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Abstract

The traditional ‘task-based’ literature supports an optimistic view

about the threat of automation. In this paper, I use updated reason-

ing about how new machines operate. This supports a pessimistic

view. I introduce a distinction between two types of capital – ‘tra-

ditional’ and ‘advanced’ capital. The former is a q-complement to

labour in performing tasks, but the latter displaces labour from

those q-complemented tasks. In a dynamic model, this new process

of ‘task encroachment’ drives labour out the economy at an endoge-

nously determined rate and wages steadily decline to zero. In the

limit, labour is fully immiserated and ‘technological unemployment’

follows. (JEL: J20, J21, J23, J24, J30, J31, 031, 033)

The traditional literature that explores the consequences of technological

change on the labour market supports an optimistic view about the threat

of automation.1 This optimism relies on the claim that there exists a large

set of types of tasks that cannot be automated and, in turn, that those

∗Fellow in Economics, Balliol College, Oxford University, Broad Street, Oxford, OX1
3BJ, daniel.susskind@balliol.ox.ac.uk. Thanks to David Autor, Miguel Ballester, Brian
Bell, Martin Ellison, James Forder, Frank Levy, Alan Manning, Margaret Stevens, Larry
Summers, Richard Susskind, and David Vines for helpful input.

1I refer to ‘optimism’ and ‘pessimism’ throughout this paper. I do so as a form
of short-hand. Put simply, ‘pessimistic outcomes’ are those that make people feel pes-
simistic about labour’s future and vice-versa for ‘optimistic outcomes’. More formally, in
this paper ‘pessimism’ is captured by a fall in relative, and absolute, wages as machines
become more capable.
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“tasks that cannot be substituted by automation are generally comple-

mented by it” (Autor 2015). This paper explores the consequences for

earnings and employment if the set of types of tasks in which labour has

the comparative advantage is eroded – beyond that imagined by the tradi-

tional literature. As defenders of this traditional view, Autor and Salomons

(2017a; 2017b) nevertheless explicitly recognise the importance of my ar-

gument. The model in this paper, they write, captures a new process of

“task encroachment”.

There are important reasons to take this argument seriously. Though

forecasting the future capabilities of machines is very difficult, the tradi-

tional ‘task-based’ literature has often underestimated them.2 For instance,

Autor, Levy, and Murnane (2003) noted that the task of driving a car could

not be readily automated, but a type of driverless car appeared two years

later;3 Autor and Dorn (2013) noted that order-taking and table-waiting

could not be readily automated, but later that year the US restaurants

Chili’s and Applebee’s announced they were installing 100,000 tablets to

allow customers to order and pay without a human waiter;4 Autor (2015)

noted that the task of identifying a species of bird based on a fleeting

glimpse could not be readily automated, but later that year an app was

released to do that as well.5

This suggests that the traditional literature’s conception of how ma-

chines operate and the capabilities that this implies – known as the ‘ALM

hypothesis’ – may be incorrect.6 These tasks were believed to be out of

reach of automation because they were ‘non-routine’ rather than ‘routine’.

But in practice this has proven not to be the case. It is important to note

that the traditional literature recognised that this constraint might not

hold indefinitely. Autor, Levy, and Murnane (2003), for instance, refers to

“present technologies” and only claimed that the ALM hypothesis is “at

present” a binding constraint (emphasis added). In turn, Autor (2015) con-

2In this paper, I use the terms ‘machine’ and ‘capital’ interchangeably.
3The Society of Automative Engineers defines five levels of vehicle ‘autonomy’. These

early cars were at a low level. Since 2005, further progress has been made. I thank Frank
Levy for this point.

4See Pudzer (2016).
5See http://merlin.allaboutbirds.org/photo-id/.
6‘ALM’, after ‘Autor, Levy and Murnane’ – the authors of Autor, Levy, and Murnane

(2003).

2



siders whether this will continue to hold in the future. In Susskind (2017)

I set out two distinct explanations for why this constraint no longer binds

and propose a new hypothesis about the capabilities of machines, based

on these explanations, that encompasses the ALM hypothesis as a special

case. In this paper I explore the consequences for earnings and employment

if the set of types of tasks in which human beings have the comparative

advantage continues to be eroded in this way. If many ‘non-routine’ tasks

can also be automated, then the set of types of tasks that offer a ‘refuge’

for labour will be far smaller than the traditional literature assumed.

The model in this paper uses a new distinction between two types of

capital – ‘traditional’ capital and ‘advanced’ capital. Whilst traditional

capital cannot perform the same type of tasks as labour, advanced capital

can. Traditional capital is a q-complement to a distinct set of types of

tasks. This means that an increase in the quantity or productivity of tradi-

tional capital raises the value of those complemented tasks.7 This captures

the traditional channel for optimism. But in the new model in this paper,

these complemented tasks are either performed by labour – or advanced

capital. An increase in the quantity or productivity of advanced capital

erodes the comparative advantage of labour in performing those comple-

mented tasks. Labour is forced to specialise in a shrinking set of types of

complemented tasks. This captures the new channel for pessimism. In a

static version of the model, an increase in the quantity or productivity of

advanced capital drives down relative wages and the labour share of income

and forces labour to specialise in a shrinking set of tasks. In a dynamic

version, the endogenous accumulation of advanced capital drives labour out

the economy at an endogenously determined rate, and absolute wages fall

towards zero. In the limit, labour is fully immiserated and ‘technological

unemployment’ follows. As Autor and Salomons (2017a; 2017b) describe,

labour has “no place left to hide” in this new model.

The central argument for optimism in the task-based literature is that

7The definition of ‘q-complementarity’ is more nuanced in a many-good setting. This
is because in the set-up in which q-complementarity was originally defined – Hicks (1970),
and Sato and Koizumi (1973) – the models had only a unique final good. When I use the
term ‘q-complement’ I mean that an increase in the allocation of a factor’s task input
to the production of a given good, ceteris paribus, causes the marginal product of the
other task input involved in the production of that good to increase.
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people tend to “overstate the extent of machine substitution for labour” and

“ignore the strong complementarities” (Autor 2015). This paper does not

challenge the existence of strong complementarities between certain types

of tasks performed by capital and other types of tasks. But it does challenge

the idea that labour is uniquely placed to perform those other tasks – on the

contrary, labour’s comparative advantage over capital in performing those

complemented tasks appears to be diminishing. These new models show

that the ALM hypothesis, and the boundary it has imposed between what

capital can and cannot do, may have created a misleading sense of optimism

about the prospects for labour. This new process of ‘task encroachment’ is

an important argument for pessimism that requires further theoretical and

empirical research.

I. A Static Model

In the new model that follows there are two sets of types of tasks. The first

is a set of tasks that are performed only by ‘traditional’ capital. This type

of capital cannot perform the same type of tasks as labour. The second is a

set of tasks that are either performed by labour or ‘advanced’ capital. These

tasks that are performed by either labour or advanced capital are ordered

in a line from left to right, going from ‘simple’ to ‘complex’, and the relative

productivity of labour with respect to advanced capital increases as tasks

become more ‘complex’. This feature is similar to that in Acemoglu and

Autor (2011).8 To produce any good in the economy requires a combination

of a task performed by traditional capital and a task performed by either

labour or advanced capital.

This distinction between two different types of capital is new and im-

portant. In this model, traditional capital is a q-complement to a distinct

set of types of tasks. But an increase in the quantity or productivity of

advanced capital erodes the comparative advantage of labour in perform-

ing those complemented tasks. Though both these effects are present in

8And in turn it shares features with Dornbusch, Fischer, and Samuelson (1977), from
which Acemoglu and Autor (2011) also draw. Dornbusch, Fischer, and Samuelson (1977)
is a two-country trade model where a continuum of goods are traded and the result is a
Ricardian pattern of specialisation.
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Acemoglu and Autor (2011), they are entangled – because of the structure

of production, and the use of one type of capital, both these effects oc-

cur simultaneously. This new model disentangles them in a revealing way.

Each type of capital has only one effect and, as a result, it is possible to ex-

plore what happens if the set of tasks in which labour is q-complemented by

capital shrinks – holding constant the ‘intensity’ of that q-complementarity.

The purpose of this new model is to study the effect of technological

progress in the use of the different types of capital. In equilibrium there

is a single cut-off and all of the tasks to the left of the cut-off are per-

formed by advanced capital with traditional capital and all of the tasks to

the right are performed by labour with traditional capital. When capital

is ‘traditional’, with a fixed and distinct role from labour in production,

improvements in its capability have a neutral effect on labour. Relative

wages are unaffected. This is optimism at work. But when capital is ‘ad-

vanced’, increasingly capable advanced capital erodes the set of types of

tasks in which traditional capital q-complements labour. The relative re-

turn to labour falls and labour is forced to specialise in a shrinking set of

types of tasks. This is the new pessimism at work.

I.A. Consumers

There is a spectrum of consumers j ∈ [0, 1] who are either high-skilled

workers or capitalists. If consumer j is a high-skilled worker he sells his

labour lHj for a wage wH ≥ 0. If he is a capitalist with advanced capital

kAj or traditional capital kj he rents them to earn rA ≥ 0 and r ≥ 0

respectively. There is a spectrum of types of goods x(i) where i ∈ [0, 1]

and each consumer j has Cobb-Douglas preferences over those goods:

(1) lnu(x) =

∫ 1

0

θ(i) lnxj(i) di

Note that, given the Cobb-Douglas utility function, this economy can be

captured by a representative consumer who owns all the factors. For sim-

plicity, I assume that all goods have the same expenditure density:
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ASSUMPTION 1: θ(i) = 1 ∀i.

I.B. Production and Firms

Goods are produced by combining two different types of tasks, z1(i) and

z2(i), where again i ∈ [0, 1]. The first set of types of task, z1(i), are

those that can performed by labour and advanced capital. The second

set of types of tasks, z2(i), can only be performed by traditional capital.

Perfectly competitive firms must hire factors to perform these tasks. The

total stock of available factors is equal to the sum of lHj , kAj , kj, owned by

the consumers – LH , KA, and K respectively. The task-based production

functions for the goods are:

(2) x(i) = z1(i)ψz2(i)1−ψ

where ψ ∈ (0, 1). The factor-based production functions for the tasks are:

(3)
z1(i) = aA(i)KA(i) + aH(i)LH(i)

z2(i) = aK(i)K(i)

where LH(i), KA(i), and K(i) are the allocations of high-skilled labour, ad-

vanced capital, and traditional capital to each type of task, and aH(i), aA(i)

and aK(i) are their respective productivities. Again, these factor-based pro-

duction functions for tasks reflect the fact that traditional capital performs

its own distinct set of tasks, but advanced capital and labour perform the

same tasks. The productivities of advanced capital and labour combine to

form a ‘relative productivity schedule’ over the z1(i) task-spectrum:

(4) AH(i) =
aH(i)

aA(i)

A second important assumption follows:

ASSUMPTION 2: AH(i) is continuous, AH(0) > 0, AH′(i) > 0, and

AH′′(i) = 0.
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The assumption that AH′(i) > 0 is a ‘comparative advantage’ assumption.9

It reflects two principles. First, as i increases, the task that is performed

by labour or advanced capital, z1(i), becomes more ‘complex’. And sec-

ondly, that high-skilled labour has an increasing comparative advantage

over advanced capital at performing more complex tasks. This is the sense

in which labour is ‘high’ skilled. This reflects the fact that the most com-

plex tasks draw on creative, problem-solving, and interpersonal faculties of

human beings that, as yet, are hardest to automate. Following Susskind

(2017), the most complex tasks are relatively hard to routinise.

The concept of ‘routinisability’ used here is fundamentally different to

the traditional concept of ‘routineness’ that is used in the literature. Under

the ALM hypothesis, the criteria that is used to determine whether a task

can be automated is whether it is ‘routine’ or ‘non-routine’ – a task is

‘routine’ if a human being finds it easy to articulate his or her thinking

process for it and ‘non-routine’ if not. This is because the ALM hypothesis

uses traditional reasoning about how machines work – machines must follow

explicit instructions or rules that reflect human reasoning, and so if people

cannot explain the rules that they follow then it is difficult to write a set

of rules for a machine to follow. However, new technologies – advances

in processing-power, data retrieval and storage capabilities, and algorithm

design – now make it feasible to perform tasks with machines that follow

rules which do not reflect the rules that human beings follow. Put another

way, the set of all possible rules a machine could feasibly follow is now

larger than the particular rules that human beings actually do follow. As a

result, the inability of human-beings to articulate their thought processes

is no longer necessarily a binding constraint on automation. It follows

that the appropriate criteria is not the ‘routineness’ of a task from the

standpoint of a human being but whether it has features that make it

more or less routinisable from the standpoint of a machine. If a task is

routinisable, a routine can be composed that allows a machine to perform

it – but that routine may not necessarily reflect the way in which a human

being performs the task. This argument is set out in detail in Susskind

(2017).

9Acemoglu and Autor (2011) also use this approach.
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I.C. Equilibrium

The Supply-Side

The firms must decide which factors to hire to perform the tasks that will

produce each type of good. It is clear that to perform the tasks z2(i)

the firms will need to rent traditional capital, K(i) – it is the only factor

capable of performing those types of task. Less obviously, the firms will

hire either labour or advanced capital to carry out the tasks z1(i) – but

never both factors together. This is Lemma 1:

LEMMA 1: In equilibrium, there exists some cut-off ĩ such that advanced

capital works with traditional capital to produce goods of type i ∈ [0, ĩ], and

labour works with traditional capital to produce the goods of type i ∈ [̃i, 1].

The proof is intuitive.10 For any given wH and rA in equilibrium, a perfectly

competitive firm will hire labour rather than advanced capital to perform

z1(i) if:

(5)

wH

aH(i)
≤ rA

aA(i)

AH(i) ≥ wH

rA

which takes place to the right of ĩ, given the properties of AH(i) in Assump-

tion 1. The opposite argument applies for the choice of advanced capital

over labour. At ĩ, the cost of performing a unit of z1(̃i) to produce that

good ĩ is the same for labour and advanced capital. This is shown on the

left-hand side of Figure I.

– FIGURE I HERE –

For any wH

rA
∈ [a, b] there is a single ‘cut-off’ type of good ĩ. Given that

factor-price ratio, firms would want to hire advanced capital (to work with

10Lemma 1 and the proof are similar to Lemma 1 in Acemoglu and Autor (2011).
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traditional capital) to produce all goods to the left of ĩ and hire labour

(to work with traditional capital) to produce all goods to the right of ĩ.

This is intuitive. AH(i) is a factor demand schedule, its shape determined

by Assumption 1, and it describes the factor-price ratio for each type of

good i that would make a firm indifferent between using either labour or

advanced capital for a given z1(i). Moving left to right along the task-

spectrum, if a firm is to remain indifferent, the relative price of labour

must rise. This is because the relative advantage of labour over advanced

capital at performing z1(i) increases.

Given this reasoning and Lemma 1, (2) and (3) combine to form the

following factor-based production functions for goods:

(6)

x(i) =
[
aA(i)KA(i)

]ψ [
aK(i)K(i)

]1−ψ ∀i ∈ [0, ĩ]

x(i) =
[
aH(i)LH(i))

]ψ [
aK(i)K(i)

]1−ψ ∀i ∈ [̃i, 1]

The Demand-Side

Call γ(̃i) the share of total consumer expenditure on all goods that are

produced by advanced capital and traditional capital i.e. type i ∈ [0, ĩ].

Assumption 1 implies that:

(7)

γ(̃i) =

∫ ĩ

0

θ(i) di

= ĩ

In turn, it follows from (2) that the share of total consumer expenditure that

is spent on all the tasks performed by advanced capital is equal to ψ · ĩ.11

The same argument applies to the share of total consumer expenditure

on tasks performed by labour and traditional capital – these are equal to

ψ · (1− ĩ) and (1− ψ) respectively.

11This is because the task-based production function for goods is Cobb-Douglas. To
see this formally, call the implicit ‘price’ of z1(i), pz1(i). Perfectly competitive firms will
set this ‘price’ equal to the marginal revenue product of z1(i) in producing x(i), which
is p(i) ·ψz1(i)ψ−1z2(i)1−ψ. As a result the z1(i) share of the expenditure on a particular

x(i) is p(i)·ψ·z1(i)ψ−1z2(i)
1−ψ·z1(i)

p(i)·x(i) = ψ.
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Equilibrium Factor Prices and Specialisation

As firms are perfectly competitive, the zero-profit condition requires that

the total consumer expenditure on the types of tasks that are performed

by each factor is equal to the income that the factor receives in return

for carrying out those tasks. As a result, given (7) and the accompanying

discussion, the following three conditions must hold:

(8)

rAKA = ψ · ĩ · Y

wHLH = ψ · (1− ĩ) · Y

rK = (1− ψ) · Y

where Y = rAKA + wHLH + rK. The first two expressions in (8) implies:

(9)

wH

rA
=

1− ĩ
ĩ
· K

A

LH

= C (̃i)

C(i) generates a market equilibrium schedule. This is shown in Figure II.

– FIGURE II HERE –

From inspection, it is clear that for any wH

rA
there is a unique cut-off good of

type ĩ that ensures market equilibrium holds. (9) and Assumption 1 imply:

C ′(i) < 0; C ′′(i) > 0; lim
i→0

C(i) =∞, and C(1) = 0.

The AH(i) schedule describes the pattern of specialisation ĩ for each

factor-price ratio wH

rA
. This is a factor-demand schedule. C(i) describes the

wage ratio wH

rA
that ensures market equilibrium for each pattern of special-

isation ĩ. This is a zero profit schedule. To derive the equilibrium cut-off

ī, rather than a hypothetical cut-off ĩ, these two schedules are combined.

This is shown in Figure III and Proposition 1 follows.

PROPOSITION 1: Given the properties of AH(i) and C(i), there is a
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unique equilibrium wage ratio, f , and a unique equilibrium cut-off type of

good, ī.

The uniqueness of the equilibrium can be seen from an inspection of Figure

III.

– FIGURE III HERE –

Since AH(0) > 0 and C(1) = 1, the AH(i) schedule must start above the

C(i) schedule. As A′(i) > 0, C ′(i) < 0, and lim
i→0

C(i) = ∞ the schedules

must cross only once. In equilibrium there is a clear pattern of speciali-

sation. It is ‘Ricardian’.12 Advanced capital specialises in producing the

types of goods i ∈ [0, ī] with traditional capital, and labour specialises in

producing the goods i ∈ [̄i, 1] – i.e. ĩ is replaced by ī in (6).

The full set of relative factor prices follow from (8) and (9) – again,

recognising that in equilibrium the actual cut-off ī replaces the hypothetical

cut-off ĩ:

(10)

wH

rA
=

1− ī
ī
· K

A

LH

wH

r
=
ψ · (1− ī)

1− ψ
· K
LH

rA

r
=

ψ · ī
1− ψ

· K
KA

I.D. Comparative Statics

This model can be used to compare the effect of technological progress

in the use of the two different types of capital. First consider traditional

capital, and a rise in aK(i) across the z2(i) task-spectrum. This has no

effect on the wage relative to advanced capital, wH

rA
, nor on the pattern of

labour specialisation, ī. This follows the definition of the AH(i) and C(i)

12Equilibrium here is similar to Dornbusch, Fischer, and Samuelson (1977), though
theirs is an equilibrium in international trade. Acemoglu and Autor (2011) note that
their model is ‘isomorphic’ to Dornbusch, Fischer, and Samuelson (1977).
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schedules and (10). Figure III remains unchanged. Nor does it affect the

relative wage with respect to traditional capital, wH

r
. However, advanced

capital does have an effect on both relative wages. A uniform rise in the

relative productivity of advanced capital is shown in Figure IV.

– FIGURE IV HERE –

The result is a fall in wH

rA
and wH

r
and a rise in ī – labour is forced to

specialise in a shrinking set of types of tasks, and is relatively worse off.13

I.E. Review of the Static Model

The two types of capital have very different consequences for labour. As

traditional capital becomes more productive, the relative wages wH

rA
and

wH

r
do not change. This is because traditional capital is a q-complement

to labour and advanced capital in the production of all types of goods and,

because the task-based production functions for goods are Cobb-Douglas,

this implies a rise in the marginal productivity of traditional capital in

producing a given good causes an equiproportionate rise in the marginal

productivity of either the labour or advanced capital producing that good.14

This is the traditional channel of optimism – there exists a large set of types

of tasks out of reach of automation, in which labour is complemented by

capital. However, as advanced capital becomes more productive, wH

rA
and

wH

r
fall and labour is instead relatively worse off. This is because advanced

capital is a perfect substitute for labour in performing those tasks that are

q-complemented by traditional capital. Labour’s comparative advantage

diminishes, and is forced to specialise in a shrinking set of q-complemented

tasks. This is the new pessimism at work.

13Exploring absolute, rather than relative, prices is more complex are requires the
simulations that follow in the dynamic setting.

14Note again in this many-good setting the traditional definition of ‘q-
complementarity’ does not apply straightforwardly. This is because in those settings
there is only a unique final good.
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II. A Dynamic Model

In the static model, as advanced capital becomes more productive, con-

sumers do not respond to any changes in the rate of return to capital. Now

I place that new model in a dynamic setting and introduce an endogenous

process of advanced capital accumulation. The outcome is remorselessly

pessimistic – labour is displaced at an endogenously determined rate, is

forced into specialising in a shrinking set of tasks, and absolute wages are

driven to zero. No steady-state is possible until labour has been entirely

driven out the economy by advanced capital i.e. the economy must ap-

proach a steady-state where ī(t) = 1. Labour is fully immiserated, and

technological unemployment follows.

To solve this dynamic model, I nest the static analysis in the previous

section in a Ramsey-type setting. In any given t, the factor prices and pat-

tern of specialisation are determined instantaneously by that static analysis

– the AH(·) and C(·) schedules in (5) and (9) are now time dependent such

that AH(i, t) depends upon aA(i, t) and aH(i, t), and C(i, t) on ī(t), KA(t),

K(t), and ψ. A further important feature of this model is the innovative

use of a numeraire good. This numeraire good allows me to do two things.

First it allows me to reduce the dimensionality of the many-good model

and make it tractable in the dynamic setting. As I will show, with Cobb-

Douglas preferences across the range of goods, the law of motion for the

numeraire good is the same as the law of motion for aggregate consumption

across all goods – deriving this particular law of motion allows me to focus

on aggregate consumption alone, rather than track the full set of laws of

motion for each good. Secondly, with Cobb-Douglas production across the

range of goods, the numeraire good allows me again to derive analytically

tractable expressions for the absolute factor prices, r and rA.

II.A. Consumers

Consumers have the same preferences as before. Again, the economy can

be captured by a representative consumer. Only advanced capital KA(t) is

accumulated, and the consumer faces the dynamic maximisation problem:

13



(11)

max
x(t)

∫ ∞
0

e−ρt
∫ 1

0

lnx(i, t) di dt

s.t.

K̇A(t) = rA(t) ·KA(t) + r(t) ·K + wH(t) · LH − c(t)

KA(0) = KA
0

KA(t) ≥ 0

I assume there is exogenous growth in the productivity of advanced capital.

Any growth process must satisfy the following:

ASSUMPTION 3: For any exogenous growth process used, it must be

the case that aA (̃̃i, t) ≤ aA(̃i, t) · a
H (̃̃i,t)

aH (̃i,t)
for ˜̃i > ĩ ∀t.

This is the dynamic version of Assumption 2. It ensures that, as tech-

nological progress takes place, advanced capital does not become so pro-

ductive in more complex tasks as to overturn the general principle that

labour has the comparative advantage in these more complex tasks i.e.

that AH1 (i, t) ≥ 0 ∀t. Initially, I assume that the particular growth process

is:

(12)
ȧA(i, t)

aA(i, t)
= g ∀i, t

In the Appendix I show that this satisfies Assumption 3.

II.B. Production and Firms

Production is the same as in the static setting – the task-based production

function for goods, and the factor-based production functions for tasks, are

as in (2) and (3). For simplicity, I assume in the dynamic setting that there

is no depreciation. In closing this section, I explain why depreciation does

not change the central results.

The traditional approach to finding the steady-state in a Ramsey model
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with technological progress is to re-define the variables in ‘effective’ terms,

dividing each variable by the prevailing level of labour-augmenting tech-

nology. The result is that a steady-state is reached not in the actual vari-

ables, but instead in these ‘effective’ variables, the variable ‘per efficiency

unit of labour’. In exactly the same way, solving this model requires that

the advanced capital augmenting technological progress I am considering

is instead exactly reflected in a process of traditional capital-augmenting

technological progress. Consider again a good x(̃i, t) that is produced by

advanced capital and traditional capital. The transformation of the pro-

duction function is as follows:

(13)

x(̃i, t) =
[
aA(̃i, t) ·KA(̃i, t)

]ψ [
aK (̃i, t) ·K (̃i, t)

]1−ψ
=
[
KA(̃i, t)

]ψ [
aA(̃i, t)

ψ
1−ψ · aK (̃i, t) ·K (̃i, t)

]1−ψ

(13) implies that a traditional-capital augmenting process of technologi-

cal change in aA(̃i, t)
ψ

1−ψ is identical to the advanced-capital augmenting

process of technological change in aA(̃i, t) in Assumption 3. This transfor-

mation has an important role in solving the dynamic model.

II.C. Dynamic Equilibrium

From the maximisation problem in (11) a current-value Hamiltonian fol-

lows:

(14)

H =

∫ 1

0

lnx(i, t) di

+ µ(t)

[
r(t) ·K + rA(t) ·KA(t) + wH(t) · LH −

∫ 1

0

x(i, t) · p(i, t) di
]

It is possible to solve this Hamiltonian – with one co-state variable µ(t) and

a spectrum of control variables, x(i, t) where i ∈ [0, 1] – in the traditional

way. A set of first order conditions follow for each good x(i, t):
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(15)
Hx(i) =

1

x(i, t)
− µ(t) · p(i, t)

= 0

And for KA(t), the state variable:

(16)
HKA = µ(t) · rA(t)

= ρ · µ(t)− µ̇(t)

Together, (15) and (16) imply that for good x(i, t):

(17)
ẋ(i, t)

x(i, t)
= − ṗ(i, t)

p(i, t)
+ rA(t)− ρ

This is derived in the Appendix. In a traditional Ramsey-growth model,

there is only a unique final output and so there is no need to consider how

the price of the good changes over time. But (17) shows that in this many-

good setting the rate of growth of demand for x(i, t) will depend upon how

its price changes over time. To maintain tractability, I now use a numeraire

price normalisation. In particular, I assume that:

ASSUMPTION 4: ĩ = 0 such that the numeraire good is x(0, t). Factor

productivities and factor stocks are finite such that ī(t) 6= 0 ∀t.

Given Assumption 4 it follows from (17) that for x(0, t):

(18)
ẋ(0, t)

x(0, t)
= rA(t)− ρ

Given Assumption 1 it follows that the law of motion for the numeraire

good x(0, t) is the same as the law of motion for total consumption c(t).15

And so:

15Where c(t) =
∫ 1

0
x(i, t) · p(i, t) di. To see this note that since p(̃i, t) = 1:
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(19)
ċ(t)

c(t)
= rA(t)− ρ

It follows that if x(̃i, t) reaches a steady-state then total consumption c(t)

will also be in steady-state. From now, I use the law of motion in (19) and

focus on c(t). The law of motion for KA(t) follows from (11):

(20) K̇A(t) = Y (t)− c(t)

At this point, the dynamic system is expressed in terms of c(t) and KA(t).

In order to find the steady-state in this model it is necessary to trans-

form these variables into ‘effective’ terms. For any variable v(t), I use the

following transformations:

(21) v̂(t) =
v(t)

aA(0, t)
ψ

1−ψ

ˆ̂v(t) =
v(t)

ī(t) · aA(0, t)
ψ

1−ψ

The intuition for the form of these effective variable is revealed once the

dynamic equilibrium is derived. But from inspection it is clear that a ‘.̂..’

term is ‘effective’ with respect to a term that captures the productivity of

advanced capital at time t, whereas the ‘ ˆ̂...’ term is ‘effective’ with respect

to a term that captures the productivity of advanced capital and the value

of the cut-off at time t. In the analysis that follows I look for an equilibrium

in ĉ(t)− ˆ̂
KA(t) space. (19) and (21) imply a law of motion for ĉ(t):

(22)
˙̂c(t)

ĉ(t)
= rA(t)− ρ− ψ

1− ψ
· g

c(t) =
x(̃i, t) · p(̃i, t)

θ(̃i)
=
x(̃i, t)

θ(̃i)

and so ċ(t)
c(t) = ẋ(̃i,t)

x(̃i,t)
since θ(̃i) is constant and equal to 1.
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and (20) and (21) imply a law of motion for
ˆ̂
KA(t):

(23)

˙̂
K̂A(t)

ˆ̂
KA(t)

=
Ŷ (t)− ĉ(t)
K̂A(t)

−
[
gγ(t) +

ψ

1− ψ
· g
]

where gγ(t) is the growth rate in γ(t) and, given (7), in ī(t) as well. Both

these laws of motion can be expressed in terms of ĉ(t) and
ˆ̂
KA(t) alone.

The former requires an expression for rA(t) in terms of
ˆ̂
KA(t). The latter

requires an expression for Ŷ (t) and gγ(t) in terms of
ˆ̂
KA(t). First, consider

rA(t). The static model implies that p(0, t) is equal to:

(24) p(0, t) =

[
rA(t)

ψ · aA(0, t)

]ψ [
r(t)

(1− ψ) · aK(0, t)

]1−ψ

This is shown in the Appendix. Substituting the expression for r(t) in

terms of rA(t) that follows from (10), and using the price normalisation

that p(0, t) = 1, (24) implies:

(25)
rA(t) =

[
aA(0, t)

]ψ [
aK(0)

]1−ψ · [γ(̄i(t))]1−ψ ·
[

1

KA(t)

]1−ψ

·K1−ψ · ψ

=
ˆ̂
KA(t)ψ−1 ·D

where D is a positive constant equal to
(
aK(0) ·K

)1−ψ · ψ.16 To find the

16(25) implies that the level of rA(t) depends on the choice of the numeraire good, ĩ
– if a different ĩ is chosen, the level of aA(̃i, t) and aK (̃i, t) will differ from those in (25)
where ĩ = 0. However, this does not affect the important features of absolute factor
prices in equilibrium. In the case where there is a one-off change in the productivity
of advanced capital, so long as that change is uniform – as in Dornbusch, Fischer,
and Samuelson (1977) – (25) implies that, ceteris paribus, rA(t) will always move in
the same direction regardless of the choice of numeraire. In the case where there is
an increase in the growth rate of the productivity of advanced capital, so long as the
growth rates remain the same across different tasks, ceteris paribus, (25) implies that
rA(t) will always increase at the same rate regardless of the choice of numeraire. To
explore non-uniform changes in productivity, or to make the level of rA(t) invariant to
the normalisation, it is necessary to use a simplex price normalisation. But this leads
to an implicit, rather than explicit and tractable, solution to the model. This need for
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expression for Ŷ (t) in terms of
ˆ̂
KA(t), note that the structure of production

in (2) and (3) implies that total advanced capital income is equal to:

(26) rA(t) ·KA(t) = γ(̄i(t)) · ψ · Y (t)

and so substituting in rA(t) from (25) it follows that:

(27)

Ŷ (t) =
ˆ̂
KA(t)ψ−1 ·D · K̂A(t) · 1

ī(t)
· 1

ψ

=
ˆ̂
KA(t)ψ · D

ψ

Finally, to find the expression for gγ(t) note that by definition:

(28) gγ(t) =
∂ī(t)

∂
ˆ̂
KA(t)

·
˙̂
K̂A(t) · 1

ī(t)

Using the expression for rA(t) in (25), Ŷ (t) in (27), and gγ(t) in (28), the

laws of motion in (22) and (23) can now be re-expressed in terms of ĉ(t)

and
ˆ̂
KA(t). The former follows straightforwardly from (22) and (25):

(29)
˙̂c(t)

ĉ(t)
=

ˆ̂
KA(t)ψ−1 ·D − ρ− ψ

1− ψ
· g

The latter is more complex to derive. The full derivation is shown in the

Appendix. Using (27) and (28), (23) can be written as:

uniformity is an interesting limitation of Dornbusch, Fischer, and Samuelson (1977) that
was not explored. Complications involving price normalisations are discussed elsewhere
in the literature – Dierker and Grodal (1999), for example, on models of imperfect
competition.
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(30)

˙̂
K̂A(t)

ˆ̂
KA(t)

=

ˆ̂
KA(t)ψ−1 · D

ψ
− ī(t) · ψ

1−ψ · g −
ĉ(t)

ˆ̂
KA(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KA(t)

· ˆ̂
KA(t)

At this stage, the traditional approach with a Ramsey-type growth model

is to consider these schedules in ĉ(t) − ˆ̂
KA(t) space. (29) implies that the

˙̂c(t)
ĉ(t)

= 0 schedule is:

(31)
ˆ̂
KA(t) =

[[
ρ+

ψ

1− ψ
· g
]
· 1

D

] 1
ψ−1

This is identical to a traditional Ramsey model with a labour-augmenting

growth process at rate ψ
1−ψ · g – the stable arm for ĉ(t) is simply a vertical

schedule at some
ˆ̂
KA∗ that ensures rA(t) = ρ+ ψ

1−ψ · g and ĉ(t) is constant.

(30) implies that the
˙̂
K̂A(t) = 0 schedule is equal to:

(32) ĉ(t) =
ˆ̂
KA(t)ψ · D

ψ
− ī(t) · ψ

1− ψ
· g · ˆ̂

KA(t)

This is almost identical to a traditional Ramsey model, except in one im-

portant respect – the presence of ī(t). The reason that ī(t) appears in the
˙̂
K̂A(t) = 0 schedule in this model is critical. This is because in any period

t, advanced capital is only used to produce ī(t) of the goods in the economy.

The remaining 1 − ī(t) goods are produced by labour whose productivity

is unaffected by technological progress. However as ī(t) rises, and more

goods are produced by advanced capital rather than labour, the produc-

tion of more goods in the economy is affected by the technological progress.

As ī(t) rises it is as if the ‘effective’ rate of technological progress – this is

ī(t) · ψ
1−ψ · g in (32) – rises. Indeed, the increase in ī(t) in this new model

with many goods has the same consequence as an increase in technolog-

ical progress in a traditional Ramsey model with a unique final good.17

17If the rate of technological progress were to increase a traditional Ramsey model, the

20



Intuitively, in a traditional Ramsey model with a unique final good, the

economy ‘feels the full force’ of the technological progress, whereas in this

many-good model only ī(t) of the economy does.

This role for ī(t) first appears because of its role in determining rA(t)

in (25). That expression implies that rA(t) is increasing, at a diminishing

rate, in
ˆ̂
KA(t). Given the definition of

ˆ̂
KA(t) implied by (21), this means

that rA(t) is decreasing in KA(t) and increasing in aA(0, t) – as in a tradi-

tional Ramsey model – but that it is also increasing in ī(t). This is because

while there are diminishing returns to the use of KA(t) in the production

of any given good, increasing the range of goods ī(t) that KA(t) is used

to produce ‘spreads out’ the stock of capital across the economy, and off-

sets those diminishing returns. It is this new role for ī(t) that means the

transformations in (21) must be used to find the dynamic equilibrium.

Because of the ī(t) term in the stable arm for
ˆ̂
KA(t) in (32), dynamic

equilibrium is not analytically tractable. It requires a non-linear simulation

of the three equation system:18

(33)

˙̂c(t)

ĉ(t)
=

ˆ̂
KA(t)ψ−1 ·D − ρ− ψ

1− ψ
· g

˙̂
K̂A(t)

ˆ̂
KA(t)

=

ˆ̂
KA(t)ψ−1 · D

ψ
− ī(t) · ψ

1−ψ · g −
ĉ(t)

ˆ̂
KA(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KA(t)

· ˆ̂
KA(t)

ī(t) = f(KA(t), AH (̄i(t), t), LH)

The first two are the familiar differential equations for ĉ(t) and
ˆ̂
KA(t).

The third is a static equation that determines ī(t) in any given t. I will

demonstrate a simulation later in this paper. Nevertheless, it is still possible

to identify analytically the unique steady-state that this model approaches

and also to provide an intuitive conjecture for transition to this steady-

corresponding ‘effective’ capital schedule would fall, requiring a lower rate of effective
consumption to ensure that the effective capital stock is constant.

18ĉ(t) is a forward-looking state variable,
ˆ̂
KA(t) is a backward-looking state variable,

and ī(t) is a simultaneously endogenous non-state variable (i.e. it has no associated
differential equation).
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state, without performing the simulation.

Steady-state exists where the stable arms for ĉ(t) and
ˆ̂
KA(t) intersect.

The steady-state is unique and must take place when ī(t) = 1 – i.e. when

labour is entirely driven out of the economy by advanced capital. To see

why, first note that the stable arm for ĉ(t) in
ˆ̂
KA(t)–ĉ(t) space is a vertical

schedule at the level of
ˆ̂
K̂A∗ in (31). Now consider the following proof by

contradiction. Suppose that the stable arm for
ˆ̂
KA(t) crosses the stable

arm for ĉ(t) schedule where ī(t) 6= 1. In this potential steady-state the

productivity of advanced capital grows at a rate ψ
1−ψ · g. If this is to be

a steady-state, then ī(t) must remain constant. If ī(t) does not remain

constant, then the stable arm for
ˆ̂
KA(t) will shift. This is implied by (31).

The analysis of the static equilibrium in section I implies that ī(t) will

only stay constant if KA(t) decreases to offset this increase in productivity.

But if KA(t) decreases such that ī(t) remains constant then
ˆ̂
KA(t) will

fall, violating the condition that
ˆ̂
KA∗ is constant at the steady-state, as

required by (31). KA(t) must therefore rise to ensure that
ˆ̂
KA∗ remains

constant. However, this growth in the stock of advanced capital increases

ī(t) further. From the definition of the stable arm for
ˆ̂
KA(t) in (32) this

will drive down the intersection point of the stable arms for ĉ(t) and
ˆ̂
KA(t).

The steady-state value of ĉ∗ will be driven down. Repeating this argument

implies that if steady-state is to exist in
ˆ̂
KA(t)–ĉ(t) space, it must take

place when ī(t) = 1.19

It is possible to provide an intuitive conjecture for what the transition

path to this steady-state, where ī(t) = 1, will look like. This is shown in

Figure V, when the steady-state is approached from the left i.e.
ˆ̂
KA(0) <

ˆ̂
KA∗.

– FIGURE V HERE –

This conjecture for the transition to this steady-state is based on three

observations. The first is that the stable arm for ĉ(t) is known, given in

(31). The second is that as
ˆ̂
KA(t) increases, ī(t) also increases – this is

19Note that it is not possible for a steady-state where ī(t) = 0 – although ī(t) is
constant, this would imply there is no advanced capital and so the steady-state condition
in (31) is violated.
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intuitive, but proven in the Appendix. This gives the stable arm for
ˆ̂
KA(t)

its hump-shape in Figure V, given (32).20 The third is that, supposing

the economy reaches the steady-state where ī(t) = 1, the new model must

collapse to have the same general form as a traditional Ramsey model

in which there is labour and capital, and a labour-augmenting process of

technological change taking place at rate ψ
1−ψ · g – but rather than there

being labour and capital, there is instead only two types of capital, with an

advanced capital-augmenting process of technological change taking place

at rate g that is equivalent to a traditional capital-augmenting process of

technological change taking place at rate ψ
1−ψ · g. As a result, locally to

the steady-state, the new model has the same approximated saddle-path

as this traditional Ramsey model. This is what is shown in Figure V.21

The implication of this conjectured transition path is intuitive – during

transition
ˆ̂
KA(t) increases, driving up ī(t) as the stock and productivity of

KA(t) increases. However this is only a conjecture and for an important

reason – the approximated saddle-path in Figure V is only correct locally to

the steady-state. It is based on the claim that ī(t) = 1 in steady-state, but

as soon as
ˆ̂
KA(t) deviates from

ˆ̂
KA∗ along the saddle-path, ī(t) 6= 1, and

this claim no longer holds. In order to find the actual saddle-path to this

steady-state, rather than the conjectured one, it is necessary to perform

the non-linear simulation.

To make the simulation tractable, I need to explicitly define the absolute

productivity schedules for the factors – the aK(i, t), aH(i, t), and aA(i, t)

schedules. To do this, I make the following assumptions:

20In effect, the
˙̂
K̂A(t) = 0 schedule is bounded below by a hypothetical

˙̂
K̂A(t) = 0

schedule where ī(t) is fixed at 1 and above by a hypothetical
˙̂
K̂A(t) = 0 schedule where

ī(t) is fixed at 0.
21By ‘collapse’, I mean that the static three-factor analysis is replaced by a two-factor

analysis where there is no labour, and advanced capital combines with traditional capital
to produce all goods.
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(34)

aK(i, t) = aK

aH(i, t) = aH

aA(i, t) = aA(0, t)− b · i(t)

aA(0, t) = aA(0, 0) · egt

where aK , aH , b, and aA(0, 0) are positive constants. The first three ex-

pressions in (34) are absolute productivity schedules. They are the simplest

possible schedules that generate a relative productivity schedule, AH(i, t),

with the properties set out in Assumption 2. Intuitively, they imply that

the absolute productivity of advanced capital is diminishing in i, at a con-

stant rate b, and the productivity of the other factors is constant across the

task-spectrum. The final expression is a growth process. It is the simplest

possible process that ensures Assumption 3 is maintained. This is shown in

the Appendix. It implies that, again, the productivity of advanced capital

in producing the numeraire good grows at rate g. (34) allows for an explicit

solution to be derived for ī(t). From the AH(i, t) and C(i, t) schedules it

follows that:22

(35)[
b · aA(0, t)

ψ
1−ψ

]
·̄i(t)2−

[
aA(0, t)

1
1−ψ + b · aA(0, t)

ψ
1−ψ

]
·̄i(t)+

[
aA(0, t)

1
1−ψ − aH(i, t) · LH

ˆ̂
KA(t)

]
= 0

and so given the quadratic form of (35), ī(t) can be found in a straightfor-

ward way. Figure VI shows the results for one particular parameterisation

of the dynamic model. This is solved using a relaxation algorithm, adapting

Trimborn et al. (2008).23

– FIGURE VI HERE –

22This is in full in the Appendix.
23aK = 1, aH = 40, aA(0, 0) = 10, g = 0.05, ρ = 0.02, ψ = 0.5, D = 1, LH = 50. Note

that the transition path of rA(t) now does depend upon the normalisation – although
the steady-state rA∗ does not depend upon it. This simulation is not robust to all
parameterisations.
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Effective advanced capital,
ˆ̂
KA(t), effective consumption, ĉ(t), and the cut-

off ī(t) rise during transition to the steady state. Intuitively, the accumula-

tion of advanced capital drives up consumption but also drives out labour.

The outcome is remorselessly pessimistic as wages are driven to zero. The

process is driven by the fact that advanced capital is accumulated not only

to offset the fact that it is becoming more productive, but also that it is

becoming more prevalent (i.e. ī(t) is rising, offsetting the diminishing re-

turns in the production of any particular good). It is as if the economy is

chasing a steady-state that is continually slipping out of its grasp – until

ī(t) = 1 and labour is fully driven out. This is the remorselessly pessimistic

conclusion that was conjectured previously. Proposition 2 follows.

PROPOSITION 2: When the static model with advanced capital is placed

in a dynamic setting with endogenous advanced capital accumulation, the

economy approaches a unique steady-state at ĉ∗,
ˆ̂
KA∗, where ī∗ = 1 – in

this steady-state, labour is entirely driven out by advanced capital. During

transition, wH(t) is driven steadily to zero. The capital share of income

rises steadily to 1.

Note that Proposition 2 is derived without depreciation. This may seem

like a significant omission, since the depreciation of the existing stock of

advanced capital may appear to act as a counterbalance to the accumula-

tion of advanced capital and the displacement of labour. But this intuition

is incorrect. Suppose depreciation takes place at rate δ. As in a traditional

Ramsey model, the introduction of depreciation changes the stable arm for

ĉ(t),
˙̂c(t)
ĉ(t)

= 0:

(36)
ˆ̂
KA(t) =

[[
ρ+ δ +

ψ

1− ψ
· g
]
· 1

D

] 1
ψ−1

and also the stable arm for
ˆ̂
KA(t),

˙̂
K̂A(t) = 0:

(37) ĉ(t) =
ˆ̂
KA(t)ψ ·D − ī(t) ·

[
δ +

ψ

1− ψ
· g
]
· ˆ̂
KA(t)
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The implication of (36) and (37) is that while the introduction of depre-

ciation will change the level of steady-state
ˆ̂
KA∗ – implied by (36) – it is

still the case that the model must approach a steady-state in ĉ(t)− ˆ̂
KA(t)

space when ī(t) = 1. This is again implied by (37). The outcome again is

remorselessly pessimistic for labour.

As a final observation note that, with or without depreciation, the out-

come for owners of capital is remorselessly optimistic. The advanced capital

share of income, ī(t) · ψ, rises over time. And the return to the fixed stock

of traditional capital, r(t), which (10) and (25) imply is equal to:

(38) r(t) =
ˆ̂
KA(t)ψ · aA(0, t)

ψ
1−ψ · a

K(0)1−ψ · (1− ψ)

Kψ

This implies r(t) rises during transition and in steady-state when ī(t) = 1.

III. Conclusion

Autor (2015) captures the case for optimism in the task-based literature:

“These questions underline an economic reality that is as fun-
damental as it is overlooked: tasks that cannot be substituted
by automation are generally complemented by it.” (p. 6)

This is repeated in Autor (2014):

“The fact that a task cannot be computerized does not imply
that computerization has no effect on that task. On the con-
trary: tasks that cannot be substituted by computerization are
generally complemented by it.” (p. 8)

In an important sense, the analysis in this paper is in agreement with this

claim. Those tasks that cannot be automated are indeed complemented by

traditional capital. The value of those tasks increases as the quantity or

productivity of traditional capital increases. However, the new model does

challenge the assumption that necessarily labour will indefinitely be best

placed to perform those complemented tasks. This is the new role for ad-

vanced capital. As it increases in quantity or productivity, it erodes the set
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of types of q-complemented tasks in which labour retains the comparative

advantage. Labour is forced to specialise in a diminishing set of types of

tasks. Under the ALM hypothesis, the set of types of tasks performed by

labour that are q-complemented is protected from this erosion. But for the

reasons set out in Susskind (2017), this no longer seems appropriate. It is

as if capital in these new models is now able to ‘reach over’ the production

function into that set of types of tasks that was previously thought to be

for human beings alone. That the consequences of this ‘task encroachment’

are so pessimistic for labour – a remorseless displacement of labour, a con-

tinual fall in absolute wages, and technological unemployment – suggests

the traditional literature may have already created a false sense of opti-

mism about the prospects for labour. Note, however, that for the owners

of capital this conclusion is far from pessimistic. All the returns to tech-

nological progress flow to them.24 From an equity standpoint, it follows

that who owns and controls capital in this model becomes an increasingly

important question over time.

If the new supply-side argument for pessimism in this paper is right,

then understanding how we might offset it is an increasingly important

task. One response to this process of ‘task encroachment’ is described

in Acemoglu and Restrepo (2017) – the falling labour scarcity that takes

place leads to an incentive for producers to create new tasks in which labour

has the comparative advantage. Labour is displaced from old tasks, but

can take refuge in these new tasks instead. However, the problem with

approach is that it conflicts with the original argument used to motivate

it. The authors present Leontief (1952) and his mistaken claim that labour

in the 21st century would share the fate of horses in the 20th – that they

“will become less and less important ... More and more workers will be

replaced by machines”. And the authors argue their model offers a response

– “the difference between human labor and horses is that humans have a

comparative advantage in new and more complex tasks. Horses did not.”

But this raises the fundamental question – why does this model not apply

equally well to horses, too? If technological change also caused falling horse

scarcity, why was there not a surge in the creation of new types of tasks

in the 20th century in which horses had the comparative advantage, as

24r(t), the return to traditional capital, rises over time. See (38).
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the model would suggest? An important part of the theoretical account

appears to be missing.

Nevertheless, the general idea of a new ‘race’ in task-space is an im-

portant area for further work. Acemoglu and Restrepo (2017) is a supply-

side version of the race – producers create new types of tasks to produce

output. A new alternative is a demand-side version of the race – where

consumers demand different goods and services that in turn require new

types of tasks to produce them. This claim is often made informally – for

instance, in making a case for optimism, Mokyr et al. (2015) argues “the

future will surely bring new products that are currently barely imagined”,

Autor and Dorn (2013) discusses “new products and services that raise na-

tional income”, and Autor (2014) appeals to the unforeseen rise of “health

care, finance, informational technology, consumer electronics, hospitality,

leisure, and entertainment” to explain why those displaced from farming

in the 20th century would not lack for work in the 21st. Only a model

like the one in this paper, with a variety of goods, is capable of exploring

this demand-side version. Acemoglu and Restrepo (2017), with a unique

final good, cannot. Optimism will only follow, though, if the new goods

and services that have to be produced require tasks in which labour, and

not advanced capital, has the comparative advantage. This paper lays the

necessary foundations for this further work.

IV. FOR ONLINE PUBLICATION: Appendix

IV.A. Assumption 3

To derive the condition in Assumption 3, take two arbitrary levels of i such

that ĩ < ˜̃i. Suppose Assumption 2 initially holds so that at t = 0:

(39) AH (̃i, 0) ≤ AH (̃̃i, 0)

Given the definition of AH(i, t) this implies:

(40) aA (̃̃i, 0) ≤ aA(̃i, 0) · a
H (̃̃i, 0)

aH (̃i, 0)
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For Assumption 2 to continue hold over time, over time it must be that ∀t:

(41) aA (̃̃i, t) ≤ aA(̃i, t) · a
H (̃̃i, t)

aH (̃i, t)

This is Assumption 3. There are two growth processes used in the dynamic

model. The first is used when the model is solved analytically. This is (12)

and implies:

(42) aA(i, t) = aA(i, 0) · egt

To see that this maintains Assumption 3, note that (40) and (42) imply:

(43)

aA (̃̃i, 0) · egt ≤ aA(̃i, 0) · egt · a
H (̃̃i, 0)

aH (̃i, 0)

aA (̃̃i, t) ≤ aA(̃i, t) · a
H (̃̃i, 0)

aH (̃i, 0)

and so Assumption 3 holds, since the productivities of labour do not change

over time. The second growth process is used when the model is solved

computationally, and is implied by (34):

(44) aA(i, t) = aA(0, 0) · egt − b · i

To see that this maintains Assumption 3, note that (44) and (40) imply:

(45)

aA (̃̃i, t) = aA(0, 0) · egt − b · ˜̃i ≤ aA(0, 0) · egt − b · ˜̃i · egt

≤
(
aA(0, 0) · egt − b · ĩ · egt

)
· a

H (̃̃i, 0)

aH (̃i, 0)

≤
(
aA(0, 0) · egt − b · ĩ

)
· a

H (̃̃i, 0)

aH (̃i, 0)
= aA(̃i, t) · a

H (̃̃i, 0)

aH (̃i, 0)
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Again, since (39) will hold ∀t so long as:

(46) ȧA (̃̃i, t) ≤ ȧA(̃i, t) · a
H (̃̃i, t)

aH (̃i, t)

it follows from (45) that Assumption 3 again holds, since the productivities

of labour do not change over time.

IV.B. Law of Motion for x(i, t)

From (15) it follows that:

(47) x(i, t) =
1

µ(t) · p(i, t)

And from (16) that:

(48)
µ̇(t)

µ(t)
= −rA(t) + ρ

It follows from (47) that:

(49)
ẋ(i, t)

x(i, t)
= − ṗ(i, t)

p(i, t)
− µ̇(t)

µ(t)

(48) and (49) therefore imply that:

(50)
ẋ(i, t)

x(i, t)
= − ṗ(i, t)

p(i, t)
+ rA(t)− ρ

IV.C. Expression for p(0, t)

To find any p(i, t), suppose that i(t) ∈ [0, ī(t)]. This implies that x(i, t) is

produced by advanced capital and traditional capital:
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(51) x(i, t) =
[
aA(i, t)KA(i, t)

]ψ [
aK(i, t)K(i, t)

]1−ψ ∀i(t) ∈ [0, ĩ(t)]

This implies that the marginal product of advanced capital in producing

x(0, t) is:

(52)

MPKA(i, t) = aA(i, t) · ψ
[
aA(i, t)KA(i, t)

]ψ−1 [
aK(i, t)K(i, t)

]1−ψ
= ψ · x(i, t)

KA(i, t)

and the marginal product of traditional capital in producing x(i, t) is:

(53)

MPK(i, t) = aK(i, t) · (1− ψ) ·
[
aL(i, t)LL(i, t)

]ψ [
aK(i, t)K(i, t)

]−ψ
= (1− ψ) · x(i, t)

K(i, t)

Given perfectly competitive profit-maximising firms, the price of each of

these factors – rA(t) and r(t) – must be equal to their respective marginal

revenue products:

(54)

rA(t) = p(i, t) · ψ · x(i, t)

KA(i, t)
∀i(t) ∈ [0, ī(t)]

r(t) = p(i, t) · (1− ψ) · x(i, t)

K(i, t)
∀i(t) ∈ [0, 1]

These can be re-arranged:

(55)

KA(i, t) = p(i, t) · ψ · x(i, t)

rA(t)
∀i(t) ∈ [0, ī(t)]

K(i, t) = p(i, t) · (1− ψ) · x(i, t)

r(t)
∀i(t) ∈ [0, 1]
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and substituting these expressions for KA(i, t) and K(i, t) into (51) implies:

(56)

x(i, t) =

[
aA(i, t) · p(i, t) · ψ · x(i, t)

rA

]ψ [
aK(i, t) · p(i, t) · (1− ψ) · x(i, t)

r(t)

]1−ψ

p(i) =

[
rA

ψ · aA(i)

]ψ [
r

(1− ψ) · aK(i)

]1−ψ

(56) is therefore the p(i, t) for any good i(t) ∈ [0, ī(t)]. A similar exercise

to derive LH(i, t) provides p(i, t) for those remaining goods i(t) ∈ [̄i(t), 1]

produced by labour with traditional capital.

IV.D. Law of Motion for
ˆ̂
KA(i, t)

Using (27) and (28), (23) can be written as:

(57)

˙̂
K̂A(t)

ˆ̂
KA(t)

=
K̂A(t)ψ · D

ψ
− ĉ(t)

K̂A(t)
−

[
∂ī(t)

∂
ˆ̂
KA(t)

·
˙̂
K̂A(t) · 1

ī(t)
+

ψ

1− ψ
· g

]

And so:

(58)

˙̂
K̂A(t) =

1

ī(t)
·
[

ˆ̂
KA(t)ψ · D

ψ
− ĉ(t)

]
−

[
∂ī(t)

∂
ˆ̂
KA(t)

·
˙̂
K̂A(t) · 1

ī(t)
+

ψ

1− ψ
· g

]
·

ˆ̂
K̂A(t)

=

ˆ̂
KA(t)ψ · D

ψ
− ī(t) · ψ

1−ψ · g ·
ˆ̂
KA(t)− ĉ(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KA(t)

· ˆ̂
KA(t)

It follows that:

(59)

˙̂
K̂A(t)

ˆ̂
KA(t)

=

ˆ̂
KA(t)ψ−1 · D

ψ
− ī(t) · ψ

1−ψ · g −
ĉ(t)

ˆ̂
KA(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KA(t)

· ˆ̂
KA(t)
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IV.E. Transition Path

To show that ī(t) increases as
ˆ̂
KA(t) increases on the transition path, I first

derive the following relationship between the growth rates in ī(t), KA(t)

and g that must hold:

(60) gγ(t) = φ(t)
[
gK

A

(t) + g
]

where:

(61)

φ(t) =
1− ī(t)

[̄i(t)− ī(t)2] · y(t) + 1
and y(t) =

[
aH1 (̄i(t), t)

aH (̄i(t), t)
− aA1 (̄i(t), t)

aA(̄i(t), t)

]

and φ(t) has the three properties: φ(t) ≥ 0; φ(t) ≤ 1; and limī(t)→1 φ(t) = 0.

The expression in (60) implies that the growth rate in the equilibrium cut-

off, gγ(t), is proportional to the sum of the growth rate in the advanced

capital stock gK
A

(t) and the productivity of KA(t), ψ
1−ψ · g where the con-

stant of proportionality φ(t) is time dependent with the three features set

out above. I now derive this expression for gγ(t) and these three properties

of φ(t).

Deriving gγ(t)

To derive the expression for gγ(t), note that the equilibrium condition,

AH (̄i(t), t) = C (̄i(t), t) can be re-arranged as:

(62) aH (̄i(t), t) · ī(t) = [1− ī(t)] · aA(̄i(t), t) · K
A(t)

LH

Taking time derivatives of (62) implies a further condition that must hold

in any t:

(63)

˙̄i(t)·a
H
1 (̄i(t), t)

aH (̄i(t), t)
+
aH2 (̄i(t), t)

aH (̄i(t), t)
+

˙̄i(t)

ī(t)
= −

˙̄i(t)

[1− ī(t)]
+˙̄i(t)·a

A
1 (̄i(t), t)

aA(̄i(t), t)
+
aA2 (̄i(t), t)

aA(̄i(t), t)
+
K̇A(t)

KA(t)
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and substituting in the expression for the growth rates implies that:

(64) gγ(t)

[
ī(t) ·

[
aH1 (̄i(t), t)

aH (̄i(t), t)
− aA1 (̄i(t), t)

aA(̄i(t), t)

]
+

1

[1− ī(t)]

]
= g + gK

A

(t)

and so:

(65) gγ(t) = φ(t)
[
gK

A

(t) + g
]

where:

(66)

φ(t) =

[
ī(t) ·

[
aH1 (̄i(t), t)

aH (̄i(t), t)
− aA1 (̄i(t), t)

aA(̄i(t), t)

]
+

1

[1− ī(t)]

]−1

=
1− ī(t)

[̄i(t)− ī(t)2] · y(t) + 1

Deriving the Three Properties of φ(t)

First to see that φ(t) ≥ 0 note that the weakly positive slope of AH(i, t)

implies ∀i, t:25

(67) AH1 (i, t) ≥ 0

which, given the definition of AH(i, t), can be re-written as:

(68)
aH1 (i, t) · aA(i, t)− aA1 (i, t) · aH(i, t)

[aA(i, t)]2
≥ 0

Since the denominator of the expression in (68) is always positive, this

implies that the following must hold:

(69)

aH1 (i, t) · aA(i, t) ≥ aA1 (i, t) · aH(i, t)

aH1 (i, t)

aH(i, t)
≥ aA1 (i, t)

aA(i, t)

Therefore so long as the AH(i, t) schedule is weakly positively sloped, y(t)

remains weakly positive, the denominator in the expression for φ(t) in (66)

25This is Assumptions 2 and 3.
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remains positive, and so φ(t) also remains weakly positive. To see the sec-

ond property, that φ(t) ≤ 1, consider the following proof by contradiction.

Assume instead that φ(t) > 1. The expression for φ(t) in (66) then implies:

(70)

ī(t) ·
[
aH1 (̄i(t), t)

aH (̄i(t), t)
− aA1 (̄i(t), t)

aA(̄i(t), t)

]
+

1

[1− ī(t)]
< 1

ī(t) · [1− ī(t)] · y(t) < 1− ī(t)− 1

ī(t) · y(t)− ī(t)2 · y(t) < −ī(t)

But since ī(t) ∈ [0, 1] this condition cannot hold. If ī(t) = 0, then the result

is a contradiction since (70) requires that 0 < 0. Similarly if ī(t) > 0 then

(70) requires:

(71) y(t) < − 1

1− ī(t)
< 0

which is not possible since ī(t) ∈ [0, 1] and y(t) ≥ 0. The third property,

that limī(t)→1 φ(t) = 0, follows from the fact that:

(72) lim
ī(t)→1

[
1

1− ī(t)

]
=∞

and that:

(73) lim
ī(t)→1

[
ī(t) ·

[
aH1 (̄i(t), t)

aH (̄i(t), t)
− aA1 (̄i(t), t)

aA(̄i(t), t)

]]
≥ 0

And so limī(t)→1 φ(t) = 0, given (66), (72) and (73).

ī During Transition

The proof that d̄i(t)

d
ˆ̂
KA(t)

≥ 0 during the conjectured transition in Figure V

now follows from two relationships. The first is implied by the fact that if
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ˆ̂
KA(t) is increasing, (21) implies:

(74) gK
A

(t) > gγ(t) +
ψ

1− ψ
· g

where gK
A

(t) is the growth rate in the stock of advanced capital and gγ(t)

is again the growth rate in the equilibrium cut-off ī(t). The second rela-

tionship is that set out in (60). Combining these two sets of relationships

implies that if
ˆ̂
KA(t) is increasing then:

(75)
1− φ(t)

φ(t)
· gγ(t) > 1

1− ψ
· g

And so:

(76) gγ(t) >
φ(t)

(1− ψ) · (1− φ(t))
· g

Given the properties of φ(t) derived before, and that g > 0, this implies

that if
ˆ̂
KA(t) is increasing then:

(77) gγ(t) > 0

i.e. ī(t) is also increasing. (76) also implies lim
ī(t)→1

gγ(t) = 0 given the

properties of φ(t).

IV.F. Explicit Solution for ī(t)

Given (34), since AH(i, t) = C(i, t), it follows that in any t:

(78)
aH(i, t) · LH

(aA(0, t)− b · ī(t)) · (1− ī(t)) · aA(0, t)
ψ

1−ψ
=

ˆ̂
KA(t)

and so:

(79)[
b · aA(0, t)

ψ
1−ψ

]
·̄i(t)2−

[
aA(0, t)

1
1−ψ + b · aA(0, t)

ψ
1−ψ

]
·̄i(t)+

[
aA(0, t)

1
1−ψ − aH(i, t) · LH

ˆ̂
KA(t)

]
= 0
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This can be solved for ī(t) in the traditional way, given its quadratic form.
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Figure I: The Relative Productivity Schedule

Figure II: The Zero-Profit Schedule
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Figure III: Market Equilibrium

Figure IV: A New Market Equilibrium
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Figure V: Dynamic Equilibrium

Figure VI: Simulation of Dynamic Equilibrium
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