (personal communication Mike Windham, personal communication Stan Welsh).

Inadequacy of Existing Regulatory Mechanisms and Management

Based on the limited and small populations of *G. tenuis* (outlined above), and the significant threats which are in turn outlined below, it is obvious that ongoing and existing regulatory mechanisms, primarily under the auspices of the Bureau of Land Management, have been ineffective in conserving this species to the extent that the overall meta-population is guaranteed to be viable, well into the future.

Federal regulations: Currently, no federal laws specifically protect plant species that are not already on the federal Threatened or Endangered Species List, or are official candidate species. Hence, public land agencies such as the BLM which are responsible for managing sensitive species such as *G. tenuis* lack the fundamental mechanism to prevent extirpations of populations of these species - federal listing. As such, we generally see industrial development slowly spreading into areas occupied by sensitive species, harmful grazing practices remaining unchanged, and usually little or no conservation measures being taken for the sake of sensitive species.

BLM Management at State Level: *Gilia tenuis* is currently listed on the state office of the BLM’s Sensitive Species List. However, this designation does not automatically confer any special management consideration or protection to the species. For example, the BLM does not have the authority to require Federal mineral lease holders to modify their on-the-ground actions to protect BLM-designated sensitive species (Robertson, 2002).

Currently, the BLM State Office is in the process of conducting detailed status reviews of all plants on the newly revised BLM Sensitive Species list for Utah (personal communication, Ron Bolander), including one for the Mussentuchit gilia. At this time, it is unclear what the findings of this status review will do in terms of improving management and protection of this rare and sensitive species.

Management at the BLM field office level: Currently, nearly all areas known to contain extant populations of *G. tenuis*[^1] are managed by the BLM. The vast majority of these lands are managed under the San Rafael Resource Management Plan (RMP), published in 1991. The RMP states that no management action will be permitted on public lands that will jeopardize the continued existence of sensitive species listed by the State of Utah (BLM 1991). As of now no habitat management plan has been written for *G. tenuis* by the Price Field Office.

[^1]: The only population not under BLM management is the very small (nearly extirpated) population in Capitol Reef National Park.
A very small portion of BLM land known to contain the Last Chance (type locality), Split population, and Lost &Found populations lies over the western side of the Sevier/Emery County line. Interestingly, this small sliver of BLM land between the country line and the Fishlake National Forest are not covered by ANY Resource Management Plan at the present time (BLM 1991; San Rafael Resource Area RMP Record of Decision 1991; personal communication, Tom Gnojek, BLM; personal communication, Frank Erickson, BLM; personal communication, Tim Finger, BLM). While the original Draft Environmental Impact Statement of the San Rafael RMP did provide environmental impact analyses for this sliver of BLM west of the Sevier/Emery county line, the Record of Decision and Final EIS and Management Plan did not cover this sliver of land. There was supposed to be a separate Record of Decision issued by the Richfield BLM Field Office covering this small area, but in a crucial oversight by the BLM, it was never issued. The implications of this oversight include decisions on a road closure and critical wildlife habitat protection that could never be implemented (personal communication, Tim Finger). The implications of the absence of a management plan for this small area of Utah that contains the type locality, Split population, and Lost &Found population could be severe, given the preponderance of oil&gas lease sales in this area, and potential ORV abuse.

Currently, five of the known, extant, *G. tenuis* populations occur within Areas of Critical Environmental Concern (ACECs). This includes the Seger’s Hole and Seger’s Road populations in the Segar’s Hole ACEC, the Horsefly Hell and Prickly Pear populations in the Muddy Creek ACEC and the Coal Wash population in the Sids Mountain ACEC. In addition, six *G. tenuis* populations occur within Wilderness Study Areas (WSAs). This includes the Chimney Canyon population, Prickly Pear, Keyhole, South of Slaughter, and Lost Wash populations in the Muddy Creek WSA, and the Coal Wash population in the Sids Mountain WSA.

It is questionable whether ACEC and WSA designations afford adequate protection to these populations. ACEC designation in itself does not automatically confer any additional protections to an area, and no specific management plans have been written for any of the ACEC’s known to contain populations of *G. tenuis*. While the three ACECs that contain *G. tenuis* have No Surface Occupancy Stipulation, they can actually still be leased (BLM 1991, personal communication, Tom Gnojek) and even the No Surface Occupancy stipulations can have various exceptions and modifications that may still permit the destruction of rare plants. In addition, when the ACECs and WSAs that house *G. tenuis* were designated, no reductions were made in cattle stocking rates. In addition, ORV use remains on some existing routes and trails - most notably Sids Mountain WSA and ACEC which contains some of the most popular ORV routes in the San Rafael Swell (BLM 1991, personal communication, Tom Gnojek). The impacts these particular activities can have on *G. tenuis* populations are outlined in the threats section, below.

Management by the State: There is no State Threatened and Endangered Species law that may afford protection to special status plants that are not covered under the ESA, such as *G. tenuis*. This makes it even more likely that these sensitive species will never be adequately protected on State lands. Even the State Natural Heritage Program, housed within the Utah Department of Natural Resources Division of Wildlife Resources, does not actually keep an
official State Sensitive Plant and Species of Special Concern list (personal communication, Ben Franklin, personal communication Ron Bolander). Rather, State sensitive plant lists are only kept by the U.S. Forest Service and BLM (at the statewide level) in Utah.

The Last Chance population and the Seger’s Hole population overlap School Institutional Trust Lands Administration (SITLA) holdings. This does not confer any special protection to rare plants on those holdings. SITLA and the BLM are now in negotiations to swap all SITLA lands out of the San Rafael Swell.

Summary, inadequacy of existing regulatory mechanisms and management: In summary, current management and regulatory mechanisms, primarily under the responsibility of the BLM, are likely to be ineffective in ensuring secure populations of *G. tenuis*. Perhaps only the legal protections afforded by the ESA will result in substantive management changes that will ensure the persistence of this species on BLM lands.

IV. CURRENT AND FUTURE THREATS

The chief threats facing *G. tenuis* include livestock grazing, Off-Road Vehicle (ORV) use, and expedited energy exploration in the region. Neither disease and predation, nor overutilization for commercial, scientific or educational purposes are considered to be considerable threats to this species at this time.

Livestock Grazing

Decreases in native plant species diversity, cover and density as a result of livestock grazing have been observed in a wide variety of arid ecosystems in the western U.S, including those of the Colorado Plateau of southern Utah. Moreover, these kinds of alterations to the vegetative community can in turn lead to significant repercussions for successional trajectories, the abiotic environment, and wildlife (Jones 2001).

One of the chief ways cattle grazing affects vegetative communities is by altering species composition of plant communities. This happens in two ways: 1) active selection by herbivores for or against a specific plant taxon, and 2) differential vulnerability of plant taxa to grazing. Grazing can also delay plant phenology, which in turn can have dramatic effects on communities of pollinators and seed dispersers (Fleischner 1994), thereby further disrupting the composition of a vegetative community. Studies that have documented significantly greater native plant species richness in ungrazed areas compared to those that are grazed include Brady et al. (Arizona - 1989), and Floyd-Hanna et al. (New Mexico - 2000).

While cattle grazing has been shown to decrease species richness in arid communities, it similarly affects species evenness, with considerable secondary effects. Long-term cattle grazing has been shown to decrease the abundance of perennial grasses and forbs and increase the amount of annual grasses and weeds in western deserts (in northern Arizona-Schmutz et al. 1967; the Great Basin-Rice and Westoby 1978; central Utah-Brotherson and
Any significant grazing-induced changes in cover, densities or relative abundances of certain plant species or guilds can in turn have profound implications at the community level, as these changes can translate into major conversions of community organization, for example, transforming grassland to desert (Schlesinger et al. 1990).

One particularly insidious result of cattle grazing in arid western ecosystems is the spread of exotic grasses and weeds. Grazing aids the spread and establishment of alien species in three ways: 1) dispersing seeds in fur and dung (2) opening up habitat for weedy species and 3) reducing competition from native species by eating them (Fleischner 1994). Studies that have found increased densities, cover or biomass of exotic plant species in grazed versus ungrazed sites include Green and Kaufman (Oregon-1995), Drut (Oregon-1994) and Harper et al. (Utah-1996).

Most populations of *G. tenuis* occur on open range, and grazing occurs in and around these populations. *G. tenuis* is likely to be detrimentally affected by livestock trampling in some situations. If cattle do in fact graze on *G. tenuis*, or even if they merely travel through its habitat and trample it incidentally, then there is a possibility that the plant is differentially affected by such disturbance depending on the particular microhabitat or season. As both flowering and fruiting for this plant occur in late May through June, *G. tenuis* is very likely to be even more negatively impacted by grazing disturbance during that period. Though cattle may be in general less interested in the particular microhabitats that contain *G. tenuis*, excessive livestock densities may force cattle further from wells to feed, thus exposing *G. tenuis* to trampling damage. Wet or dry years could compound the effects of grazing on *G. tenuis* and the arid plant community within which it dwells.

Table 1 illustrates grazing density in the allotments known to contain populations of *G. tenuis*. As discussed above, high densities of cattle would be considered most detrimental to populations as higher densities of cattle may result in cattle feeding on what is likely not a preferred source of forage (*G. tenuis*) and may also force cattle to forage further from wells, thus exposing populations to potential trampling.

Table 1. BLM Grazing Allotments known to contain populations of the Mussentuchit gilia, and season of use, permitted AUM’s, and estimated grazing density for those allotments
There are certain factors regarding grazing management within the San Rafael Resource Area that should be of concern. One is the fact that all of the allotments known to contain populations of *G. tenuis* are grazed during the critical spring growing season (Table 1), widely accepted as the worst possible time of year to graze sensitive desert grasses and forbs (Cook and Child 1971, Miller and Donart 1981, Holecheck et al. 2001). Of equal concern are the over-inflated stocking rates on the Lone Tree allotment, which contains the Prickly Pear Bend population and Horsefly Hell population, and the Mussentuchit allotment, which houses the Last Chance, Split, and Lost & Found populations (Table 1). With only 23 acres per Animal Unit Month (AUM) on the Lone Tree allotment, and only 29.6 acres per AUM on the Mussentuchit allotment, the density of cattle is over twice what is typically recommended for arid rangelands in the West (Holechek et al. 2001). The RMP’s ecological condition description for these two allotments confirm that they are indeed overgrazed. The Lone Tree statistics reveal that fully 74% of the vegetation is classified as mid-seral, or fair condition—the 2nd worst condition class. And the RMP reports that 49% of the vegetation in the Mussentuchit allotment to be in mid-seral condition and 14% to be in early seral, or poor condition (BLM 1991).

In terms of on-the-ground, specific grazing impacts that are noteworthy, the BLM has recently installed a watering trough for cattle in Seger’s Hole. This trough, filled up regularly
by tanker truck deliveries, is within ¾ of a mile from the Seger’s hole and Gypsum theory populations, and these two populations, topographically, are easily accessed by cattle (personal communication, Ray Bloxham, chief field inventory personnel, Utah Wilderness Coalition). Furthermore, the entire area occupied by the Last Chance, Split, and Lost & Found populations is very overgrazed (personal communication, Jim Catlin, field checker for the Utah Wilderness Coalition, personal communication Ray Bloxham chief field inventory personnel, Utah Wilderness Coalition). As pointed out earlier, one reason for this is likely the high stocking rates in the Mussentuchit allotment (Table 1). In addition the range that supports all three of these populations is very well-watered for cattle, and a private ranch is very close to the Lost & Found population in particular. Lastly, the Horsefly Hell and Prickly Pear populations are also at risk from overgrazing, as these populations also occur in one of the allotments (Lone Tree) with very high stocking rates (Table 1), and these populations either occur directly within the Muddy Creek floodplain, or within easy access of it. Muddy Creek is one of the chief water sources for cattle in the

Recreation/ORV Use

General recreation, hiking: The San Rafael Swell is a popular recreation area because of its proximity to large population centers along the Wasatch Front. The easy access, network of roads, and scenic landscape provide virtually unlimited recreational opportunities for people traveling from nearby population centers like Denver, Las Vegas, and especially the Wasatch Front.

Human traffic is a considerable threat to *G. tenuis,* especially in light of the increased popularity of the San Rafael Swell for vacationers and recreationists. Much of the potential threat of human traffic can probably be mitigated by careful trail planning and construction so as to discourage hikers from walking through terrain that contains populations of *G. tenuis.* Requiring hikers to remain on designated routes may also be an important management provision that could benefit *G. tenuis.* Because many of the places where *G. tenuis* has been discovered have already been developed for human access (within one kilometer of a road) the need for careful assessment of the risks that human traffic may pose is all the greater.

ORV use: Off-road vehicle (ORV) use presents another highly potential disturbance to *G. tenuis.* This disturbance can certainly be manifested through the obvious impact of vehicles running over plants and either killing the plant outright or destroying flowers and thus the ability to set fruit and seed. Documented ORV impacts on vegetation range from complete denudation of large staging areas to selective kill-off of the most sensitive plants. Ultimately, web-like networks of ORV trails coalesce into broad areas largely denuded of vegetation. Seedlings, and seeds germinating within the ground, are some of the most sensitive organisms to ORVs and are easily killed outright or buried (Bury 1977, CEQ 1979). Indirect impacts on young plants include the upsetting of water storage, soil infiltration rates, and thermal structure of soils; these are all ORV related deficiencies that that can disrupt seed germination and seedling growth (Davidson and Fox 1974).

While the potential impacts of ORVs to plants is perhaps more obvious, it is the indirect effects these vehicles can have on desert soils that may be more insidious to *G. tenuis.* Initial
physical impacts of ORVs result in stripping the surface of small plants and mechanical crusts, which stabilize the soil (Wilshire 1983, Belnap 1995). At the same time that the land is denuded, soils are compacted. Maximum compaction of typical sandy loam soils of western arid lands is attained in only 10 passes of a motorcycle on a dry, level surface (Webb 1983). Soil compaction takes place in a cylinder beneath the tracks, reaching depths of 30 cm, and soil loosening (by shear) takes place in shallow zones on both sides of the cylinder of compaction. Loss of the insulating effects of plant cover and changes in the heat capacity of compacted soils causes soil temperatures to increase by as much as 10°C in daytime and decrease by as much as 3°C in nighttime (Webb et al.1978, Wilshire et al. 1978). Soil compaction further reduces infiltration of water, resulting in ponding in tracks and rapid evaporation, or shedding of incident precipitation by runoff. Either way, the shallow subsurface soil biota are denied their normal moisture supply. As with soil compaction, the reduction of infiltration rates quickly reaches a maximum after only 10 or so passes of a motorcycle (Webb 1983). Most southwest desert soils are susceptible to the above documented effects of ORVs. The USGS conducted an 18 month study on 200 ORV sites in California, Utah and Nevada, and found that all soil types examined were vulnerable to ORV damage, except certain dry lake deposits and clay rich soils with <10% slopes (CEQ 1979). *G. tenuis* is not known to inhabit any of these soil types.

In terms of the impacts of ORV use to *G. tenuis* specifically, some of the documented populations are near frequently traveled roads (Figure 5). Debra Clark noted in her 2000 survey report that an Off Highway Vehicle (OHV) trail is sited just below (120 yards away from) the Secret Mesa/Coal Wash population site (Clark 2000). This trail would be the extremely popular “Eva Conover” trail, and probably sees as much if not more ORV use than any other route in the San Rafael Swell (personal communication Tom Gnojek, BLM). Even though the ORV use designation is this area is “limited to designated routes and trails” (BLM 1991), there is currently a great deal of illegal use coming off of this popular route (personal communication, Ray Bloxham, chief field inventory personnel, Utah Wilderness Coalition), and the BLM’s own monitoring shows this. This is problematic, as any illegal use coming from a trail that typically sees an average of over 600 vehicle passes/day by their vehicle counter on the route, is likely to be fairly substantial, simply by virtue of that many vehicles using the route.

ORV activity has also been observed at the type locality (Porter and Heil 1994). In fact, a road used by ORV users runs right through the Last Chance population, thus dissecting it in two (Figure 5). The Split population, also in this area, was also determined to be at “high risk” by D. Clark during the 2001 survey, due to the fact that it was very close to a maintained road (Clark 2001). Additionally, the entire area containing the Last Chance, Split, and Lost & Found populations are designated as open to cross country vehicle use (BLM 1991). The Mussentuchit dunes - clearly in an area of suitable *G. tenuis* habitat - are designated as an open ORV play area in the new Emery County Travel Plan.

5 This is an average amount of vehicle passes per day, averaging across all months of the year. The number of passes is much greater per day in the spring-fall. Additionally, the Price BLM Field Office reports that the vehicle counter is not very dependable – and will usually count wildlife and tumbleweeds, etc. as a vehicle.
Segers Hole is currently seeing some of the biggest increases in ORV activity in the San Rafael Resource Area (personal communication Tom Gnojek, BLM). One of the chief roads that the ORV users travel on to access this area runs right by the Seger’s Hole *G. tenuis* population (where D. Clark found ATV tracks very near plants), and actually goes directly through the Seger’s Road population site (Clark 2001) – which incidentally, is how the site got it’s name. Other nearby *G. tenuis* populations are accessible via this road, such as Bighorn Pocket and Gypsum Theory, where D. Clark found ATV tracks within 20 yards of some of the plants (Clark 2001). Even though the ORV use designation is this area is “limited to existing routes and trails” (BLM 1991), there is currently a great deal of illegal use coming off of Seger’s Road, and the BLM is essentially doing nothing to stop it (personal communication, Ray Bloxham, chief field inventory personnel, Utah Wilderness Coalition).

The San Rafael Swell region has shown greatly increased ORV use in recent years and those populations near roads and popular ORV routes are at considerable risk. The increase in user-days in the San Rafael Swell is indicative of a recent, massive upswelling in ORV use in the state of Utah. Recent years have seen ORV registrations and sales dramatically increase throughout Utah, with state registration for ATV’s and dirt bikes up a startling 294% in just five years; climbing from 34,000 machines registered in 1997 to over 100,000 in 2001 (http://www.blm.gov/utah/vernal/localnews.html).

In summary, ORV use threatens nearly all potential habitat of *G. tenuis*. Even though the San Rafael RMP designated most ORV use to “limited to existing roads and trails” (BLM 1991), in reality the BLM does not have the man-power to police the entire Resource Area, and only routes clearly signed have any chance of limiting use to existing trails. This means that perhaps only 1% of routes in the San Rafael Swell really have any chance of limiting use to those trails. In general, unregulated and abusive ORV use in the San Rafael Swell is likely to constitute one of the principle present or future threats of destruction, modification, or curtailment of habitat available within the range of *G. tenuis*. Larry England of the USFWS Field Office in Salt Lake City believes that ORV activity may in fact represent the most insidious threat to *G. tenuis* at this time (personal communication 2002).

Oil and Gas exploration and development

One of the most severe threats facing *G. tenuis* is expedited oil and gas exploration and development in the San Rafael Swell. In fact this threat may very well constitute the principle present or future threat of destruction, modification, or curtailment of habitat available within the range of *G. tenuis*. All forms of oil, gas, and mineral extraction are associated with surface disturbances that may result in destruction of *G. tenuis* and/or its habitat. Access roads, pipelines, well pads, and mines all may destroy habitat for this species.

There are multiple layers of disturbance that are widely known to accompany oil and gas development. Access roads permanently reduce and fragment habitat, and provide additional long-term opportunities for off-road vehicle intrusions into sensitive habitats. The amount of road development per well pad constructed is partly a factor of well density, but recent estimates include one mile of road per oil well (USDA-USFS Bridger-Teton National Forest 2000), 0.4 miles of road per conventional natural gas well (USDI-BLM, Pinedale Field
Office 2000), and 0.3 miles of road per coalbed methane well (USDI-BLM, Buffalo Field Office 2002). Comer (1982) explains that after an oil or gas field is developed, one can expect increased recreation, particularly by ORVs. New powerlines, pipelines, and railroad tracks are often constructed, further reducing and fragmenting habitat (Weller et al. 2002). Ground disturbances may introduce noxious weeds (Shuman and Whicker 1986), eliminate mycorrhizal fungi (Knapp 1996), and destroy biological soil crusts (Belnap 1995). Compressor stations and well pumps release pollutants into the air, and waste products contaminate habitat (Clarren 1999; Clifford 2001). Particularly insidious for species like *G. tenuis*, oil and gas mining can remove rock outcrops that provide important habitat for specialized species (Weller et al. 2002, citing BLM 1999).

Seismic exploration involving the use of vibroseis, or “thumper trucks” is the precursor to oil and gas drilling, and is very destructive to sensitive plants and fragile desert soils. Seismic activities crush large swaths of vegetation, destroy biological soil crusts, compact soils, bury vegetation, decrease nitrogen fixation activity, introduce noxious weeds, and increase soil erosion by wind and water, (Boyle and Connaughton 2002; BLM, Moab Field Office 2002). Even shot hole exploration requires the use of vehicles such as drilling rigs and recording trucks (Evans 1997). The effects of seismic exploration are long-lasting, and may persist for 50-300 years after activity ceases (BLM, Moab Field Office 2002; Belnap 2002). Routes used for seismic exploration often turn into established roads (McLellan and Shackleton 1989; Crawford 2001; Zimmermann 2001; Belnap 2002; BLM, Moab Field Office 2002; Conway 2002). In fact, the BLM has acknowledged that tracks from seismic exploration conducted in the 1970’s remain visible in 2002, and are often used as roads and trails by motorized vehicles (BLM, Moab Field Office 2002).

There have been very limited scientific studies of the impacts of vibroseis trucks on desert soils, but one study completed by Menkens and Anderson (1985) in Wyoming reported that soil compaction within the vibroseis truck tire tracks was significantly higher than in untracked areas, and remained so 14 months after the study was completed. An even later visit to the site (2 years after the study was completed) revealed that vegetation within the tire tracks had yet to recover. It is noteworthy that only one thumper truck was used in the Wyoming study - but typically multiple trucks are used in seismic exploration (Evans 1997; BLM, Moab Field Office, 2002).

Few detailed scientific studies have been made of the effects of soil compaction on plant form and function. Such studies of single passes of tanks on maneuver in the Mojave Desert,
however, show that such effects are certain to occur (D. Prose, unpublished data). Prose’s studies show long-term effects of both soil compaction and surface disturbance caused by a single pass of a tank on typical Mojave Desert soil. These effects include larger numbers of annual plant species growing within tracks compared to adjacent undisturbed areas, but the plants in the tracks are much smaller and provide less cover for the soil than individuals of the same plant species in control areas. Further, the species composition shifts so that annual plants with lateral root spreading grow more easily within the tracks than those with vertical tap roots, because a veneer of sediment accumulates in the track depressions resting on a zone of compacted soil less than a centimeter below the surface. These studies of tanks, which are not as heavy as vibroseis trucks, indicate that profound alternations of the desert plant community can ensue as the result of seismic exploration.

The ability of *G. tenuis* to recover from disturbances such as oil and gas exploration, development and mining have not been studied, but the likelihood of a small population (as most of the known *G. tenuis* populations are) being able to recover from such disturbances are slim (personal communication, Mark Porter). This plant is not considered to be a “pioneer” plant, and will not readily move into profoundly disturbed sites (personal communication, Stan Welsh). One of the key traits that enables a population to withstand impacts such as drilling is not the number of seeds produced by the population in its effort to recolonize, but rather the success of seedling establishment within the population after a large disturbance. With the amount of disturbance involved with oil and gas exploration and development, the chances are slim that populations would recover if these impacts were centered in the midst of a small population of individuals, regardless of the number of seeds they produce.

Currently, conventional oil and gas extraction leasing on Utah BLM lands is increasing at an accelerated rate. From 1999 to 2001, the BLM conducted 556 lease sales involving almost 750,000 acres of public lands in Utah, primarily in eastern and southeastern Utah. These expedited lease sales are resulting in more permits to drill; between 1999 and 2001, the Utah BLM approved over 900 of the Applications for Permit to Drill that they received. The oil and gas exploration and development that will soon be underway in the San Rafael Swell could have a considerable impact on *G. tenuis* populations and populations of other rare desert plants in this fragile region.

In addition to the expedited threat of new oil and gas exploration and development in Utah, and in the San Rafael Swell specifically, wells are spaced closer now than ever before. In Colorado, for example, wells are permitted to be spaced every 10 acres currently (Robertson 2002), while 40 years ago 640 acre spacing was the maximum permitted (Clarren 1999). Now new wells are being drilled in existing oil and gas fields to take advantage of more relaxed spacing regulations, thus making it harder to avoid impacts to sensitive species. In the past ten years, advanced technology has allowed for year-round drilling, which has also increased the rate of oil and gas development (Robertson, 2002).

Also problematic is the fact that in 2002 the national BLM office in Washington, D.C. instructed all Field Offices to include a new Threatened, Endangered and Sensitive Species stipulation, which effectively defers all analysis and consultations on these species to the
Application for Permit to Drill (APD) phase for all lease sale parcels (Bisson 2002). What this means is that even lands with known populations of sensitive and listed species may be leased for oil and gas development with no habitat analysis or consultation until an APD is filed. Restricting development at the APD phase is notoriously difficult because of the monetary investment that the lessee has already made.

Further, the above Bisson memo doesn’t even apply to all sensitive species, as the weak wording of the memo leaves the agency wide open to disregard sensitive species in the path of oil and gas development:

“The lease are may now or hereafter contain plants, animals or their habitats determined to be threatened, endangered, or other special status species. BLM may recommend modifications to exploration and development proposals to further its conservation and management objective to avoid BLM-approved activity that will contribute to a need to list such a species or their habitat. BLM may require modifications to or disapprove proposed activity that is likely to result in jeopardy to the continued existence of a proposed or listed threatened or endangered species...” (emphasis added)

The fact that the new regulations on avoiding take of sensitive species is so weak illustrates that rare, sensitive, candidate, and other species of concern are likely to be in even more danger of ill-managed oil and gas exploration and development since this memo was issued from the BLM Washington headquarters.

In terms of the impacts of oil and gas exploration to *G. tenuis* specifically, current oil and gas leases overlap with the Last Chance Population (the type locality), as well as the nearby Split population, and Lost & Found population (Figure 7).

In addition to the threats that oil and gas wells and current and future leases pose to known populations of *G. tenuis*, these activities pose a considerable threat whenever they are sited in the known range of the species (Figure 7). Currently, there are 10 wells (both active and inactive with possibility of becoming active again) that overlap potential *G. tenuis* habitat. But what is far more disturbing is the acreage of current and future Oil and Gas leases that overlap predicted *G. tenuis* habitat. About 30,000 acres of land are already leased within the plant’s habitat, and over 13,000 additional acres were just leased in this past November’s lease sale (Figure 6). This is of concern, as there are still many places that may contain new populations of *G. tenuis* that have not yet been surveyed. Other than the occasional surveys that documented the original six (extant) populations that were discovered before 2000, anything resembling extensive surveys for new populations were not conducted until very recently. There could be a considerable number of new populations in the region, and with the acreages being leased for Oil and Gas exploration and development, one or more of these unknown populations might be in the path of future seismic exploration and oil and gas development.
Mineral Extraction

The chief form of mineral extraction that is ongoing in the San Rafael Swell is gypsum mining (Figure 7 – most active mines are gypsum). The Last Chance (Type locality), Split and Lost & Found populations all exist on a portion of the Curtis formation that is particularly rich in gypsum deposits. The RMP for the San Rafael states that over 290,000 acres on the west side of the resource area near the Last Chance population and squarely within the potential range of *G. tenuis* are open for mining claims and have high potential for occurrence of gypsum (BLM 1991). The removal of gypsum from the soil requires the complete removal of topsoil. This impacts not only the area where soil is removed, but also a larger area that includes soil spoil mounds, vehicle work areas, and access routes.

Other minerals taken out of the San Rafael Swell include bentonite and zeolite. The active mine immediately adjacent to the Last Chance, Split and Lost & Found populations, owned by Western Clay Company, is currently mining bentonite and zeolite at this site (Figure 7). All mining involves surface disturbance. Access roads and transportation corridors must be constructed, waste rock must be disposed of, and processing facilities must be built. While mineral extraction is less widespread in *G. tenuis* habitat than oil and gas exploration and development, this sort of mining can still cause local habitat loss and degradation. Operating mines have impacted thousands of acres in Utah and threaten even more.

Secondary impacts of mineral extraction may be the most severe. Recreation vehicle use on old mining roads are a common secondary impact. Livestock grazing use of rangelands increases in areas where mining roads now offer vehicle access to install grazing facilities and manage livestock. The management stipulations for mining rarely call for post operation closure and restoration of mine sites or access roads.

Other Threats

A number of other potential threats to the species are still worth discussing, but not nearly as potentially damaging as the threats of human traffic, grazing, ORV use, Oil and Gas exploration and development, and mining outlined above. These, more minor but still potentially real, threats include:

- **Collection** The genus Gilia has had a history of use as an ornamental cultivar, and - along with *G. caespitosa* - *G. tenuis* is probably one of the showiest and most colorful of the genus (Porter and Heil 1994). *G. caespitosa* is already sought by rock-garden enthusiasts seeking colorful, tufted plant species, and currently seeds of this plant are sold illegally (personal communication, Debra Clark). Although there are not yet confirmed cases of *G. tenuis* being collected (*Allie you still need to confirm with Lori*), *G. tenuis* will likely be sought after when it is more widely known. Already, collection by amateurs is considered to be one of the chief threats to this species (personal communication, Lori Armstrong).
• **Sand or gravel quarrying** Because *G. tenuis* is associated with sandstone outcrops, there is the potential for use of these sites for sand or sandstone quarrying. This is particularly true for sites experiencing road maintenance or road construction where fill may be required (see Figure 7, which also depicts active sand and gravel mines).

• **Road building and maintenance** Currently, one of the known populations of *G. tenuis* (the Last Chance site) is bisected by a road. Construction of this road has impacted the habitat for *G. tenuis* and without doubt destroyed some individuals of the population. Grading could have severe impacts on *G. tenuis* (personal communication, Stan Welsh). Another population (Split population) derives its name from the fact that this population is also severed by a maintained road. D. Clarke, who most recently surveyed this population, maintains that the population is at “high risk” due to this road, in part because flowering plants are visible from the road and could be collected by amateur plant collectors. Indeed, collection is considered to be one of the chief threats to this species (personal communication, Lori Armstrong). New road construction and maintenance could also potentially impacts individuals of populations, or potential habitat for the plant.

• **Pesticide Use** Although pesticides are not used to a great extent in the San Rafael Swell, use by either ranchers or the BLM could impact the pollinators of *G. tenuis*, thereby depressing reproductive levels of the plant (Porter and Heil 1994, Tepedino 2000). This could be true even if spraying is somewhat distant from the population sites. This is because the home range of some of the insect pollinators can be several miles and so pesticide use over a mile away from a *G. tenuis* population could still conceivably impact that population.

• **Exotic weed infestations** Exotic weeds are slowly taking over the Intermountain West (Belnap 1998). Sites become more invasible due to increased bare soils as a result of the same chief activities that potentially impact *G. tenuis*: grazing, ORV use, and mining/drilling operations. All of these activities disturb the soil, which offer greater opportunity for weed establishment, with less competition (Gelbard and Belsky, in prep, and references within). Evans and Young (1972) found that increased soil erosion (shown to be caused by both grazing and ORV use) also loosens surface soils and helps bury seeds. Exotic seeds adapted to more erosion-prone environments will benefit from this while natives likely won’t. Finally, soil disturbance can further assist with weed invasions by creating warmer and drier soil microclimates through soil compaction and loss of plant, microbiotic crust and litter cover. The resulting warmer, drier microclimate reduces the competitive vigor of many native grasses (Piemeissal 1951, Archer and Smeins 1991), thus further increasing viability of aggressive exotics. Once they are established weeds negatively impact western arid ecosystems in numerous ways. Weed infestations reduce biodiversity (Randall 1996), increase fire frequency (Esque 1999, Brooks et al. 1999), disrupt nutrient cycling (Vitousek 1990), alter soil microclimate (Evans and Young 1984), reduce effectiveness of wildlife habitat (Davidson et al. 1996, Knick and Rotenberry 1997), and can expedite loss of topsoil in
xeric environments (Lacy et al. 1989). All of these factors can spell trouble for intrinsically rare, relatively slow reproducing species such as *G. tenuis*.

Even in the absence of the threats listed above, *G. tenuis* is in a delicate position due to the small size of most of its populations. Stan Welsh, lead author on a Utah Flora and renowned regional expert on rare endemic plants, feels that certain (smaller) populations of *G. tenuis* may be in trouble (personal communication, 2002) due to a variety of threats (all discussed above). There is a substantial body of literature on the risks that small populations face for a wide variety of reasons (Gilpin and Soule 1986, Lande 1987), including environmental and demographic stochasticity (Caswell 1989, Goodman 1987, Mode and Jacobson 1987, Lande 1993), Allee effects (Allee et al. 1949), and other factors. These concerns apply to this species. In many places, *G. tenuis* faces exactly those risks because its population size is as small as 25 individuals or less. Connectivity issues may also be a serious concern. These risks need to be considered in addition to and in concert with the particular threats outlined here.

Prolonged drought can also act in concert with one or more of the above threats to deal a crippling blow to rare endemic desert plants, especially those that already exist as small populations. Successive years of drought can have especially devastating consequences for perennials like *G. tenuis* which may experience population destabilization if adult mortality increases dramatically (Caswell 1986, Silvertown et al. 1993, Hunt 2001). In particularly unpredictable and stochastic environments like deserts the sequence of good and/or poor quality seasons can be important in determining the long-term dynamics of a population and the likelihood of extirpation (EDF 1995). The impacts of prolonged drought conditions will likely exacerbate the effects of all the other threats to *G. tenuis* described in this status review.

In addition to the compounding effects of drought, climate change - specifically an increase in global temperatures including those in western North America - is a very real threat to all native plants. The likelihood of warming temperatures in the next 50 years is high, and most scientists do not dispute the advent of global warming.

Different species of plants will respond to climate change in varying ways. Species that evolved together and adapted in response to one another’s phenology may experience a loss of synchrony whereby natural events such as flowering and pollinator emergence that were once timed concurrently become offset because of differing responses to climatic cues. Species may therefore no longer be able to rely on the services once provided by other species (McCarty 2001). This may have serious implications for *G. tenuis* pollination.

In general, climate change threatens to be an additional source of stress for species already threatened by local and global environmental changes, exacerbating the impacts of habitat fragmentation, for example, and increasing the risk of extinction to those species (McCarty 2001). Perhaps the best way that managers can reduce the threat of climate change to species and communities of concern is to effectively connect up a set of core areas and reserves for species and communities, through protective management of core areas and linkages, as is consistently recommended by lead conservation biologists (Noss et al. 1999,
Soule and Terborgh 1999). McCarty summarized the potential impacts of impeding climate change to rare species when he stated:

“Conservation scientists need to look at climate change as a current, not just a future, threat to species. Although a causal link to climate cannot yet be rigorously demonstrated, the consistent patterns indicate that the prudent course for conservation is to take these changes seriously. Certainly, cases such as the extinction of the golden toad are of immediate concern, but the changes in climate need to be taken into account as a possible factor contributing to declines in other species” (McCarty 2001)

Summary, threats to Mussentuchit gilia

Stan Welsh, noted authority on rare Utah flora observed:

“The impress of man and his activities onto the natural habitats of Utah has reduced the area available to most native or indigenous plants....With the advent of the second half of the twentieth century, there has occurred a resurgence of economic activities, mineral exploration, and a greater use of the public lands which hitherto had been considered as useful (if considered useful at all) only for grazing and watershed [purposes]....Plant species which were once remote from the impacts of civilization - industrial, agricultural, or recreational activities - are now threatened not only by the effects of ranching, construction, and off-road travel, but even by the very agencies of the government which are established by law to oversee in the public trust the proper use and protection of the public lands. At the present time, hardly a part of Utah, even that set aside as national parks, monuments, or wilderness areas, is safe from degradation by masses of people or by those seeking to exploit the very natural resources and features these areas were established to protect. Inroads into the most remote and most arid portions of the state now guarantee further reduction of the unique flora of Utah. Naturally, those entities that will suffer the greatest from the commercialization of the state will be those which have specific and naturally restricted areas of distribution. Only the most enlightened management and protection from unreasonable exploitation will ensure the continuation of the rich indigenous flora that these plants represent...” (Welsh 1975).

Over 25 years later, the threats cited by Welsh, above, are as real as ever - indeed there are many indications that they have increased considerably. As outlined above, the chief threats facing *G. tenuis* include livestock grazing, Off-Road Vehicle (ORV) use, and most certainly expedited energy exploration in the region. Plant collection by hobbyists, and mineral extraction – chiefly in the form of gypsum mining – may also pose a considerable threat to certain populations. These chief threats, and their level of impacts to known, extant populations of *G. tenuis*, are featured in Table 2. Collection, sand and gravel quarrying, road construction and maintenance, pesticide use, and exotic weed infestations might be worth considering as lesser threats. Neither disease and predation, nor overutilization for commercial, scientific or educational purposes are considered to be considerable threats to this species at this time.
IV. ASSESSMENT AND CONSERVATION RECOMMENDATIONS

The Mussentuchit gilia deserves particular attention and conservation efforts because it occurs in rare ecosystems of high biological value, it is sensitive to disturbance of various kinds, and it is imminently threatened by several sources of disturbance, namely future oil and gas exploration and development, overgrazing, and ORV use. As discussed above, it is clear that the species is very rare relative to the extent of habitat within which it occurs; there are only 17 known populations likely in existence that are thought to contain about 2,350 individuals. Most of these populations are generally small, and many are threatened or potentially threatened by some form of disturbance. In general, *G. tenuis* is likely to be highly susceptible to these disturbances because it has narrow habitat requirements, is not a particularly “fast reproducer,” is not known to compete aggressively with associated species, and is not known to recover quickly from disturbance.

Given what is now known about the state of the Mussentuchit gilia overall, the importance of the rare habitats where it is found, and the concern voiced by many prominent Utah botanists on the general status and security of existing populations (personal communication, Stan Welsh) and the species as a whole (personal communication, Ron Bolander, Frank Smith, *others*), it is appropriate to recommend that immediate measures be taken to protect the remaining populations, and provide for the full biological recovery, of this imperiled species. With no more than 17 populations of the plant remaining, and the majority of those impacted or potentially impacted by a variety of human disturbances, conservationists and land managers need to implement immediate amelioration efforts to mitigate the damage already being done, develop strategies to protect known populations from future threats, and initiate aggressive recovery efforts. This would most likely be accomplished with a formal listing of the species as either threatened or endangered, under the U.S. Endangered Species Act. (*botanists who agree that listing under ESA warranted: Frank Smith, others?*)

Even in cases where we lack a full understanding of the complex relationship between *G. tenuis* and some disturbances, such as cattle grazing, we should still respond preemptively to protect all existing populations, given the overall scarcity of the species. For example, there is sufficient evidence about the potential threat of trampling by cattle and off-road vehicles to warrant some protection, such as restricting vehicles to designated routes, fencing, and potentially closing areas altogether, in many locations.
The threats to *G. tenuis* and to all sensitive, xeric vegetative communities in the San Rafael Swell and southern Utah have been recognized for a long time. As discussed above, there has been a long list of conservation initiatives suggested for the San Rafael Swell, indicating that those who propose those initiatives appreciate the biological importance and ecological uniqueness of this region - including the myriad of rare endemic plants found here. Today this region is gravely threatened by greatly increased ORV use and expedited Oil and Gas exploration and development. It is clear that the impetus for listing the species, now more than ever, is strong.

There is also a clear and pressing need for more surveys of *G. tenuis* throughout the western slope of the San Rafael Swell, and possibly in additional locations, such as in the entirety of Capitol Reef National Park. Other research efforts, necessary to answer unsolved questions about the ecology of the species and demographics of specific populations, are certainly warranted and urgently needed. Further research should include studies on pollinators; seed dispersal, seed germination and establishment experiments including experiments in seed longevity; and more detailed monitoring of known populations to further our understanding of demography and population stability of those populations.
V. LITERATURE CITED

Comer, R.D. Understanding secondary effects of development on wildlife resources in mitigation planning. Pps. 16-31 in: (Comer et al., eds.) Proceedings of the second symposium on issues and technology in the management of impacted western wildlife. Thorne Ecological Institute, Boulder, CO.

Conway, K. 2002. UDWR comments on EA #UT-062-02-013 (Yellow Cat 2-d Geophysical Project). Letter from Kevin Conway, Interim Director, Utah Department of Natural

Jones, A.L. 2001. Review and analysis of cattle grazing effects in the arid west, with applications for BLM grazing management in southern Utah. A special publication by the Wild Utah Project. Salt Lake City, UT.

Porter, J.M. and K.D. Heil. 1994. The status of Gilia tenuis (not sure how to cite it!)

Robertson E. 2002. Petition for a rule to list Graham’s penstemon (Penstemon grahamii) as Threatened or Endangered under the Endangered Species Act, 16 U.S.C. 1531 et seq. (1973 as Amended) and for the designation of Critical Habitat; Petition for an Emergency Listing Rule under the Endangered Species Act, 16 U.S.C. 1533 (b)(1)(c)(iii) and 1533 (b)(7) and 50 C.F.R. 424.20. Petition brought by the Center for Native Ecosystems, Boulder, CO. October, 2002.

