LOADING (psf)

<table>
<thead>
<tr>
<th>TCLL</th>
<th>Plate Grip DOL</th>
<th>TC</th>
<th>Vert(FL)</th>
<th>Vert(TL)</th>
<th>Wind(LL)</th>
<th>PLATES</th>
<th>GRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>1.15</td>
<td>0.59</td>
<td>-0.11</td>
<td>-0.14</td>
<td>0.06</td>
<td>MT20</td>
<td>185/144</td>
</tr>
<tr>
<td>(Roof Snow=30.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCDL</td>
<td>Rep Stress Incr</td>
<td>YES</td>
<td>WB</td>
<td>Horz(TL)</td>
<td>Wind(LL)</td>
<td>Weight: 124 lb</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>(Matrix)</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>FT = 20%</td>
<td></td>
</tr>
<tr>
<td>BCDL</td>
<td>Lumber DOL</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code IRC2009/TP12007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RE Actions. (lb) - Max Uplift All uplift 100 lb or less at joint(s) 24, 26, 22, 20 except 24=201(LC 5), 16=201(LC 5), 25=111(LC 5), 27=118(LC 5), 28=159(LC 6), 21=111(LC 5), 19=118(LC 5), 18=159(LC 6)

Max Grav All reactions 250 lb or less at joint(s) 23, 26, 27, 28, 20, 19, 18 except 2=555(LC 6), 16=555(LC 6), 24=301(LC 2), 25=264(LC 2), 22=301(LC 3), 21=264(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

<table>
<thead>
<tr>
<th>WEBS</th>
<th>8-24=-261/95, 10-22=-261/95</th>
</tr>
</thead>
</table>

NOTES-

1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; TCDL=3.0psf; h=20ft; Cat. II: Exp C; enclosed: C-C Corner(3) -2-1-0 to 9-11-0, Exterior(2) 0-11-0 to 9-0-0, Corner(3) 9-0-0 to 12-0-0, Exterior(2) 15-0-0 to 23-1-0; Lumber DOL=1.33 plate grip DOL=1.33

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCDL: ASCE 7-05; P=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; GI= 1

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.

6) All plates are 1.5x4 MT20 unless otherwise indicated.

7) Gable requires continuous bottom chord bearing.

8) Gable studs spaced at 2-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 26, 22, 20 except (jt=lb) 2=201, 16=201, 25=111, 27=118, 28=159, 21=111, 19=118, 18=159.

12) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
Plate Offsets (X,Y)-- [2:0-3-8,Edge], [3:0-4-0-3-4], [5:0-4-0-3-4], [9:0-4-0,Edge]

LOADING (psf)
TCLL 30.0
(Roof Snow=30.0)
TCDL 10.0
BCDL 10.0

SPACING-
Plate Grip DOL 1.15
Lumber DOL 1.15
Rep Stress Incr NO
Code IRC2009/TPi2007 (Matrix)

DEFL. in (loc) l/defl L/d
Vert(LL) -0.35 8-9 >844 360
Vert(TL) -0.57 8-9 >488 240
Horz(TL) 0.06 6 n/a n/a

PLATES GRIP
MT20 185/144

WEIGHT: 98 lb FT = 20%

LUMBER-
TOP CHORD 2x4 SPF 1650F 1.5E
BOT CHORD 2x4 SPF 1650F 1.5E
WEBS 2x4 HF/SPF Stud/Std
WEDGE Left: 2x4 HFSPF Stud/Std, Right: 2x4 HFSPF Stud/Std

BRACING-
TOP CHORD Sheathed or 4-6-4 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2=2019/537, 3=1804/578, 4=1650/607, 5=1650/607, 5-11=1804/578,
6=-2019/537
BOT CHORD 2=237/1521, 9=237/1521, 12=237/1521, 8=237/1521
WEBS 4=236/815, 5=378/248, 4=236/815, 3=378/248

NOTES-
1) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat: II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 0-11-0 to 9-0-0, Corner(3) 9-0-0 to 12-0-0, Exterior(2) 15-0-0 to 23-1-0; Lumber DOL=1.33 plate grip DOL=1.33
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Cl= 1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=539, 6=539.
8) This truss has been designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard
1) Dead + Snow (balanced) + Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (psf)
Vert: 1=4-80, 4-7-80, 2-9-20, 9-12-50(F=30), 12-13-90(F=30), 8-13-50(F=30), 6-8-20

Job
Truss
Truss Type
City
Ply
Job Reference (optional)

162634
C
GABLE
1
1

Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte

Truss Type
GABLE
Qty
1
Ply
1

Scale = 1:64.7

Plate Offsets (X,Y): [2:0-4-0,0-6-7], [4:0-3-0,0-3-4], [8:0-2-8,0-3-4], [10:0-4-0,0-6-7], [16:0-4-0,0-3-0]

LOADING (psf)

TCLL 30.0
(Region Snow=30.0)

TCDL 10.0

BCDL 10.0

BC

0.0

CSI.

DEFL

PLATES

Grip

Weight: 187 lb FT = 20%

LUMBER-

4x6

BRACING-

TOP CHORD

2x4 SPF 1650F 1.5E

BOTT CHORD

2x4 SPF 1650F 1.5E

WEBS

2x4 HF/SPF Stud/Std

OTHERS

2x4 HF/SPF Stud/Std

WEDGE

MTEK recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Lumber DOL=1.33 plate grip DOL=1.33

REACTONS.

Max Uplift: All uplift 100 lb or less at joint(s) 12, 14 except 13=481(LC 5), 2=515(LC 5), 10=203(LC 5)

Max Grav: All reactions 250 lb or less at joint(s) 12, 14 except 13=1502(LC 1), 2=1431(LC 2), 10=457(LC 6)

FORCES.

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 0-11-0 to 12-0-0, Corner(3) 12-0-0 to 15-0-0, Exterior(2) 18-0-0 to 29-1-0; Lumber DOL=1.33 plate grip DOL=1.33

5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.

9) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 14 except (j=lb)

11) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard
Plate Offsets (X,Y)-- [2:0-3-8,Edge]

<table>
<thead>
<tr>
<th>LOADING (psf)</th>
<th>SPACING-</th>
<th>CSI.</th>
<th>DEFL</th>
<th>PLATES</th>
<th>GRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLL</td>
<td>Plate Grip DOL 1.15</td>
<td>TC 0.53</td>
<td>Vert(LLL) -0.00</td>
<td>MT20</td>
<td>185/144</td>
</tr>
<tr>
<td>(Roof Snow=30.0)</td>
<td>Lumber DOL 1.15</td>
<td>BC 0.02</td>
<td>Vert(TL) -0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCDL</td>
<td>Rep Stress Incr YES</td>
<td>WB 0.00</td>
<td>Horz(TL) -0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCDL</td>
<td>Code IRC2009/TPi2007 (Matrix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LUMBER-
- TOP CHORD 2x4 SPF 1650F 1.5E
- BOT CHORD 2x4 SPF 1650F 1.5E
- WEDGE
 - Left: 2x4 HFSPF Stud/Std

REACIONS. (lb/size)
- 3=-23/Mechanical, 2=360/0-5-8 (min. 0-1-8), 4=19/Mechanical
- Max Horz 2=171 (LC 5)
- Max Uplift3=-152 (LC 6), 2=-258 (LC 5)
- Max Grav 3=35 (LC 5), 2=506 (LC 6), 4=37 (LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-
1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2)
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
7) Refer to girder(s) for truss to truss connections.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=152, 2=-258.
9) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R602.10.2 and referenced standard ANSI/TPi 1.

LOAD CASE(S) Standard
Plate Offsets (X,Y)-- [2:0-3-8,Edge]

LOADING (psf)
- TCLL: 30.0
- TCDL: 10.0
- BCDL: 10.0

SPACING-
- Plate Grip DOL: 1.15
- Lumber DOL: 1.15
- Rep Stress Incr: YES
- Code IRC2009/TPI2007

CSI.
- TC: 0.58
- BC: 0.11
- WB: 0.00

DEFL.
- Vert(LL): -0.01
- Vert(TL): -0.03
- Horz(TL): -0.00

PLATES.
- MT20

GRIP.
- 185/144

WEIGHT.
- 13 lb
- FT = 20%

LUMBER.
- TOP CHORD: 2x4 SPF 1650F 1.5E
- BOT CHORD: 2x4 SPF 1650F 1.5E

WEDGE.
- Left: 2x4 HFSPF Stud/Std

BRACING.
- TOP CHORD: Sheathed or 3-10-15 oc purlins.
- BOT CHORD: Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REATIONS.
- (lb/size) 3=95/Mechanical, 2=417/0-3-8 (min. 0-1-8), 4=37/Mechanical
- Max Horz: 2=241 (LC 5)
- Max Uplift: 3=82 (LC 5), 2=225 (LC 5)
- Max Grav: 3=127 (LC 2), 2=480 (LC 6), 4=74 (LC 4)

FORCES.
- (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES.
1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; TCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2)
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with any other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
7) Refer to girder(s) for truss to truss connections.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (ib=lb) 2=225.
9) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S)
- Standard
Truss Information
- **Job Reference:** (optional)
- **Job:** 162634
- **Truss:** CJ3
- **Truss Type:** Monopitch Girder
- **Qty:** 2
- **Ply:** 1

Truss Dimensions
- Scale = 1:29.3

Loading (psf)
- **TCLL:** 30.0
- **TCDL:** 10.0
- **BCLL:** 0.0
- **BCDL:** 10.0

Spacing
- **2x4:** Plate Grip DOL = 1.15
- **2x6:** Lumber DOL = 1.15
- **2x8:** Rep Stress Incr = YES
- **Code:** IRC2009/TPI2007

Deformation
- **Max Horz:** 470 (LC 5)
- **Max Uplift:** 295 (LC 5), 631 (LC 5)
- **Max Grav:** 432 (LC 2), 707 (LC 2)

Reactions
- **Top Chord:** 2x6 SPF 1650F 1.5E
- **Bot Chord:** 2x4 SPF 1650F 1.5E
- **Webs:** 2x4 HF/SPF Stud/Std

Notes
1. Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; Cat; II; Exp C; enclosed; C-C Corner (3) -2-11-2 to 0-4-0, Exterior (2) 0-4-0 to 5-2-9, Corner (3) 5-2-9 to 8-2-9; Lumber DOL=1.33, plate grip DOL=1.32
2. TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1
3. Unbalanced snow loads have been considered for this design.
4. This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5. This truss has been designed for a 10.0 psf bottom chord live load non-concurrent with any other live loads.
6. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
7. Refer to girder(s) for truss to truss connections.
8. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=295, 2=631.
9. This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
10. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 102 lb down and 144 lb up at 2-9-8, 102 lb down and 144 lb up at 2-9-8, and 77 lb down and 5 lb up at 5-7-7, and 77 lb down and 5 lb up at 5-7-7 on top chord, and at 2-9-8, 2-9-8, and 17 lb down at 5-7-7, and 17 lb down at 5-7-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
11. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as frontal (F) or back (B).

Load Case(S) Standard
1. **Dead + Snow (balanced):** Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)
 - Vert: 1-3=80, 2-6=20

Continued on page 2
<table>
<thead>
<tr>
<th>Job</th>
<th>Truss</th>
<th>Truss Type</th>
<th>Qty</th>
<th>Ply</th>
</tr>
</thead>
<tbody>
<tr>
<td>162634</td>
<td>CJ3</td>
<td>Monopitch Girder</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

LOAD CASE(S)

- Standard

 Concentrated Loads (lb)
 - Vert: 3=68 (F=34, B=34) 7=-17 (F=-9, B=-9) 4=-36 (F=-18, B=-18)
Truss Type: Monopitch Girder

Qty: 2

Ply: 1

LOADING (psf):
- **TCLL:** 30.0
 - **(Roof Snow=30.0)**
- **TCDL:** 10.0
- **BCDL:** 10.0

SPACING:
- 2-0-0: Plate Grip DOL 1.15, Lumber DOL 1.15, Rep Stress Incr YES, Code IRC2009/TP12007

CIS:
- 0.48

DEFL:
- *Vert(LL)*: 0.00
 - L/defl: >999
 - L/d: in (loc)

PLATES:
- **MT20:** 185/144

WEIGHT:
- 29 lb

LUMBER-
- **TOP CHORD:** 2x6 SPF 1650F 1.5E
- **BOT CHORD:** 2x4 SPF 1650F 1.5E
- **WEBS:** 2x4 HF/SPF Stud/Std

BRACING-
- **TOP CHORD**
- **BOT CHORD**
 - Sheathed or 5-2-2 oc purlins, except end verticals.
 - Rigid ceiling directly applied or 6-0-0 oc bracing.

REATIONS. (lb/size)
- 5=115/Mechanical, 2=548/0-7-6 (min. 0-1-8)
- Max Horz 2=413 (LC 5)
- Max Uplift 5=126 (LC 5), 2=723 (LC 5)
- Max Grav 5=167 (LC 2), 2=667 (LC 6)

FORCES. (lb)
- **TOP CHORD:**
 - 2-7=-440/169, 7-8=-434/181, 3-8=-432/191
- **BOT CHORD:**
 - 2-6=-320/355, 5-6=-321/355
- **WEBS:** 3-5=-410/371

NOTES:
1) Wind: ASCE 7-05; 100mph; TCLD=4.8psf; TCDL=3.0psf; h=20ft; Cat. II; Exp C; Enclosed; C-C Corner(3) -2-11-2 to 0-3-11, Exterior(2)
2) TCLD: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
7) Refer to girders(s) for truss to truss connections.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=126, 2=723.
9) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPi 1.
10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 150 lb down and 167 lb up at 2-9-8, and 150 lb down and 167 lb up at 2-9-8 on top chord, and at 2-9-8, and at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard
1) **Dead + Snow (balanced):** Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (psf)
 - Vert: 1-4=80, 2-5=20

Continued on page 2
LOAD CASE(S) Standard
Concentrated Loads (lb)
Vert: 3=68(F=34, B=34)
LOADING (psf)

- TCLL: 30.0
- (Roof Snow=30.0)
- TCDL: 10.0
- BCCL: 10.0

SPACING

- 2-0-0: Plate Grip DOL = 1.15
- 1.5x5: Rep Stress Incr = YES

DEFL in (loc) | ldef | L/d

- Vert(LL): 0.06
- Vert(TL): -0.12

PLATES GRIP

- MT20: 185/144

LUMBER-

- TOP CHORD: 2x4 SPF 1650F 1.5E
- BOT CHORD: 2x4 SPF 1650F 1.5E
- WEBS: 2x4 HF/SPF Std/Std
- WEDGE

BRACING

- TOP CHORD: Sheathed or 5-2-4 oc purlins.
- BOT CHORD: Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt

FORCES (lb)

- Max Uplift: 2=1391/0-5-8, 10=1609/0-5-8, 8=412/0-5-8
- Max Grav: 2=1442(LC 2), 10=1609(LC 1), 8=466(LC 6)

NOTES:

1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat; II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 0-11-0 to 12-0-0, Corner(3) 12-0-0 to 15-0-0, Exterior(2) 18-0-0 to 29-1-0; Lumber DOL = 1.33 plate grip DOL = 1.33
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Cat= 1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with any other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=503, 10=453, 8=234.
8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard
Job Information

- **Job**: 162634
- **Truss**: E
- **Truss Type**: Common Supported Gable
- **City**: 1
- **Ply**: 1

Truss Details

- **Run**: 7.640 s
- **Print**: 7.640 s
- **MiTek Industries, Inc.**: Thu Dec 01 07:56:52 2016
- **Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte**

Diagram

- **Scale**: 1:30.9

Load Case

- **Standard**

Notes

1. Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) - 2-1-0 to 0-11-0, Exterior(2) 10-0-0 to 13-1-0; Lumber DOL=1.33 plate grip DOL=1.33
2. Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
3. TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1
4. Unbalanced snow loads have been considered for this design.
5. This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
6. All plates are 1.5x4 MT20 unless otherwise indicated.
7. Gable requires continuous bottom chord bearing.
8. Gable studs spaced at 2-0-0 oc.
9. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
10. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
11. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 12 except (jt=lb) 2=252, 10=252, 15=279(LC 3), 13=279(LC 3)
12. This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y)

- [2:0-4-0,0-6-7], [10:0-4-0,0-6-7]

Loading (psf)

- **TCLL**: 30.0 (Roof Snow=30.0)
- **TC**: 10.0
- **BCCL**: 0.0
- **BCDL**: 10.0

Spacing

- **TCLL**: Plate Grip DOL=1.15
- **Lumber DOL=1.15
- **Rep Stress Incr**: YES
- **Code**: IRC2009/TP12007

Deflection

- **Vert(LL)**: 0.12
- **Vert(TL)**: 0.15
- **Horz(TL)**: 0.00
- **Wind(LL)**: 0.06

Reactions

- **Max Uplift**: 100 lb or less at joint(s) 16, 12 except 2=252(LC 5), 10=252(LC 5), 15=121(LC 5), 13=121(LC 5)
- **Max Gravity**: All reactions 250 lb or less at joint(s) 14, 16, 12 except 2=514(LC 6), 10=514(LC 6), 15=279(LC 2), 13=279(LC 3)

Reactions

- **Max. Comp./Max. Ten.**: All forces 250 (lb) or less except when shown.

Notes

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) - 2-1-0 to 0-11-0, Exterior(2) 10-0-0 to 13-1-0; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 12 except (jt=lb) 2=252, 10=252, 15=121, 13=121.
- 12) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate (psf)

- **MT20**: Weight: 63 lb FT = 20%
Job Reference (optional)

Truss Type: Common

Truss: F

Count: 2

Ply: 1

Qty: 2

LOADING (psf)

- **TCLL**: 30.0
- **TC**: 10.0
- **BCD**: 10.0

WEBS: 2x4 HF/SPF Stud/Std

WEDGE: Left: 2x4 HFSPF Stud/Std, Right: 2x4 HFSPF Stud/Std

REATIONS. (lb/size) 2=862/0-5-8 (min. 0-1-8), 6=862/0-5-8 (min. 0-1-8)

Max Uplift: 2=362/0-5-8 (LC 5), 6=362/0-5-8 (LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD: 2=3=833/227, 3=9=618/190, 4=9=506/207, 4=10=506/207, 5=10=618/190, 5=6=833/227

BOT CHORD: 2=8=8/585, 6=8=8/585

WEBS: 4=8=59/342

NOTES.

1) **Wind**: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) 2-1-0 to 0-11-0, Exterior(2) 0-1-0 to 4-0-0, Corner(3) 4-0-0 to 7-0-0, Exterior(2) 10-0-0 to 13-1-0; Lumber DOL=1.33 plate grip DOL=1.33

2) **TCLL**: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; C= 1

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except β=2=362, 6=362.

8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
Plate Offsets (X,Y): [2:0-4-0-0-6-7], [5:Edge,0-3-8], [5:0-4-0-0-4-5], [8:0-4-0-0-6-7]

LOADING (psf)

<table>
<thead>
<tr>
<th>LOAD CASE(S)</th>
<th>Standard</th>
</tr>
</thead>
</table>

PLATES

<table>
<thead>
<tr>
<th>PLACES</th>
<th>GRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT20</td>
<td>185/144</td>
</tr>
</tbody>
</table>

LUMBER-

TOP CHORD	2x4 SPF 1650F 1.5E
BOT CHORD	2x4 SPF 1650F 1.5E
WEBS	2x4 HF/SPF Stud/Std
OTHERS	2x4 HF/SPF Stud/Std
WEDGE	Left: 2x4 SPF 1650F 1.5E, Right: 2x4 SPF 1650F 1.5E

REACTIONS.

All bearings 12-5-8 except (jt=length) 2=0-5-8.

(lb) Max Uplift All uplift 100 lb or less at joint(s) 10 except 2=-388(LC 5), 8=-235(LC 5), 13=478(LC 5)
Max Grav All reactions 250 lb or less at joint(s) 12, 11, 10 except 2=1068(LC 2), 8=522(LC 6), 13=1220(LC 1), 14=302(LC 2)

FORCES.

(lb) Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD	2-3=-1188/264, 3-4=-949/297, 4-31=-978/330, 5-31=-780/361, 6-5-8=-240
BOT CHORD	2=-47/914, 16-33=0/299, 15-33=0/299, 14-15=0/299, 14-34=0/299, 13-34=0/299
WEBS	5-13=-1033/257, 6-13=-525/292, 5-16=-238/776, 4-16=-560/294

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II: Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 10-0-0 to 13-0-0, Exterior(2) 16-0-0 to 25-1-0; Lumber DOL=1.33 plate grip DOL=1.33
Max Grav All reactions 250 lb or less at joint(s) 12, 11, 10 except 2=1068(LC 2), 8=522(LC 6), 13=1220(LC 1), 14=302(LC 2)

11) This truss has been designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
LOADING (psf)

- **TCLL**: 30.0
- **TCDL**: 10.0
- **BCLL**: 10.0

SPACING
- Plate Grip DOL: 2.0-0
- Rep Stress Incr: YES

DEFL
- **Vert(LL)**: 0.32
- **Vert(TL)**: 0.46
- **Horiz(TL)**: 0.06

PLATES
- **Grip**

LUMBER
- **TOP CHORD**: 2x4 SPF 1650F 1.5E
- **BOT CHORD**: 2x4 SPF 1650F 1.5E
- **WEBS**: 2x4 HF/SPF Stud/Std

WEIGHT: 106 lb

FORCE
- Max. Comp./Max. Ten.: All forces 250 (lb) or less except when shown.

NOTES
- This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S)
- Standard
LOADING (psf)

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>TCDL</th>
<th>TLL</th>
<th>TCLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>30.0</td>
<td>10.0</td>
<td>30.0</td>
</tr>
<tr>
<td>(Roof Snow=30.0)</td>
<td>10.0</td>
<td>30.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

SPACING

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Plate Grip DOL</th>
<th>Lumber DOL</th>
<th>Rep Stress Incr</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>2.0-0</td>
<td>2.0-0</td>
<td>YES</td>
<td>IRC2009/TPI2007</td>
</tr>
<tr>
<td>BRAZING</td>
<td>5.0-0</td>
<td>5.0-0</td>
<td>YES</td>
<td>IRC2009/TPI2007</td>
</tr>
</tbody>
</table>

CSI

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>TC</th>
<th>BC</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>0.65</td>
<td>0.62</td>
<td>0.54</td>
</tr>
<tr>
<td>BRAZING</td>
<td>0.65</td>
<td>0.62</td>
<td>0.54</td>
</tr>
</tbody>
</table>

DEFL

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Vert(L/L)</th>
<th>Vert(T/L)</th>
<th>Horz(T/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>-0.31</td>
<td>-0.44</td>
<td>0.06</td>
</tr>
<tr>
<td>BRAZING</td>
<td>-0.31</td>
<td>-0.44</td>
<td>0.06</td>
</tr>
</tbody>
</table>

PLATES

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>GRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>185/144</td>
</tr>
<tr>
<td>BRAZING</td>
<td>Sheathed or 4-4-7 oc purlins.</td>
</tr>
</tbody>
</table>

WEBS

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Weight: 103 lb FT = 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td></td>
</tr>
<tr>
<td>BRAZING</td>
<td></td>
</tr>
</tbody>
</table>

LUMBER

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Top Chord</th>
<th>Bot Chord</th>
<th>Webs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>2x4 SPF SPF 1650F 1.5E</td>
<td>2x4 SPF SPF 1650F 1.5E</td>
<td>2x4 HF/SPF Stud/Std</td>
</tr>
<tr>
<td>BRAZING</td>
<td>Sheathed or 4-4-7 oc purlins.</td>
<td>Rigid ceiling directly applied or 10-0-0 oc bracing.</td>
<td></td>
</tr>
</tbody>
</table>

BRACING

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Top Chord</th>
<th>Bot Chord</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>Sheathed or 4-4-7 oc purlins.</td>
<td>Rigid ceiling directly applied or 10-0-0 oc bracing.</td>
</tr>
<tr>
<td>BRAZING</td>
<td>Sheathed or 4-4-7 oc purlins.</td>
<td>Rigid ceiling directly applied or 10-0-0 oc bracing.</td>
</tr>
</tbody>
</table>

WEBSITE

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Top Chord</th>
<th>Bot Chord</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>2x4 SPF SPF 1650F 1.5E</td>
<td>2x4 SPF SPF 1650F 1.5E</td>
</tr>
<tr>
<td>BRAZING</td>
<td>Sheathed or 4-4-7 oc purlins.</td>
<td>Sheathed or 4-4-7 oc purlins.</td>
</tr>
</tbody>
</table>

WEBS

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>Weight: 103 lb FT = 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td></td>
</tr>
<tr>
<td>BRAZING</td>
<td></td>
</tr>
</tbody>
</table>

FORCES

<table>
<thead>
<tr>
<th>LOAD CASE</th>
<th>(lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING</td>
<td>-2015/554, -1792/605, -1595/636, -1593/610, -1593/588, -1737/588</td>
</tr>
<tr>
<td>BRAZING</td>
<td>-256/1530, 8-11=-9/1032, 7-12=-9/1032, 7-13=-9/1032, 5-7=-228/1480</td>
</tr>
</tbody>
</table>

WEBS

| LOAD CASE | 7-8=-216/740, 4-7=-420/283, 3-8=-262/805, 2-8=-462/302 |

NOTES

1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) 0-2-12 to 3-2-12, Exterior(2) 3-2-12 to 10-0-0; Corner(3) 0.65-0.62; Exterior(2) 16-0-0 to 25-1-0; Lumber DOL=1.33 plate grip DOL=1.33

2) TCDL: ASCE 7-05; PF=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp; Cl= 1

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for 1.00 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=384, 5=541.

8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard
<table>
<thead>
<tr>
<th>Job</th>
<th>162634</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truss</td>
<td>J1</td>
</tr>
<tr>
<td>Truss Type</td>
<td>Jack-Open</td>
</tr>
<tr>
<td>Qty</td>
<td>2</td>
</tr>
<tr>
<td>Ply</td>
<td>1</td>
</tr>
</tbody>
</table>

Truss Details

- **Plate Offsets (X,Y)---** `[2:0-3-8,Edge]`

LOADING (psf)
- TCLL: 30.0
- (Roof Snow=30.0)
- TCDL: 10.0
- BCDL: 10.0

SPACING
- Plate Grip DOL: 1.15
- Lumber DOL: 1.15
- Rep Stress Incr: YES
- Code IRC2009/TP12007 (Matrix)

DEFL
- Vert(LL): -0.01
- Vert(TL): -0.02
- Horz(TL): -0.00

PLATES
- MT20
- GRIP: 185/144
- Weight: 13 lb
- FT = 20%

LUMBER
- TOP CHORD: 2x4 SPF 1650F 1.5E
- BOT CHORD: 2x4 SPF 1650F 1.5E
- WEDGE: Left: 2x4 HFSF Stud/Std

BRACING
- TOP CHORD: Sheathed or 3-9-0 oc purlins.
- BOT CHORD: Rigid ceiling directly applied or 10-0-0 oc bracing.

REATIONS.
- (lb/size) 3=77/Mechanical, 2=419/0-5-8 (min. 0-1-8), 4=35/Mechanical
- Max Horz: 2=235(LC 5)
- Max Uplift: 3=-73(LC 6), 2=-235(LC 5)
- Max Grav: 3=106(LC 2), 2=501(LC 6), 4=69(LC 4)

FORCES.
- Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES.
1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2)
- 0-11-0 to 3-8-4; Lumber DOL=1.33 plate grip DOL=1.33
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.0 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
7) Refer to girder(s) for truss to truss connections.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (JT=lb) 2=235.
9) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1.

LOAD CASE(S)
- Standard
Plate Offsets (X,Y)-- [2:0-3-8,Edge]

LOADING (psf)
- TCLL: 30.0
- TCDL: 10.0
- BCLL: 0.0
- BCDL: 10.0

SPACING
- Top Chord: 2x4 SPF 1650F 1.5E
- Bottom Chord: 2x4 SPF 1650F 1.5E
- Wedge: 2x4 HFSPF Stud/Std

CSI
- TC: 0.62
- BC: 0.28
- WB: 0.00
- Code IRC2009/TPI2007

DEFL
- Vert(LL): -0.06
- Vert(TL): -0.15
- Horz(TL): -0.00
- (Matrix)

PLATES
- MT20: 185/144

WEIGHT: 19 lb

GRIP:
- Top Chord: Sheathed or 6-0-0 oc purlins.
- Bottom Chord: Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER -
- Top Chord: 2x4 SPF 1650F 1.5E
- Bottom Chord: 2x4 SPF 1650F 1.5E
- Wedge: 2x4 HFSPF Stud/Std

REACTIIONS.
- (lb/size) 3=191/Mechanical, 2=508/0-5-8 (min. 0-1-8), 4=57/Mechanical
- Max Horz = 2=313 (LC 5)
- Max Uplift = -169 (LC 5), 2=-223 (LC 5)
- Max Grav = 3=252 (LC 2), 2=528 (LC 2), 4=114 (LC 4)

FORCES.
- Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES.
1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; TCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) - 2-1-0 to 0-11-0, Exterior(2)
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Cl= 1
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.0 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
7) Refer to girder(s) for truss to truss connections.
8) Provide mechanical connection (of others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (j=lb) 3=169, 2=223.
9) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R602.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard
Truss J3

Truss Type: Jack-Open
Qty: 4
Ply: 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING (psf)</td>
<td></td>
</tr>
<tr>
<td>TCLL</td>
<td>30.0</td>
</tr>
<tr>
<td>TC DL</td>
<td>10.0</td>
</tr>
<tr>
<td>BCLL</td>
<td>0.0 *</td>
</tr>
<tr>
<td>BCDL</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACING-</th>
<th>2-0-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Grip DOL</td>
<td>1.15</td>
</tr>
<tr>
<td>Lumber DOL</td>
<td>1.15</td>
</tr>
<tr>
<td>Rep Stress Incr</td>
<td>YES</td>
</tr>
<tr>
<td>Code IRC2009/TPI2007</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSL</th>
<th>TC 0.71</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFL.</td>
<td>in (loc) l/defl L/d</td>
</tr>
<tr>
<td>Vert (LL)</td>
<td>-0.07 1-3 >999 360</td>
</tr>
<tr>
<td>Vert (TL)</td>
<td>-0.18 1-2 >423 240</td>
</tr>
<tr>
<td>Horz (TL)</td>
<td>-0.00 2 n/a n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLATES</th>
<th>MT20</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIP</td>
<td>185/144</td>
</tr>
</tbody>
</table>

| **WEIGHT:** | 16 lb |
| **FT:** | 20% |

LUMBER-

- **TOP CHORD** 2x4 SPF 1650F 1.5E
- **BOT CHORD** 2x4 SPF 1650F 1.5E
- **WEDGE** Left: 2x4 HFSPF Stud/Std

REACIONS. (lb/size)
- 2=235/Mechanical, 3=59/Mechanical, 1=294/Mechanical
- Max Horz = 226 (LC 5)
- Max Uplift = 211 (LC 5), 1 = 30 (LC 5)
- Max Grav = 271 (LC 2), 3 = 118 (LC 4), 1 = 302 (LC 2)

FORCES. (lb) Max. Comp./Max. Ten.
- All forces 250 (lb) or less except when shown.

NOTES:

1. Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) 0-0-12 to 3-0-12, Exterior(2) 3-0-12 to 5-11-4; Lumber DOL=1.33 plate grip DOL=1.33
2. TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1
3. Unbalanced snow loads have been considered for this design.
4. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
6. Refer to girder(s) for truss to truss connections.
7. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (j=lb) 2=211.
8. This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard
2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) 0-0-12 to 3-0-12, Exterior(2) 3-0-12 to 9-11-14, Corner(3) 9-11-14 to 13-0-0, Exterior(2) 16-3-0 to 22-9-4; Lumber DOL=1.33 plate grip DOL=1.33

4) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) WARNING: Required bearing size at joint(s) 12 greater than input bearing size.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 402 lb uplift at joint 1, 627 lb uplift at joint 9, 1116 lb uplift at joint 14 and 1709 lb uplift at joint 12.

11) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2608 lb down and 650 lb up at 0-1-8, 1638 lb down and 212 lb up at 0-1-8, 1638 lb down and 212 lb up at 10-0-12. 800 lb down and 253 lb up at 0-1-8, and 2113 lb down and 261 lb up at 20-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S)

Standard

1) Dead + Snow (balanced) + Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-80, 5-9=-80, 1-9=-20

Concentrated Loads (lb)

Vert: 13=-1866(B) 11=-1436(B) 18=-2608(B) 19=-1638(B) 20=-1950(B) 21=-1487(B) 22=-2007(B) 23=-2060(B) 24=-2151(B)
Plate Offsets (X,Y)-- [1:0-0-8 Edge], [4:0-0-8 Edge]

LOADING (psf)

<table>
<thead>
<tr>
<th>LOAD</th>
<th>SPACING</th>
<th>CSI.</th>
<th>DEFL.</th>
<th>PLATES</th>
<th>GRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLL</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Roof Snow=30.0)</td>
<td>10.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCDL</td>
<td>2x6 SPF 1650F 1.5E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOT CHORD</td>
<td>2x6 SPF 1650F 1.5E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEBS</td>
<td>2x4 HF/SPF Stud/Std</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REATIONS. (lb/size) 1=945/0-5-8 (min. 0-1-8), 4=965/0-5-8 (min. 0-1-8)
Max Uplift=270(LC 5), 4=258(LC 5)
Max Grav=1143(LC 11), 4=1162(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD | 1-7=-1490/350, 7-8=-1248/361, 2-3=-1101/348, 3-9=-1295/361, 9-10=-1370/351, 4-10=-1490/350
BOT CHORD | 1-11=-223/1130, 11-12=-223/1130, 6-12=-223/1130, 6-13=-217/1110, 5-13=-217/1110, 5-14=-223/1130, 4-14=-223/1130
WEBS | 2-6=-107/506, 3-5=-101/512

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have not been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1, Lu=50-0-0

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 20.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 270 lb uplift at joint 1 and 258 lb uplift at joint 4.

10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 57 lb down and 7 lb up at 3-9-0, and 57 lb down and 7 lb up at 4-3-0 on top chord, and 25 lb down and 422 lb up at 1-3-12, 282 lb down and 13 lb up at 1-11-4, 153 lb down and 89 lb up at 3-9-0, 282 lb down and 13 lb up at 3-11-4, and 153 lb down and 89 lb up at 4-2-4, and 282 lb down and 13 lb up at 5-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard
<table>
<thead>
<tr>
<th>Job</th>
<th>Truss Type</th>
<th>Qty</th>
<th>Ply</th>
</tr>
</thead>
<tbody>
<tr>
<td>162634</td>
<td>Hip Girder</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)
- Vert: 1-2=-80, 2-3=-80, 3-4=-80, 1-4=-20

Concentrated Loads (lb)
- Vert: 2=-27(B) 3=-27(B) 6=-153(B) 5=-138(B) 11=49(F) 12=-282(F) 13=-296(F) 14=-282(F)
NOTES:
10) Refer to girder(s) for truss to truss connections.
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 803 lb uplift at joint 12, 477 lb uplift at joint 2 and 1635 lb uplift at joint 17.
12) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 181 lb down and 73 lb up at 6-0-0, 214 lb down and 71 lb up at 8-0-12, 214 lb down and 71 lb up at 10-0-12, 214 lb down and 71 lb up at 12-0-12, 214 lb down and 71 lb up at 14-0-12, 214 lb down and 71 lb up at 16-0-12, 214 lb down and 71 lb up at 18-0-12, 214 lb down and 71 lb up at 20-0-12, 214 lb down and 71 lb up at 22-0-12, 214 lb down and 71 lb up at 24-0-12, 214 lb down and 71 lb up at 26-0-12, 214 lb down and 71 lb up at 28-0-12, 214 lb down and 71 lb up at 30-0-12, 214 lb down and 71 lb up at 32-0-12, 233 lb down and 98 lb up at 34-0-12, 233 lb down and 98 lb up at 36-0-12, and 233 lb down and 98 lb up at 38-0-12, and 246 lb down and 113 lb up at 40-4-4 on top chord, and 441 lb down and 191 lb up at 6-0-0, 74 lb down at 8-0-12, 74 lb down at 10-0-12, 74 lb down at 12-0-12, 74 lb down at 14-0-12, 74 lb down at 18-0-12, 74 lb down at 20-0-12, 74 lb down at 22-0-12, 74 lb down at 24-0-12, 74 lb down at 26-0-12, 74 lb down at 28-0-12, 74 lb down at 30-0-12, 74 lb down at 32-0-12, 74 lb down at 34-0-12, 74 lb down at 38-0-12, and 78 lb down at 40-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf)
 Vert: 1-4=-80, 4-11=-80, 2-12=-20
Concentrated Loads (lb)
 Vert: 4=-172(F) 11=-219(F) 12=-46(F) 19=-441(F) 6=-172(F) 15=-37(F) 8=-172(F) 21=-172(F) 22=-172(F) 23=-172(F) 24=-172(F) 25=-172(F) 27=-172(F) 28=-172(F) 29=-172(F) 31=-172(F) 32=-172(F) 33=-172(F) 34=-191(F) 35=-191(F) 36=-191(F) 37=-37(F) 38=-37(F) 39=-37(F) 40=-37(F) 41=-37(F) 42=-37(F) 43=-37(F) 44=-37(F) 45=-37(F) 46=-37(F) 47=-37(F) 48=-39(F) 49=-39(F) 50=-39(F)
Job 162634
Truss M2
Truss Type Half Hip
Qty 2
Ply 1

Truss M2 - Half Hip

Job Reference (optional)
Run: 7.640 s Nov 10 2015
Print: 7.640 s Nov 10 2015
MiTek Industries, Inc. Thu Dec 01 07:57:00 2016
Page 1

Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte

ID:zMPGso65lxPaHV_ZoL0KmyQyo3e-9ys3x6x6SFK_GDybORAOAdg9MBF_CvC2gBxuYyDNI1

Scale = 1:71.3

Plate Offsets (X,Y) - [2:0-3-8, Edge], [4:0-3-0, 2-3], [7:0-4-0, Edge], [9:0-6-0, 0-3-4], [11:0-3-8, Edge], [13:0-3-0, 0-3], [16:0-4-0, 0-3-0]

LOADING (psf)
TCLL 30.0
(Flat Roof Snow=30.0)
TCDL 10.0
BCDL 10.0

SPACING
TC 1.15
Rep Stress Incr YES
Code IRC2009/TPI2007 (Matrix)

DEFL
Vert(LL) = -0.11 15-16 >999 360
Vert(TL) = -0.24 15-16 >795 240
Horz(TL) = 0.03 11 n/a n/a

LUMBER - TOP CHORD 2x4 SPF 1650F 1.5E
BOT CHORD 2x4 SPF 1650F 1.5E
WEBS 2x4 HF/SPF Stud/Std "Except"
W10: 2x4 SPF 1650F 1.5E, W7,W9: 2x4 HF Stud

BRACING - TOP CHORD Sheathed or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (5-3-6 max.): 4-10.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
WEBS 1 Row at midpt 5-15, 6-15, 8-14, 8-12

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size)
11=1039/Mechanical, 2=767/0-3-8 (min. 0-2-1), 15=2484/0-5-8 (min. 0-5-8) Max Horz 2=333(LC 5)
Max Uplift11=364(LC 5), 2=279(LC 5), 15=856(LC 5)
Max Grav 11=1658(LC 7), 2=1300(LC 8), 15=3503(LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-1154/94, 3-4=-705/98, 4-5=-455/137, 5-18=-225/881, 6-18=-225/881, 6-19=-225/881, 7-19=0/251, 8-20=-690/184, 8-9=-1345/299, 9-10=-1345/299, 10-11=-1587/374
WEBS 3-16=-407/140, 5-16=-205/711, 5-15=-1308/389, 6-15=-2234/588, 6-14=-553/2130, 7-14=-620/252, 8-14=-1103/237, 8-13=0/251, 9-12=-953/257, 10-12=-392/1761

NOTES:
1) Wind: ASCE 7-05; 100mph; TCLD=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2)
2) TCLD: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1, Lu=50-0-0
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) Provide adequate drainage to prevent water ponding.
6) All plates are MT20 plates unless otherwise indicated.
7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
9) Refer to girder(s) for truss to truss connections.
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 364 lb uplift at joint 11, 279 lb uplift at joint 2 and 856 lb uplift at joint 15.
11) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
Job: 162634
Truss: M3
Truss Type: Half Hip
Qty: 2
Ply: 1

Truss Details:
- Truss ID: zMPGso65lxPaHV_Zol0kflyGy30-udQqF40e77q69BP5u9MJ0QYVjc4LwIQ_yDN10
- Run: 7.640 s Nov 10 2015
- Print: 7.640 s Nov 10 2015
- Source: MiTek Industries, Inc. Thu Dec 01 07:57:01 2016
- Page 1

Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte

Plate Offsets (X,Y): [2:0-3-8,Edge], [4:0-3-5,Edge], [12:0-4-0,0-3-0], [16:0-3-0,0-3-0]

LOADING (psf):
- TCLL: 30.0
- (Roof Snow=30.0)
- TCDL: 10.0
- BCLL: 0.0
- BCDL: 10.0

CSI: 0.95

DEFL: in (loc) | l/defl L/d
- Vert(LL) = 0.09 11-12 >999 360
- Vert(TL) = -0.15 12-13 >999 240
- Horz(TL) = 0.05 10 n/a n/a

Plates:
- MT20: 185/144
- MT20HS: 139/108
- Weight: 206 lb FT = 20%

Lumber:
- TOP CHORD 2x4 SPF 1650F 1.5E
- BOT CHORD 2x4 SPF 1650F 1.5E
- WEBS 2x4 HF/SPF Stud/Std
- WEDGE
- LUMBER:
 - TOP CHORD Sheathed or 5-11-7 oc purlins, except end verticals, and 2-0-0 oc purlins (2-2-0 max.): 4-9.
 - BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
 - WEBS 1 Row at midpt 4-15, 8-10
 - 2 Rows at 1/3 pts 6-15
 - MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Reactions:
- WEBS 3-16=-683/215, 4-16=-96/621, 4-15=-119/382, 5-15=-100/264, 6-15=-229/482, 6-12=-213/985, 7-12=-747/246, 8-11=-309, 8-10=-138/368

Notes:
1) 2x4 SPF 1650F 1.5E bearing block 12" long at j.t. 15 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF 1650F 1.5E
2) Wind: ASCC 7-05; 100mph; TCDL=4.8psf; BCLL=3.0psf; BCDL=1.33 plate grip DOL=1.33
3) TCLL: ASCC 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1, Lu=50-0-0
4) Unbalanced snow loads have been considered for this design.
5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
6) Provide adequate drainage to prevent water ponding.
7) All plates are MT20 plates unless otherwise indicated.
8) This truss has been designed for a 10.0 psi bottom chord live load nonconcurrent with any other live loads.
9) This truss has been designed for a live load of 20.0psi on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
10) Provide metal plate or equivalent at bearing(s) 10 to support reaction shown.
11) Refer to girder(s) for truss to truss connections.
12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 364 lb uplift at joint 10, 252 lb uplift at joint 2 and 873 lb uplift at joint 15.
13) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
<table>
<thead>
<tr>
<th>Job</th>
<th>Truss</th>
<th>Truss Type</th>
<th>Qty</th>
<th>Ply</th>
</tr>
</thead>
<tbody>
<tr>
<td>162634</td>
<td>M3</td>
<td>Half Hip</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES-

14) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit.

This truss has been designed for a bottom chord live load nonconcurrent with any other live loads.

This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Reactions:

Max Uplift: 10-355/LC 2, 2-243/LC 5, 14-895/LC 5.

Forces: (lb) - Max. Comp./Max. Ten. - All forces 250 lb or less except when shown.

Top Chord: 2-2-14, 3-2-12, 4-2-14, 5-2-14, 6-2-14, 7-2-14, 8-2-14, 9-2-14, 10-2-14, 11-2-14, 12-2-14, 13-2-14, 14-2-14, 15-2-14, 16-2-14, 17-2-14, 18-2-14, 19-2-14, 20-2-14, 21-2-14, 22-2-14, 23-2-14, 24-2-14, 25-2-14, 26-2-14, 27-2-14, 28-2-14, 29-2-14, 30-2-14, 31-2-14, 32-2-14, 33-2-14, 34-2-14, 35-2-14, 36-2-14, 37-2-14, 38-2-14, 39-2-14, 40-2-14.

NOTE:
1) 2x4 SPF 1650F 1.5E bearing block 12" long at 14 attached to front face with 2 rows of 10d (0.131" x 3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF 1650F 1.5E.
2) Wind: ACSC 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner 6-2-1 to 0-11-0, Exterior(2) 0-11 to 37-4-4, Corner(3) 37-4-4 to 40-4-4; Lumber DOL=1.33 plate grip DOL=1.33.
3) TCDL: ACSC 7-05; Pl=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Cl= 1, Lu=50-0-0.
4) Unbalanced snow loads have been considered for this design.
5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
6) Provide adequate drainage to prevent water ponding.
7) All plates are MT20 plates unless otherwise indicated.
8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 365 lb uplift at joint 10, 223 lb uplift at joint 2 and 895 lb uplift at joint 14.
11) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
12) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. Continued on page 2.
Job Information

<table>
<thead>
<tr>
<th>Job</th>
<th>Truss</th>
<th>Truss Type</th>
<th>Qty</th>
<th>Ply</th>
</tr>
</thead>
<tbody>
<tr>
<td>162634</td>
<td>M4</td>
<td>Half Hip</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Load Case(s)

- Standard
Job: W5
Truss: M5
Truss Type: Half Hip
Qty: 1
Ply: 1

LOADING (psf)
TCLL: 30.0
(ROof Snow=30.0)
TCDL: 10.0
BCDL: 10.0

SPACING-
Lumber DOL = 1.33 Plate Grip DOL = 1.33
TC: 0.87
BC: 0.45
WB: 0.87
Horz(TL): 0.04

DEFL
Vert(LL): -0.11 11-12 x999 360
Vert(TL): -0.18 2-15 x999 240
Horz(TL): 0.04 9 n/a n/a

PLATES GRIP
MT20: 185/144
MT20HS: 139/108

WEBS
Top Chord: 2x4 SPF 1650F 1.8E
Bot Chord: 2x4 SPF 2100F 1.8E

WEBS
3-15=0/308, 3-14=-1152/349, 4-14=-161/728, 4-13=-1407/458, 5-13=-2552/465, 5-12=0/310, 5-11=-219/1145, 6-11=-919/257, 7-10=0/383, 7-9=-1999/353

NOTES:
1) Wind: ASCE 7-05; 100mph; TCLD=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 0-11-0 to 37-4-4, Category II; Exp C; Fully Exp.; Ct= 1, Lu=50-0-0
2) Unbalanced snow loads have been considered for this design.
3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
4) Provide adequate drainage to prevent water ponding.
5) All plates are MT20 plates unless otherwise indicated.
6) The Fabrication Tolerance at joint 4 = 12%
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 384 lb uplift at joint 9, 217 lb uplift at joint 2 and 873 lb uplift at joint 13.
8) This truss has been designed for a 10.0 psf of gravity load on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)
Standard
LOADING (psf)

- **TCLL**: 30.0
- **Roof Snow**: 30.0
- **TCDDL**: 10.0
- **BCLL**: 0.0
- **BCDCL**: 10.0

SPACING:

- **Plate Grip DOL**: 1.15
- **Lumber DOL**: 1.15
- **Rep Stress Incr**: YES
- **Code IRC2009/TP2007 (Matrix)**

DEFL:

- **Vertical (LL)**
- **Vertical (TL)**
- **Horizontal (TL)**

VERTICALLY INJECTED:

- **in (loc)**
- **l/in (loc)**
- **L/d**

PLATES:

- **TOP CHORD**: 2x4 SPF 2100F 1.8E
- **BOT CHORD**: 2x4 SPF 1650F 1.5E
- **WEBS**: 2x4 HF/SPF Stud/Std
- **WEDGE**: Left: 2x4 SPF 1650F 1.5E, Right: 2x4 SPF 1650F 1.5E

BRACING:

- **TOP CHORD**: Sheathed or 2-2-0 oc purlins, except 2-0-0 oc purlins (2-2-0 max.): 4-6.
- **BOT CHORD**: Rigid ceiling directly applied or 6-0-0 oc bracing.
- **WEBS**: 1 Row at midpt, 2 Rows at 1/3 pts

LUMBER:

- **TOP CHORD**: 2x4 SPF 2100F 1.8E
- **BOT CHORD**: 2x4 SPF 1650F 1.5E
- **WEBS**: 2x4 HF/SPF Stud/Std

FORCES:

- **Max. Comp./Max. Ten.**

WEBS:

- **3-14=-0/308**
- **3-13=-1166/343**
- **4-13=-158/731**
- **4-12=-1561/347**
- **5-12=-1962/470**
- **5-11=0/305**
- **5-10=-234/1203**
- **7-10=-1152/372**
- **7-9=0/300**

NOTE:

- **Wind**: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3)

LOAD CASE(S):

- **Standard**
JOB FORCES.

REACTIONS.

TOP CHORD 2x4 SPF 1650F 1.5E *Except*

Left: 2x4 SPF 1650F 1.5E, Right: 2x4 SPF 1650F 1.5E

WEDGE WEBS 2x4 HF/SPF Stud/Std

BOT CHORD 2x4 SPF 1650F 1.5E

WEBS 3-16=-723/217, 4-16=-104/546, 4-15=-1166/355, 5-15=-968/161, 6-15=-1623/443,

1) 2x4 SPF 1650F 1.5E bearing block 12” long at jt. 15 attached to front face with 2 rows of 10d (0.131”x3”) nails spaced 3” o.c. Total fasteners. Bearing is assumed to be SPF 1650F 1.5E

NOTES-

7) All plates are MT20 plates unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.

10) Refer to girder(s) for truss to truss connections.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 278 lb uplift at joint 2, 816 lb uplift at joint 15, and 312 lb uplift at joint 10.

12) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) *Semi-rigid pitchbreaks with fixed heels* Member end fixity model was used in the analysis and design of this truss.

Continued on page 2
NOTES-
14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
JOB 162634

Truss N3

Truss Type: Piggyback Base

Qty 2

Ply 1

Ply

Job Reference (optional)

Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte

MiTek Industries, Inc. Thu Dec 01 07:57:05 2016

Print: 7.640 s Nov 10 2015

Run: 7.640 s Nov 10 2015

MMiFabFabulous Inc.

Page 1

Drawn By:

Check By:

Model:

Scale = 1:68.8

Plate Offsets (X,Y) -- [2:0-3-8,Edge], [3:0-5-0,0-3-4], [5:0-3-0,2-3], [9:0-4-0,Edge], [10:Edge,0-2-13], [13:0-4-0,Edge]

LOADING (psf)

TCLL 30.0

(Top Snow=30.0)

TCDL 10.0

BCLL 10.0

BCDL 10.0

SPACING-

2-0-0

Plate Grip DOL 1.15

Lumber DOL 1.15

Rep Stress Incr YES

WB 0.94

Code IRC2009/TPI2007

DEFL

in (loc) l/d

Vert(LL) -0.35 13-14 >999 360

Vert(TL) -0.62 13-14 >571 240

Horz(TL) 0.08 10 n/a n/a

PLATES GRIP

MT20 185/144

WEBS 2x4 HF/SPF Stud/Stud

WEDGE

BRACING-

TOP CHORD Sheathed or 3-6-6 oc purlins, except

2-0-0 nc purlins (6-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, except:

6-0-0 nc bracing: 14-15.

WEBS 1 Row at midpt 5-14, 6-14, 8-13

2 Rows at 1/3 pts 4-15

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REATIONS.

(lb) Max Uplift 2=66(LC 5)

Max Grav 2=740(LC 12), 15=3241(LC 12), 10=2027(LC 12)

WEBS 3-15=-808/180, 4-15=-2680/559, 4-14=-228/1563, 6-14=-1101/288, 6-13=-121/962, 7-13=-86/384, 8-13=-1062/297, 8-12=-92/506, 9-12=-680/206

NOTES-

1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BC=1.5psf; Cat. II; Exp C; enclosed; C-C Exterior(2) -2-1-0 to 1-11-10, Interior(1) 1-11-10 to 10-0-9, Exterior(2) 10-0-9 to 30-5-7, Interior(1) 30-5-7 to 36-4-10; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1, Lu=50-0-0

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with any live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load non-concurrent with any live loads.

7) * This truss has been designed for a 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 249 lb uplift at joint 2, 642 lb uplift at joint 15 and 408 lb uplift at joint 10.

10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2
<table>
<thead>
<tr>
<th>Job</th>
<th>Truss</th>
<th>Truss Type</th>
<th>Qty</th>
<th>Ply</th>
</tr>
</thead>
<tbody>
<tr>
<td>162634</td>
<td>N3</td>
<td>Piggyback Base</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

LOAD CASE(S) Standard
Job
162634
Truss
N4
Truss Type
Piggyback Base
Qty
2
Ply
1

Truss Co., Anthony, TX 79821, Jesus Duarte

ID:zMPgso65lxPaHV_ZoLkhyDy3o-rwlLadCB4zdZkJ1MxmqKnW1G1ppHRSGdUwVYymDNs

Scale = 1:68.8

Plate Offsets (X,Y)-- [2:0-3-8,Edge], [3:0-4-0,0-3-4], [9:0-4-0,Edge], [10:Edge,0-2-13], [13:0-4-0,Edge]

LOADING
(PSf)
TCLL
30.0
(roof Snow=30.0)
TCDL
10.0
BCDL
0.0

LUMBER-
TOP CHORD 2x4 SPF 1650F 1.5E *except*

BOT CHORD 2x4 SPF 1650F 1.5E

WEBS 2x4 HF/SPF Stud/Std

WEDGE

Mitek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide.

NOTES-
1) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; Cat= 1, Lu=50-0-0
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1, Lu=50-0-0
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) Provide adequate drainage to prevent water ponding.
6) This truss has been designed for a 10.0 psf bottom chord live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 252 lb uplift at joint 2, 702 lb uplift at joint 15 and 449 lb uplift at joint 10.
8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
Job 162634

Truss O1

Truss Type Piggyback Base

Qty 2

Ply 1

Job Reference (optional)

Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte

1. Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCDL=3.0psf; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 0-11-0 to 37-5-4, 37-5-4 to 40-5-4; Lumber DOL=1.33 plate grip DOL=1.33

2. TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Cl= 1, Lu=50-0-0

3. Unbalanced snow loads have been considered for this design.

4. This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.

5. Provide adequate drainage to prevent water ponding.

6. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8. Refer to girder(s) for truss to truss connections.

9. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 2, 713 lb uplift at joint 15 and 463 lb uplift at joint 10.

10. This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
<table>
<thead>
<tr>
<th>Job</th>
<th>Truss</th>
<th>Truss Type</th>
<th>City</th>
<th>Ply</th>
</tr>
</thead>
<tbody>
<tr>
<td>162634</td>
<td>Q2</td>
<td>Piggyback Base</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Truss Details:
- **Job Reference:** Optional
- **Run:** 7.640 s, Nov 10, 2015
- **Print:** 7.640 s, Nov 10, 2015
- **MiTek Industries, Inc., Thu Dec 01 07:57:07 2016**
- **Page 1**
- **Foxworth-Galbraith Truss Co., Anthony, TX 79821, Jesus Duarte**
- **ID:** zMPGso65lxPaHV.ZoLdIkmDyJ6biciiN5iDiDrK6Z5Y1dMolPCdNC7V57MDzagFNdayyDNsw
- **Scale:** 1:68.8

Diagram:
- Scale = 1:68.8

Table:

<table>
<thead>
<tr>
<th>Plate Offsets (X,Y)</th>
<th>2:0-3-8, Edge</th>
<th>3:0-4-0, Edge</th>
<th>9:0-4-0, Edge</th>
<th>10: Edge, 0-2-13</th>
<th>13:0-4-0, Edge</th>
<th>14:0-4-0, Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADING (psf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLL 30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Roof Snow=30.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCDL 10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCDL 10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACING-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate Grip DOL 1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumber DOL 1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep Stress Incr YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code IRC2009/TPI2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC 0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC 0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB 0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Matrix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in (loc)</td>
<td>l</td>
<td>defl</td>
<td>L/d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ver(TL) -0.36 13-14</td>
<td>>999</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ver(TL) -0.61 13-14</td>
<td>>999</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horz(TL) 0.09 10 n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLATES GRIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT20 105/444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LUMBER -
- **TOP CHORD** 2x4 SPF 1650F 1.5E "Except" 3: 2x6 SPF 1650F 1.5E
- **BOT CHORD** 2x4 SPF 1650F 1.5E
- **WEBS** 2x4 HF/SPF Stud/Std
- **WEBS**
- **WEDGE**

BRACING -
- **TOP CHORD** Sheathed or 3-4-8 oc purlins, except 2-0-0 oc purlins (6-0-0 max.); 5-7.
- **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing; 2-16, 15-16.
- **WEBS** 1 Row at midpt 5-14, 6-14, 8-13
- **WEBS** 2 Rows at 1/3 pts 4-15

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)
- 2=430/0-3-8 (min. 0-1-8), 15=2559/0-5-9 (min. 0-5-4), 10=1653/Mechanical
- Max Uplift=2=214/LC 5, 15=724/LC 5, 10=470/LC 5
- Max Grav 2=522/LC 8, 15=3350/LC 12, 10=2171/LC 12

FORCES. (lb)
- 2=273/78, 3=254/10, 4=197/12, 5=130/14, 6=70/16, 7=22/18, 8=19/20, 9=12/22, 10=7/24

NOTES.
1) Wind: ASCE 7-05; 100mph; TCDL=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) -2-1-0 to 0-11-0, Exterior(2) 0-11-0 to 37-5-4, Corner(3) 37-5-4 to 40-5-4; Lumber DOL=1.33 plate grip DOL=1.33
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1, Lu=50-0-0
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) Provide adequate drainage to prevent water ponding.
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
8) Refer to girder(s) for truss to truss connections.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 214 lb uplift at joint 2, 724 lb uplift at joint 15 and 470 lb uplift at joint 10.
10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)
- Standard
This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit.

This truss has been designed for a 10.0 psf bottom chord live load non-concurrent with any other live loads.

Provide adequate drainage to prevent water ponding.

"Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
1) **Wind:** ASCE 7-05; 100mph; TCLL: 3.17=57300, 3.18=29351, 4.18=4732, 4.5=1448499, 5.19=1009476, 6.19=1009476, 6.20=181018606, 7.20=15801606, 7.8=2140655, 8.21=2462692, 9.21=2842667, 9.22=3342727, 10.22=3471711

2) **TCLL:** ASCE 7-05: P/L=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct=1, Lu=50.0

3) **Unbalanced snow loads have been considered for this design.**

4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs.

5) **Provide adequate drainage to prevent water ponding.**

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) **This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.**

8) **Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 196 lb uplift at joint 2, 724 lb uplift at joint 15 and 483 lb uplift at joint 10.**

9) **This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/ TP1.**

10) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

11) **Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.**

LOAD CASES: Standard

LOADING (psf):
- **TCLL:** 30.0
- **(Roof Snow=30.0) TCDL:** 15.0
- **BCDL:** 1.00
- **BCLL:** 1.00

SPACING:
- **2x4 SPF 1650F 1.5E**
- **Plate Grip DOL:** 1.15
- **Lumber DOL:** 1.15
- **Rep Stress Incr:** YES
- **Code IRC2009/TP2007**

CSI:
- **TC:** 0.83
- **BC:** 0.75
- **WB:** 0.90

DEFL
- **Vert(LL):** -0.35 13-14 >999 360
- **Vert(TL):** -0.60 13-14 >368 240

Horz(TL):
- **HORIZ:** 10 >n/a

WEBS:
- **1 Row at midpt:** 6-14, 8-13
- **2 Rows at 1/3 pts:** 4-15

LUMBER-
- **TOP CHORD:** 2x4 SPF 1650F 1.5E
- **BOT CHORD:** 2x4 SPF 1650F 1.5E
- **WEBS:** 2x4 HF/SPF Stud/Std
- **WEDGE:** Left: 2x4 SPF 1650F 1.5E, Right: 2x4 SPF 1650F 1.5E

BRACING-
- **TOP CHORD:** Sheathed or 3-4-7 oc purlins, except
- **BOT CHORD:** Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

WEBS:
- **1 Row at midpt:** 6-14, 8-13
- **2 Rows at 1/3 pts:** 4-15

PLATES GRIP
- **MT20:** 185/144

WEIGHT: 218 lb

FT = 20%
Plate Offsets (X,Y) -- [3:0-2-0,Edge], [5:0-2-0,Edge]

LOADING (psf)
- TCLL: 30.0 (Roof Snow=30.0)
- TCDL: 10.0
- BCLL: 0.0
- BCDL: 10.0

SPACING
- Plate Grip DOL: 1.15
- Rep Stress Incr: YES
- Code IRC2009/TP12007

CSI.
- Top Chord: TC = 0.08
- Rep Stress Incr: WB = 0.09

DEFL.
- (loc) L/d: 120
- L/d: 180

PLATES
- MT20: Weight: 20 lb
- FT = 20%

LUMBER-
- Top Chord: 2x4 SPF 1650F 1.5E
- Bot Chord: 2x4 SPF 1650F 1.5E
- Others: 2x4 HF/SPF Stud/Std

REACTIIONS.
- (lb/size) 2=252/7-4-12 (min. 0-1-8), 6=252/7-4-12 (min. 0-1-8), 8=318/7-4-12 (min. 0-1-8)
- Max Uplift2 = -136 (LC 3), 6 = -136 (LC 3), 8 = -150 (LC 3)

FORCES.
- Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES.
1) Wind: ASCE 7-05; 100mph; TCLL=4.8psf; BCLL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Corner(3) 0-3-2 to 2-2-11, Exterior(2) 2-2-11 to 6-8-11, Corner(3) 6-8-11 to 8-8-4; Lumber DOL=1.33 plate grip DOL=1.33
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct = 1, Lu = 50-0-0
3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
4) Provide adequate drainage to prevent water ponding.
5) Gable requires continuous bottom chord bearing.
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 136 lb uplift at joint 2, 136 lb uplift at joint 6 and 150 lb uplift at joint 8.
9) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
LOADING (psf)
TCLL	30.0
TCLD	10.0
BDLL	0.0
BCDL	10.0

(Load case) 2=411/7-4-12 (min. 0-2-1), 5=411/7-4-12 (min. 0-2-1)
Max Uplift2=174(LC 5), 5=174(LC 5)
Max Grav 2=665(LC 12), 5=665(LC 12)

LOADING (psf)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-626/152, 7-8=-532/155, 3-8=-474/163, 3-4=-443/186, 4-9=-474/163, 9-10=-532/155, 5-10=-626/152
BOT CHORD 2-5=-46/443

NOTES-
1) Wind: ASCE 7-05; 100mph; TCLD=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Exterior(2); Lumber DOL=1.33 plate grip DOL=1.33
2) TCLL: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1, Lu=50-0-0
3) Unbalanced snow loads have been considered for this design.
4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5) Provide adequate drainage to prevent water ponding.
6) Gable requires continuous bottom chord bearing.
7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 174 lb uplift at joint 2 and 174 lb uplift at joint 5.
10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
11) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.
12) See Standard Industry Piggyback Truss Connection Detail for connection to base truss as applicable, or consult qualified building designer.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard
LOADING (psf)

<table>
<thead>
<tr>
<th>TCLD</th>
<th>TCCL</th>
<th>TC</th>
<th>BCLL</th>
<th>BCDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>30.0</td>
<td>1650</td>
<td>1.5E</td>
<td>1.5E</td>
</tr>
<tr>
<td>(Roof Snow=30.0)</td>
<td>(Roof Snow=30.0)</td>
<td></td>
<td>(Roof Snow=30.0)</td>
<td>(Roof Snow=30.0)</td>
</tr>
</tbody>
</table>

SPACING-

<table>
<thead>
<tr>
<th>Code</th>
<th>DOL</th>
<th>Rep Stress Incr</th>
<th>Code IRC2009/TP12007</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-0-0</td>
<td>1.15</td>
<td>YES</td>
<td>1.15</td>
</tr>
</tbody>
</table>

CSL

<table>
<thead>
<tr>
<th>1.5E</th>
<th>0.09</th>
<th>0.06</th>
</tr>
</thead>
</table>

DEFL.

<table>
<thead>
<tr>
<th>in (loc)</th>
<th>l/defl</th>
<th>L/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>5</td>
<td>n/r</td>
</tr>
</tbody>
</table>

PLATES

<table>
<thead>
<tr>
<th>GRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT20</td>
</tr>
</tbody>
</table>

GRID

<table>
<thead>
<tr>
<th>185</th>
<th>144</th>
</tr>
</thead>
</table>

WEIGHT:

<table>
<thead>
<tr>
<th>23 lb</th>
</tr>
</thead>
</table>

FT = 20%

LUMBER-

<table>
<thead>
<tr>
<th>TOP CHORD</th>
<th>BOT CHORD</th>
<th>OTHERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x4 SPF 1650F 1.5E</td>
<td>2x4 SPF 1650F 1.5E</td>
<td>2x4 HF/SPF Stud/Std</td>
</tr>
</tbody>
</table>

BRACING-

<table>
<thead>
<tr>
<th>TOP CHORD</th>
<th>BOT CHORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheathed or 6-0-0 oc purlins.</td>
<td>Rigid ceiling directly applied or 10.0-0.0 oc bracing.</td>
</tr>
</tbody>
</table>

REANCES.

<table>
<thead>
<tr>
<th>lb/size</th>
<th>2=252/7-4-12 (min. 0-1-8), 4=252/7-4-12 (min. 0-1-8), 6=318/7-4-12 (min. 0-1-8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Uplift2=-141(LC 5), 4=-141(LC 5), 6=-57(LC 5)</td>
<td></td>
</tr>
</tbody>
</table>

FORCES.

<table>
<thead>
<tr>
<th>lb</th>
<th>Max. Comp./Max. Ten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>All forces 250 (lb) or less except when shown.</td>
</tr>
</tbody>
</table>

NOTES:

1. Wind: ASCE 7-05; 100mph; TCLD=4.8psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; enclosed; C-C Exterior(2); Lumber DOL=1.33 plate grip DOL=1.33
2. TCLD: ASCE 7-05; Pf=30.0 psf (flat roof snow); Category II; Exp C; Fully Exp.; Ct= 1
3. Unbalanced snow loads have been considered for this design.
4. This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
5. Gable requires continuous bottom chord bearing.
6. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
7. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
8. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 2, 141 lb uplift at joint 4 and 57 lb uplift at joint 6.
9. This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
10. See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S)

Standard