Is my water safe?
The water delivered to the residents of Ruidoso in 2016 was safe and in compliance with safe drinking water standards. We are pleased to present this year’s Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year’s water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?
Water supply for the Village is derived from a combination of surface-and-ground water sources in the Rio Ruidoso and Eagle Creek watersheds. Consequently, the Village’s ability to produce surface water from these sources is greatly affected by temperature and precipitation and can significantly change from year to year.

How can I get involved?
For concerns or questions regarding your drinking water, please contact the Village of Ruidoso Water Production Department at (575) 257-5525, or reply by mail at 313 Cree Meadows Drive Ruidoso, NM 88345

Source water assessment and its availability
A source water assessment was completed in 2005. Building on that, a source water protection plan was prepared by the Village of Ruidoso in conjunction with the New Mexico Environment Department Drinking Water Bureau and was completed in 2014. A copy of the Source Water Protection Plan is available on the Village of Ruidoso’s website (www.ruidoso-nm.gov). In addition to establishing measures to monitor and protect Ruidoso’s sources of drinking water, this plan also assembles valuable information about Ruidoso’s hydrogeology and water sources into a single document that can serve as an important reference in the future.

Monitoring and Reporting of compliance data violations
Our water system violated a drinking water standard in 2016. Although this is not an emergency, as our customers, you have a right to know what happened, what you should do, and what we are doing.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Ruidoso Water System is required to submit a report of the monthly disinfectant residuals to the New Mexico Environment Department Drinking Water Bureau (NMED DWB). Ruidoso Water System did not meet the monitoring and reporting requirements for this drinking water regulation in June 2016. This resulted in a violation. The following month all disinfectant residuals were completed and the Village of Ruidoso (VOR) water system was back in compliance.

In April 2016 the VOR water system received a violation for not completing all monitoring requirements for Total Coliform. In the following month the Total Coliform samples were completed and the VOR water system was back in compliance.

In July 2016 the VOR water system received a violation for sampling Revised Total Coliform Rule (RTCR) sampling plan errors. On August 12, 2016 a revised RTCR sitting plan was submitted to NMED and was approved on 8/31/2016 and the VOR water system was back in compliance.

In May, June, and December 2012 & 2013, the VOR water system received 7 violations for not submitting a Public Notice for low chlorine at the Grindstone plant, Alto plant, and in the distribution system. The VOR water system is back in compliance with these violations and is working with NMED to close out the violations from 2012 & 2013.
Water Source Protection Tips

Proper drinking water is everyone’s responsibility. You can help protect your community’s drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides – they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA’s Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network’s How to Start a Watershed volunteer to help. If there are no active groups, consider starting one. Use EPA’s Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network’s How to Start a Watershed
- Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people “Dump No Waste - Drains to River” or “Protect Your Water.” Produce and distribute a flyer for household reminders to send storms drain drops directly into your local water body.

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100,000 gallons per year? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – by one today and soon all will become second nature.

- Take short showers – a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Water a user-friendly street. They’re inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,800 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Fixed washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it soaks into the toilet bowl without flushing, you have a leak. Fixing it reusing it with a new, more efficient model can save you up to 1,000 gallons a month.
- Adjust sprinkler so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Visit www.epa.gov/watersense for more information.

Description of Water Treatment Process

Your water is treated in a “treatment train” (a series of processes applied in a sequence) that includes coagulation, flocculation, sedimentation, filtration, and disinfection. Coagulation removes dirt and other particles suspended in source water by adding chemicals (coagulants) to form tiny sticky particles called “floc,” which attract the dirty particles. Flocculation (the formation of larger flocs from smaller flocs) is achieved using gentle, constant mixing. The heavy particles settle naturally out of the water, and the lighter floc then moves to the filtration process where the water passes through sand, gravel, charcoal or other filters that remove even smaller particles. A small amount of chlorine or other disinfection method is used to kill bacteria and other microorganisms (viruses, cysts, etc.) that may be in the water before water is stored and distributed to homes and businesses in the community.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s (EPA) Safe Drinking Water Hotline (800-426-4789). The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity such as:

- microbial contaminants, including viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, and other industrial processes; and contaminants that may come from consumer products such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of contaminants in water provided by public water systems. To find out if your water system is in compliance with these regulations, check for violations on the Clean Water Act Violation List. For more information on specific contaminants, including their sources and potential health effects, visit the EPA’s Water Information Library. More than 80% of the water provided by public water systems meet all federal regulatory standards. The remaining 20% typically do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

WATER QUALITY DATA TABLE

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although most contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, the clear water passes through sand, gravel, charcoal or other filters that remove even smaller particles. A small amount of chlorine or other disinfection method is used to kill bacteria and other microorganisms (viruses, cysts, etc.) that may be in the water before water is stored and distributed to homes and businesses in the community.

SOURCES OF DRINKING WATER CONTAMINANTS

Erosion of natural deposits
- Decay of natural and man-made structures; Erosion of natural deposits
- Soil runoff

Discharge from petroleum and metal refineries; Erosion of natural deposits

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and aluminum factories

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and aluminum factories

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Discharge from petroleum and metal refineries, Volcanic or man-made deposits

Erosion of natural deposits