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Abstract 

This paper argues that daily ‘universal random testing’, as recently proposed by Paul Romer, 

is not likely to be an effective tool for reducing the spread of Covid-19 and resuming 

economic activity. We find that more than 21% of the population would need to be tested 

every day to reduce the Covid-19 reproduction rate (R’) to 0.75, as opposed to 7% as argued 

by Romer. We show this using a corrected method for calculating the impact of an 

infectious person on others, when testing and isolation takes place. Our calculation allows 

for asymptomatic cases. Instead we propose ‘stratified periodic testing’ as an alternative 

strategy. 

 

1 Introduction and Summary 

Governments around the world are looking for a testing strategy for Covid-19. In a talk given 

on April 3, Paul Romer proposed population-wide testing and isolation – what we call 

“universal random testing”.1 He made the important points that the economic benefit of a 

speedier recovery would be measured in $trillions and this would easily justify spending 

$billions on testing, and that there is no necessity for such testing to be highly accurate.  

Unfortunately, as we will show, the model used in that talk is flawed. Our corrected model 

suggests that Romer’s proposal is unlikely to work in practice. Instead, we show that 

targeted testing of particular groups, what we call “stratified periodic testing”, and the 

subsequent isolation of those who test positive, would be a more effective tool in reducing 

the spread of Covid-19. 
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Romer uses a simple model to show how random testing of 7 percent of the population per 

day for evidence of infection (using ‘antigen’ tests) would be sufficient to halt the pandemic. 

While already a big ask, we argue that this rests on a mistaken calculation, and that a 

corrected model implies that the required proportion of daily testing would be more than 

21 percent of the population – an impossible task. This result indicates that attempting to 

test at random the entire population would be a waste of testing resources.  

 

Instead we recommend using periodic testing on smaller stratified specific groups. These 

would include healthcare staff and other key workers, and those at high risk of creating 

cross-infection (See section 5 below). Like Romer, we believe that high frequency testing of 

such groups would be manageable. But, unlike Romer, we also believe that only targeted 

testing would be feasible, and that such testing – on its own - would be a means of stopping 

the virus spread in the whole population.   

 

So long as testing remains a scarce and relatively expensive resource, we argue that testing 

of the general population should be reserved for immunity tests (antibody tests), which 

would allow those that have been infected to get back to work. 

 

The paper is organised as follows. In sections 2 and 3 we use our corrected model to 

calculate the proportion of daily testing that would be required to halt the spread of the 

virus. We also use our model to suggest that Romer’s strategy is best thought of as a risky 

“throttle” strategy. In Section 4 we examine the robustness of our conclusions.  

Section 5 sets out what we think is a workable testing strategy: the periodic testing of 

stratified groups. We argue that a simple method is available for estimating the testing rate 

required to stop the spread of the virus in each of the targeted groups, and point to 

Appendix 1 where this method is fully explained. In addition, we argue that testing should 

be periodic rather than random, since this will enable testing resources to be used more 

economically: it can increase the efficiency of testing by perhaps 25%. We go on to present 

some practical suggestions, outlining how our strategy might be implemented.  

Section 6 presents our conclusions.  

Appendix 1 explains in detail the simple method which we propose for estimating the 

testing rate required to stop the spread of the virus in the targeted groups. In Appendix 2 

we explain why testing periodically, rather than randomly, can make a very big difference to 

the efficiency of testing. In Appendix 3 we set out how and why we think that Romer made 

his error.   

We should make it clear immediately that our paper is not intended as a criticism. Romer’s 

focus on the importance of testing, his lecture of 3 April, and his simulations of the spread 

of the epidemic which we discuss below are all immensely valuable.   
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2 The basic ideas  

The reproduction rate R in an epidemic is the expected number of cases directly generated 

by any one infectious case. The basic reproduction rate, R0, is the initial value of R when all 

individuals are susceptible to infection, and no suppression policies have been applied. For 

Covid-19, Romer takes R0 = 2.5 and so will we.  

We know that an epidemic can only be controlled if the value of R is brought below 1. When 

that happens, each infected person infects less than one new person, and the epidemic will 

die out. If that does not happen, more and more people become infected until – in the end 

– “herd immunity” is achieved.  

Romer wants to get the effective reproduction rate R’ (R prime) down to R’ = 0.75 from R0 = 

2.5, by randomly testing a fraction of the entire population each day and then isolating 

those who are found to be positive. In Romer’s analysis, which we follow, the effective 

reproduction rate R’ is the product of the basic reproductive rate, R0, and the fraction of the 

infectious population that is not isolated. R’ is below R0 because a fraction of the population 

is tested each day and those found to be infectious are isolated.  

Let φ be the proportion of the infectious population which is isolated. Then Romer writes 

Equation (1): 

(1) R’ = (1 -  φ) R0. 

For R’ = 0.75, Equation (1) implies that that φ = 0.7, i.e. that 70 percent of the infectious 

population is isolated, and that sufficient tests and isolation are carried out to make this 

possible.  

Drawing on his calculations, Romer suggests that this can be done by randomly testing 7% of 

the population each day. He believes that this would achieve R’ = 0.75. With a population of 

300 million in the US testing on this scale would require about 20 million tests a day. In the 

UK with a 60 million population, this would require about 8.5 million tests a day. Romer 

proposes the immediate allocation of $100bn in the US to make such an outcome possible. 

In Appendix 3 we identify the error in Romer’s calculation of the relationship between the 

proportion of the population who must be tested, and φ, the proportion of the infectious 

population that is isolated. We also explain how we think that Romer came to make his 

mistake.  

We now set out our calculation which shows that, if random testing followed by isolation 

were adopted, more than 21% of the population would need to be tested each day. This, we 

show, is what would be necessary to get to a position in which 70 percent of the infectious 

population were isolated (i.e. φ = 0.7), so that R’ = 0.75. To do this would require everyone 

in the population to be tested about every five days. 

  

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Susceptible_individual
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3 Our approach 

3.1 Calculating the required testing rate for R = 0.75  

We assume, like Romer, that the whole population is randomly tested. We let t be the 

proportion of the population tested each day, i.e. the probability, for each person, of being 

tested each day and then isolated. Romer allows for false negatives in his tests. He lets n be 

the proportion of false negatives and assumes that this proportion is 0.3. We follow him in 

assuming such a high number.2  

We assume that 14 is the number of days for which an infected person is infectious. This 

number 14 is familiar in the analysis of Covid-19 as the number of days after which the 

person is either dead or – much more likely – recovered, but no longer infectious. Of course, 

this number may not be the best one to use. We use 14 here mainly because it is the 

number used by Romer as the number of days that each person who tests positive is placed 

in isolation. We discuss this issue further in Section 4 below, and discuss Romer’s procedure 

in Appendix 3.3 

As a preliminary, let us consider the impact of an infectious person on others. We assume 

that if R0 = 2.5, and if there were no testing which led to the isolation of infected people, 

then an infectious person would infect 2.5 people in total, or 2.5/14 persons per day for 14 

days. That is what we take R0 = 2.5 to actually mean. Note that we discount any idea of a 

person being more or less infectious during the 14-day period. See a brief discussion of this 

point in Section 4 below.  

We now consider the impact of an infectious person on others when he or she has a 

probability t of being tested each day, and so of being placed in isolation immediately if the 

test is positive.4 For clarity, it is helpful to think about x, where x  = t (1-n), where n is the 

number of tests which show false negatives, which we will take to have the value of 0.3, as 

specified by Romer. The variable x shows the probability that, on any day on which this 

person is infectious, he or she is isolated. This means that (1 – x) is the probability that this 

person will not be isolated on the next day and so will infect people on that next day.  

It is important to self-isolate those who show symptoms. Once this happens, only 

asymptomatic people and those who have chosen not to self-isolate, for example with mild 

                                                             
2  There is a good reason for this. Massive testing – even of the amount which we contemplate - may 
well make it impossible to ensure that tests are accurate. Romer rightly argues that, whilst accurate tests are 
absolutely necessary for clinical reasons when treating an individual person, much more rough-and-ready 
testing is satisfactory if the purpose of this testing is epidemiological control.   
3  7 days has been the standard advice for isolation or 14 days if more than one in a household, however 
recent data shows that the infectious period may last much longer.  A recent detailed study of repeatedly 
tested individuals in Taiwan found a long tail for infectiousness. For further discussion of this point See Section 
5 below. See also https://focustaiwan.tw/society/202003260015 
4  This testing regime assumes that on the day you are tested, if tested positive and isolated, you cannot 

infect someone else. This simplifying assumption can be thought of in practical terms as a rapid ‘early morning’ 
test. In the section below on robustness we investigate the effect of a much more cautious assumption 
supposing that the infected individual remains infectious for the entire day that they are tested, with 
corresponding increase in required testing rate t for any given R’.     

https://focustaiwan.tw/society/202003260015
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or mistaken symptoms, would be spreading the disease, and would be included in those 

who are tested. Romer discusses this issue in his lecture, but did not allow for it in his 

calculations. 

The proportion of asymptomatic patients isn’t really known, and estimates vary wildly. Very 

inexact data from Iceland suggest all infectious patients are asymptomatic for the first five 

days and after that only about half become symptomatic.5 The WHO suggests that 80% of 

cases are asymptomatic or mild.6  

We construct our analysis as follows. We want to find the value of x that would give Romer’s 

desired value for R’ of 0.75. We will then work out the required probability of testing t, 

given that we take as given Romer’s assumption that the proportion of false negative tests, 

n, is equal to 0.3.  

If there were no self-isolation of those who became symptomatic, then the probability of an 

infectious person remaining undetected on day k is (1-x)k. Therefore, in expectation, an 

infected person would infect R0(1-x)/14 persons on day 1 of their infection, R0 (1-x)2/14 

persons on day 2, and so on, up to R0 (1-x)14 /14 persons on day 14.  

Let us allow for self-isolation of those who are symptomatic by supposing that all of those 

infected are asymptomatic for five days (and are subject to random testing during that time) 

and that, after 5 days, a proportion α display symptoms and self-isolate, so that only a 

proportion (1 – α) go on being tested from day 6 onwards.   

We can thus write our following key equation: 

(3) R’ = R0 [(1 – x) + (1 - x)2 + .… (1 – x)5  + (1 - α){(1 – x)6 + (1 – x)7 … + (1 – x)14}}]/14. 

Romer’s ambition is for each infectious person to only infect 0.75 other people. So we seek 

to find x by setting the total number of infections caused by this person to 0.75. Recalling 

that R0  = 2.5, we then can solve for x from Equation (4): 

(4) R0 [(1 – x) + (1 - x)2 + … + (1 – x)5  + (1 - α){(1 – x)6 + (1 – x)7 …. + (1 – x)14}}]/14 = 0.75. 

The solution to this equation can be obtained numerically for various values of α. When α = 

0.5, as roughly observed in Iceland, x ≈ 0.146. This has the following meaning. Averaging 

over the first 5 days there is a probability of about 55% for any person who is infectious but 

not yet isolated, of being tested and immediately isolated. From then on, half of any such 

infectious people are assumed to display symptoms and so to self-isolate. So, during the 

remaining 9 days that a person is infected the weighted impact of testing is only about half 

that in the first 5 days. 

But t = x/(1-n). And n, the proportion of false negatives, is equal to 0.3. So the required 

probability of testing on each day, t, is given by t = .146/0.7 ≈ 0.209. That is to say, the 

                                                             
5  See https://edition.cnn.com/2020/04/01/europe/iceland-testing-coronavirus-intl/index.html  
6  See https://www.medrxiv.org/content/10.1101/2020.02.20.20025866v2  

 

https://edition.cnn.com/2020/04/01/europe/iceland-testing-coronavirus-intl/index.html
https://www.medrxiv.org/content/10.1101/2020.02.20.20025866v2
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proportion of people tested on any day must be as high as 21% in order to achieve the 

required 15% discovery rate x. 

Recall from Equation (1) that R’ = (1 - φ)R0 , where φ is the proportion of the infectious 

population which is isolated. With R0 = 2.5 and R’ = 0.75, this means that φ = 0.7. Thus, over 

the 14 days in which a person is infectious, this person will, on average, be in isolation for 70 

percent of the time.  We have shown that to achieve such a very striking outcome, the 

probability of an infected person who is not yet isolated being tested on any day must be at 

least as high as 21%. With random, economy-wide testing, this means, in effect, that 

everybody in the economy has to be tested about every five days.  

3.2 Identifying the testing threshold 

The dotted line in Figure 1 plots R’ as a function of the proportion of the population tested. 

As we have already seen, when half of those who are infected self-isolate from day 6 

onwards, i.e. α = 0.5, t needs to be equal to about 21% to get R’ down to get 0.75. Figure 1 

also enables us to identify the threshold testing rates, t* that reduce R’ to exactly 1, and so 

just stop the epidemic from exploding. For α = 0.5, this threshold testing rate is t* = 13%. To 

achieve this, everyone would need to be tested, on average, every eight days. This is still 

way above Romer’s proposed testing rate of 7%. 

 

      Figure 1  

In addition, Figure 1 displays the sensitivity of the results to various values of α. It shows 

that, at one extreme, when all cases are symptomatic after 5 days and self-isolate (i.e. when 

α = 1.00), the situation seems just about manageable: the epidemic would stop exploding 

even without any testing. Nevertheless, the required value of t which would ensure that R’ = 

0.75, is about 8.2%. This percentage is actually a little above that proposed by Romer, even 
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in this extreme case. That is because infected asymptomatic people do a lot of damage in 

the first five days! At the other extreme, with α = 0.00, the situation is much worse: the 

probability of testing per day, t*, which is required to stop the epidemic exploding is now 

nearly 20 percent (19.1%) and the value of t required to ensure that R’ = 0.75 is about 26 

percent (26.1%).  

Data for the extent to which infectious people become symptomatic is extremely unreliable 

and furthermore the range of possibilities seems very wide. As a result, the outcomes 

depicted in Figure 1 suggest that, on the balance of probabilities, Romer’s strategy of 

universal random testing would be unworkable.   

3.3 Romer’s strategy is really a risky “throttle” strategy 

Returning to the share of asymptomatic cases observed in Iceland, (i.e. the case when α = 

0.5), Figure 1 shows that by setting a testing rate of 7% of the population, the epidemic 

remains explosive with R’ equal to about 1.3. In this situation, infection would spread rapidly 

in the earlier stages, since the testing rate is not high enough to slow the spread in a 

controlled manner; all testing would do is slow down the explosion. Ultimately, once the 

contagion reaches a certain size, the effect of testing, together with the fact that more and 

more people have had the disease and so are immune, will begin to slow the spread. The 

proportion of those infected will tend towards a constant level at which there is “herd 

immunity”. It can be shown, for any R, that this proportion is given by (1 – 1/R).  

 

Without testing, with a value of R0 of 2.5, the herd immunity proportion is 60%.  

 

Romer’s strategy, with a massive amount of testing, would reduce this level to about 23%. 

But in the earlier stages of infection, when there is no immunity, the disease could still 

spread rapidly as the testing rate would not be high enough to slow the spread in a 

controlled manner. Romer’s testing strategy would indeed slow the spread. And it would 

reduce the level of herd immunity, to which the population is tending in the long run. But it 

would not control the initial explosion. 

 

What Romer is really proposing is a random testing strategy which could be used as a 

throttle to control an inevitable spread, and that at 7% this throttle strategy might be 'good 

enough'. But such a control mechanism does not stop very large numbers of people being 

infected, it merely “flattens the curve”. Of course, the hope is that something else 

intervenes, like a vaccine.  

 

Romer has posted a very detailed and helpful model of the spread of the epidemic in this 

manner, one which avoids the problems of the model put forward in his April 3 talk. See 

https://paulromer.net/covid-sim-part1/ and https://paulromer.net/covid-sim-part2/. 

 

In Romer’s simulations of this model, the spread is very rapid: there is a peak of infections of 

between 3% and 18% of the population. This would overwhelm any national health system 

https://paulromer.net/covid-sim-part1/
https://paulromer.net/covid-sim-part2/
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since even 3% of the population is an enormous number. There is also a chance that 20% of 

the population would be infected at the same time. That would be a national calamity.  

 

Romer shows in his simulation model that using such a strategy over the course of 500 days 

might result in about 30% of the population contracting Covid-19.  Furthermore his strategy 

is risky. Peak levels of infection might rise out of control. Even if testing rates were then 

increased, lags in responses would mean that the spread of infection would only be 

gradually reduced. Meanwhile, the virus might go on spreading towards the herd immunity 

level.  

 

4 The robustness of our conclusions  

 

Of course, there are many changes to our assumptions which could modify our calculations.  

 

In particular, there would be significant reductions in required testing rates if whole 

households were to be self-isolated if anyone in the household tested positive. If, for 

example, only one person in a household were tested at any time, and households consisted 

on average of two people, then each positive test would remove two people into isolation. 

That is – testing would become more effective. 

 

On the other hand, our calculations have deliberately assumed a very speedy testing 

strategy: we have supposed that a test done on any day which finds the person to be 

infectious causes that person to immediately self-isolate even on that day; an extreme 

assumption. We have redone the calculations using the more cautious assumption that a 

positive test result for a test performed on any day does not lead to the person isolating 

until the next day. The relevant equation now becomes: 

 

(5) R’ = R0[1 + (1 – x) + (1 - x)2 + …. + (1 – x)4 + (1 - α){(1 – x)5 + (1 – x)6 …. + (1 – x)13}]/14 

These results are much worse than those described in section 3. With α = 0.5 ,the critical 

testing rate, t*, is now 16% percent, and the testing rate required to get R’ down to 0.75 is 

now as high as 27% percent.  

Furthermore, we have been assuming, like Romer, that there is uniform contagion 

throughout the 14-day period. But the medical data shows an asymptomatic infectious 

period followed by a hump of maximum infectivity as symptoms develop and a tail as 

symptoms resolve.   

Our conclusions from this investigation are as follows. For the random universal testing 

proposed by Romer to be workable (involving testing, say, less than 10% of the population 

per day) policy-makers would require confidence that:  

 

i)  nearly all infected patients are symptomatic and self-isolate, reducing the 

burden on testing after the incubation period,  



 

9 
 

ii)  the tests are sufficiently effective, and complied with, that they capture more 

than 70% of infected cases (and ideally close to 100%),  

iii)  testing is conducted quickly, early in the morning, and people are isolated on 

the day of the test, and  

iv)  whole households are isolated when any member is infected.  

 

Unfortunately, we do not feel that all these conditions can be met given our current state of 

knowledge about the virus, particularly i). Thus we think that it is right to be very cautious 

before agreeing with Romer that whole-population random testing would be helpful. 

 

5 A workable strategy of stratified periodic testing7 

 

5.1 Stratified testing  

 

We argue that testing should be carried out at different frequency for different stratified 

groups, based on occupation, geography, or other factors. Testing at rates above 25% per 

day could be done for carefully selected groups for which R0 was high. This would enable 

greater rates of isolation in these groups, lowering their R’ and helping to prevent the 

epidemic spreading where it mattered most.8 This appears to be a much lower-risk strategy 

to contain the spread of infection, and could be done with cheap tests, even if they were 

somewhat inaccurate.  

 

Consider doctors, for example, who have very frequent contact with infected patients. The 

value of R0 will be very high for doctors. The above kind of calculation could be carried out 

to ensure that the effective reproduction rate, R’, for doctors in hospitals can be brought 

well below 1.  It appears likely that such calculations will show that doctors need to be 

tested every day. This is something which Romer already suggested in his talk. 

 

Testing health workers is of course obvious and accepted. Other groups needing to be 

tested include those at high risk of cross infection (such as the elderly in care homes), and 

those with high exposure who are both vulnerable themselves and likely to cross infect 

(such as bus drivers, grocery store workers, and police).  

 

The kinds of calculation described in Appendix 1 could easily be carried out for structured 

samples in different locations, so as to respond to different patterns of infectivity. Some 

parts of the population will have low R0 and need significantly less frequent testing. Testing 

should be concentrated in areas in which R0 is high. 

 

                                                             
7  Some of what follows comes from suggestions made to us by Eric Beinhocker, for which we are very 
grateful.  
8  It might even enable the general lockdown to be eased, so that other lower-risk groups could keep 
working and not need to be isolated. 
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5.2 Clarifying how our strategy differs from that of Romer  

 

We hope that Romer would agree with what we have just written above. Indeed, in the 

version of his plan that he set out on Twitter, Romer has himself provided useful suggestions 

about who might have priority as tests are rolled out.9  But from here on we part company.  

 

Romer goes on to suggest that, once tests have been rolled out for these most important 

groups, there be a further vast expansion of testing, enabling mass random testing for the 

whole population, in order to get R down for the whole population. The version of his plan 

on Twitter makes this very clear. It concludes as follows:  

 

“When you strip away all the noise and nonsense, note that once we cover essential 

workers, it’s easy to test everyone in the US once every two weeks. Just do it. Isolate 

anyone who tests positive. Check your math. Surprise, R0 < 1. Pandemic is on glide 

path to 0. No new outbreaks. No need for any more shutdowns.”10 

 

Instead, we argue that testing must be focused on particular groups. This is because our 

findings, discussed in Section 3 above, show that a mass testing plan would still leave R’ 

significantly above 1 unless it was carried out incredibly frequently. 

  

Nevertheless there will still need to be random testing of groups in the population, and 

some random testing of the whole population. But this testing would be 

for informational purposes only, and would only involve testing very small samples of those 

involved.  

 

Such informational testing will be needed for two reasons. First, random testing of small 

samples from particular groups will be necessary be to track the groups in which R0 is high, 

where there is a potential for a high rate of spread. Once identified, these particular groups 

will then need very frequent testing of everyone in the group, for the reasons which we 

have been discussing in this paper. Second, testing of small samples of wider groups in the 

whole population will be needed to find where prevalence is already high – so that spread 

has already become rapid. Such groups will also need very frequent testing of everyone in 

the group. Doing all this will also help governments to track spread and to determine where 

hotspots are flaring up. Such information will help governments to work out how to 

selectively tighten, or loosen, containment measures when needed.  

 

But the accuracy of this testing for informational reasons will be determined by the sample 

size, rather than population size. The samples required for these informational purposes will 

be very small relative to the size of the whole population.  

                                                             
9  See  https://threadreaderapp.com/thread/1248712889705410560.html 
10  Romer uses R0 to stand for what we call R’ See again 
https://threadreaderapp.com/thread/1248712889705410560.html 

https://threadreaderapp.com/thread/1248712889705410560.html
https://threadreaderapp.com/thread/1248712889705410560.html
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5.3 A simple way of calculating threshold testing rates  

It would be good to find a simple way of calculating the testing threshold for any group, i.e. 

the value which t must exceed in order to ensure that R is less than 1, and so prevent the 

epidemic from exploding in that group. In fact, we can do this by using a simple 

approximation which ignores the dynamics of the infection process, thereby producing an 

equation which is easy to solve. By ignoring these dynamics, we do not have to solve a 

complex equation like Equation (3) which sums a number of effects in a non-linear way, over 

many time periods. This is likely to be helpful.  

In Appendix 1, we set out our simple approximate method for calculating the threshold 

testing rates t*, for different groups, based on their initial values of R0. We show that the 

approximation is relatively accurate, even although it rests on two simplifying assumptions. 

Because our proposed calculation is so simple it appears to be useful. Furthermore, for large 

values of , it gives results which actually overstate the required amount of testing. Such a 

conservative approach seems desirable, in the light of the current uncertainty about the 

true value of  in populations, and the strong impact that this value will have on the 

infection rate. 

5.4 Periodic tests rather than random tests  

Once the frequency of testing has been decided and testing kits are available, testing can 

begin for everyone in the identified groups. But it is important that this testing be done 

periodically for each person, rather there being a random choice of those who are to be 

tested in each time period.  

 

The rationale underlying periodic testing can be explained  by  the “waiting-time paradox”.11 

Random testing, say of 25 percent of a group each day, wastes many resources. This is 

because every day some of those tested will have been tested the previous day, whilst 

others who have not been tested for a long time will, nevertheless, still not be tested and so 

will possibly continue infecting people. By contrast, periodic testing of 25 percent of the 

group means that, on days one to four, a different quarter of the group will be tested each 

day, and that on day 5 the first quarter of the group will tested again, etc. It is clear that this 

means each person tested will have been tested exactly four days previously, removing the 

problem that some tests are being wasted and that some other tests will be postponed for 

too long.  

 

In Appendix 2, we provide a simple account of this issue, and show how important it is likely 

to be. We show that with high testing rates, periodic testing beats random testing by a very 

significant factor. For example, in the model which we examined in Section 3, in the special 

case in which there is no self-isolation of symptomatic people (i.e. with α = 0), our testing 

                                                             
11  The waiting time for a Poisson bus service is twice the waiting time for a periodic bus service with the 

same rate for a randomly arriving traveller. 
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rate required for R0 to be 0.75 was 18.3% with random testing. With periodic testing this 

rate falls to 13.5%, a 26% reduction.  

This is a big improvement at no extra cost. 

 

5.5  Running two kinds of tests in parallel 

 

In this paper, we have been discussing antigen testing (i.e. testing for active infections) as 

opposed to antibody testing (i.e. testing for those who have had the disease and are 

immune). A combination of the two kinds of tests might be used in a way that would be 

effective and realistic if one assumes that capacity of testing for active infection remains 

constrained, but that one-time antibody tests become widely available. One might then 

proceed as follows: 

 Immediate active infection testing for high-risk groups. 

 Self-isolation for anyone else developing symptoms. Isolation would, as currently, 

last for a minimum of 7 days and the individual would not be tested unless this was 

medically necessary. But if there were enough tests then one could test people at 

the end of their isolation period to show that they were clear of virus before they 

were allowed to come out of isolation. 

 Widespread home kit antibody testing for anyone to see if they had had the virus - 

these would be one-off tests that would not need to be repeated. 

 A system to track people with immunity who could then circulate freely if they had 

either a) had a positive antibody test, b) had a positive active infection test more 

than some specified number of days ago, or c) had a negative active infection test 

after their symptoms resolved. 

All these measures would be realistic in terms of the required testing resources. Such a 

testing procedure would involve doing two things at once: the stratified periodic antigen 

testing which we have been discussing would be designed to damp the spread of the 

disease in key groups, by catching those in these groups who were infectious but 

asymptomatic, or pre-symptomatic, or post-symptomatic, and so not self-isolating. At the 

same time, antibody testing for the entire population would separate out the immune 

population; passing an antibody test would enable such people to return to work.  

 

6 Conclusions  

Romer suggests that by testing 7% of the population every day we can get the effective 

reproduction number of Covid-19 to around 0.75 and curb the epidemic. Unfortunately, his 

calculations contain errors. By correcting his method, and using reasonable assumptions 

about asymptomatic carriers, we believe that at least 21% of the population would need to 

be tested each day to get the reproduction number well below 1. For obvious reasons, we 

do not see this as a feasible population-wide strategy. 
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Instead, we argue that cheap, less reliable, tests will work for narrow groups. Testing rates 

of over 25% per day in certain groups, such as health workers, could eliminate the spread, 

enabling other lower risk groups to keep working and out of isolation. Our work has also 

shown that periodic testing would be a more effective and workable solution than random 

testing.  

 

Additionally, if groups of high prevalence can be identified (say by geography or occupation) 

more frequent testing will both ensure that any infected person is isolated more quickly and 

that more infected people test positive and are isolated, thus maximising the effectiveness 

of any  testing. 

 

Appendix 1 A simple method for calculating minimum testing rates 

In this Appendix we set out a simple method for calculating the testing threshold in any 

group, i.e. the value, t*, which t must exceed in order to prevent the epidemic from 

exploding in that group. The calculation employs a simple approximation which ignores the 

dynamics of the infection process. If we ignore the dynamics, we do not have to solve a 

complex equation like Equation (3) which sums a number of effects in a non-linear way, over 

many time periods.  

Our method of calculation builds on the following insight: for R’ to be less than 1 the 

following must be true: on any given day a person with Covid-19 is more likely to go into 

isolation than to spread it to someone else. If that is true, then the expected number of 

infections a person will hand on will be at most less than 1. We can ignore the dynamics of 

the process and simply solve for the value of t for which this will be the case. We proceed in 

two steps.  

 

(a)  For simplicity, we first examine the extreme case in which none of those who are 

infected become symptomatic and self-isolate; this corresponds to the case considered in 

Section 3 in which  = 0. 

 

Consider any group of z, as yet unidentified, infectious people. Assuming that this group is a 

small fraction of the overall population, the number of people who will be infected by this 

group on any given day is (R0 /d) times z, where d is the number of days that an infectious 

person remains infectious.  

 

The number of these z people who, on this same day, will go into isolation because they 

have tested positive will be t(1-n) times z. But there will be additional infectious people who 

cease to infect others because, although they did not test positive on that day, the period 

during which they had the disease and were infectious will have come to an end. This 

happens with probability 1/d; so there will be {[1-t(1-n)]/d} times z such people12.  

                                                             
12  This 1/d probability is the chance that an infected person becomes non-infectious independently of 
testing. An intuitive way to think about this is that, in choosing someone at random, there is a 1/d chance that 
that person is on their last day of infection and so will become non-infectious the following day. This is only an 
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Thus, for R’ to be less than 1, we require that: 

 

(6) {t(1-n) + [1-t(1-n)]/d } > R0 / d.  

 

This means that, for this extreme case, the threshold testing rate is given by 

 

(7) t* = (R0 - 1)/[(d-1)(1-n)] 

 

If R0  = 2.5, d = 14, and n = 0.3, we get t* = 16.5% . That is, this method says that, to get R less 

than 1 by randomly testing the whole population, one needs to test at least 17% of the 

population. That is, the threshold testing rate, t*, is 17%. 
 

This is a lower value than what we found for t* using the full dynamic model in Section 3 

when  = 0. The result there was that t* = 19.1%. The discrepancy between these two 

results arises precisely because of the dynamic process of the epidemic: the simple 

calculation carried out here ignores the fact that, as time passes, testing will remove some 

of the infected people, so that they are no longer available to be tested on later days; that is 

what made Equation (3) so complex! But this simple method ignores that fact.13 For this 

reason the result produced using this simple method will always underestimate the required 

testing rate. This method thus provides a (quick and dirty) lower bound for the true value of 

t*. Nevertheless it may provide a useful starting point. 

 

(b)  This method can be readily extended to include the more general cases considered 

in Section 3 in which a proportion of those who are infected become symptomatic after a 

certain number of days and so self-isolate. Consider here a proportion  who self-isolate 

after a number of days d0 out of the total number of days of infection d. We can 

approximate an adjusted value of  , which we call ’. This is the probability that someone 

who is infected self isolates on any particular day (independently of any test or of reaching 

the end of their infectious period), such that at the end of the infectious period the chance 

the individual has self-isolated is , namely; 

 

(8)  ’ = /d 

 

We then introduce ’ in equation (6) to create a new condition of the threshold testing rate, 

t, for a population following this self-isolation rule: 

 

(9)  {t(1-n) + [1-t(1-n)]/d + (1-t(1-n)) (1-’)/d} > R0 / d. 

                                                             
approximation since it requires that the value of R’ resulting from testing is equal to 1. That is because if R'>1 
then the virus would be spreading and hence an individual would be less likely to be on their last day of 
infection; conversely if R'<1 then a higher proportion of the infected population would more likely to be about 
to end their infectious period. 
13  It is possible that this is what Romer was effectively assuming in his analysis. See the final paragraph 
of Appendix 3. 
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This means that the threshold testing rate is now given by 

 

(10)  t* =(R0 - d’ - 1- ’) / [(d - d + ’ - 1)(1-n)] 

 

Suppose, as in the previous case, that R0  = 2.5, d = 14, and n = 0.3. Then for a population for 

whom the first 5 days are asymptomatic who then become symptomatic and self-isolate 

with probability =0.5 , Equations (7) and (8) produce an adjusted ’ for the population of 

0.023 (those self-isolating on any given day).  This leads to a correspondingly reduced 

threshold testing rate of t* = 11.0%. In other words, this method says that, to get R less than 

1 by randomly testing the whole population, one would only need to test 11% of the 

population.  
 

This is a smaller value than what we found for t in Section 3, in this case with  = 0.5, using 

the full dynamic model. The result there was that t* = 13%. The discrepancy between these 

two results arises for the same reason that it did in the case in which   = 0: the simple 

calculation carried out here ignores the fact that, as time passes, testing will remove some 

of the infected people, so that they are no longer available to be tested on later days. 

However, we have found that, for larger values of , the simple model being examined here 

will actually overstate the testing required. That is because we are here making a second 

simplifying assumption, that there is a ‘random’ self-isolation process ’ each day, such that 

at 14 days (d) the chance that someone has self-isolated is exactly equal to . This is as 

opposed to the detailed model in Section 3 in which, after day 5, there is a step of size  in 

the chance of someone self-isolating, so that a proportion  self-isolate for a 9 day period 

with certainty. Nevertheless, even with these two simplifying assumptions, the result 

obtained here appears to be useful. We say this in the light of the current uncertainty about 

the true value of  in populations and the strong impact this will have on the infection rate. 

It seems appropriate to use a calculation method which, when  is high, provides an overly 

high result for the testing threshold. Acting cautiously in these circumstances seems 

desirable.   

 

Appendix 2: Periodic testing versus Random Testing14 

 

Our aim is to show how much more effective periodic testing might make the testing 

process, when compared with the random testing process discussed in Section 3. As in that 

case our objective is to get the value of R down from 𝑅0 = 2.5 to 𝑅′ =  0.75 . For simplicity, 

in this Appendix, we will deliberately ignore the effects of self-isolation, i.e. the results in 

Section 3 with which we must  compare our findings here are those in which α = 0. We also 

suppose in this Appendix, again for simplicity, that tests are conducted perfectly.  

                                                             
14  We are grateful to Frank Kelly for his help in preparing this Appendix  



 

16 
 

Our results suggest that periodic resting might be about 25% more effective than random 

testing, at no extra cost. 

As in Section 3, we let 𝑅′ be the expected number of people that a randomly chosen 

infected person infects before that person is positively tested (or stops being infective, if 

sooner).  Let 𝑟𝑗 be the expected number of individuals infected by an individual on day of 

his/her infection, for  j =1,2,...,d where the length of infectivity is d. (This is the same as l in 

the model in Section 3). Thus 𝑅′ = ∑ 𝑟𝑗 𝑑
𝑗=1  Now suppose an individual is tested every N 

days, and that for high risk groups we test very frequently, so that 𝑁 < 𝑑. If the time of the 

infection is random and the individual is not infective for the day of the test, then  

(1)  𝑅′ =
1

𝑁
∑ ∑ 𝑟𝑗

𝑖−1
𝑗=1

𝑁
𝑖=1    

From this we can deduce that  

(2)  𝑅′ =  
1

𝑁
∑ (𝑁 − 𝑗 + 1)𝑟𝑗

𝑁
𝑗=1  

For example, if 𝑟𝑗 = 𝑅0/𝑑 then15 

(3)  𝑅′ = 𝑅0
𝑁+1

2𝑑
   

We can now compare our findings with those in Section 3, for the case in which α = 0. We 

found there that that to bring R down from  𝑅0 = 2.5  to 𝑅′ =  0.75 would – with random 

testing - require a testing rate of 26 percent. But those results assumed that 30 percent of 

tests failed. If tests were perfect those results imply a testing rate of 18.3 percent.  

We can now use Equation (3) immediately above to solve for the value of N, the number of 

days  between each test, that is required to bring R down from  𝑅0 = 2.5  to 𝑅′ =  0.75 . 

This equation shows that the period between testing for each individual would need to be 

7.4 days.16 That is a testing rate of 13.5 percent.  

This is a twenty-six percent reduction in the rate of testing required, as compared with the 

case of random testing. We can see that doing random testing would provide a big 

improvement at no extra cost. 

If scarce testing is to be allocated over individuals with different prior probabilities of 

infection, these formulas can be used to optimize the allocation. They show that there are 

diminishing returns from making N  very small.  Suppose that individual k has prior 

probability 𝑝𝑘  of infection and that we wish to choose 𝑁𝑘 so as to allocate a given amount 

                                                             
15  For low-risk individuals we can test much less frequently, so that 𝑁 ≥  𝑑. Then we obtain 

(4)  𝑅′ =
1

𝑁
(∑ ∑ 𝑟𝑗

𝑖−1
𝑗=1 + (𝑁 − 𝑑)𝑅0

𝑀
𝑖=1  )   

and hence  

(5)  𝑅′ =  𝑅0 −  
1

𝑁
∑ 𝑗𝑟𝑗

𝑑
𝑗=1  

For example, if 𝑟𝑗 = 𝑅0/𝑑 we can solve for the required rate of testing. It is  

(6)  𝑅′ = 𝑅0 (1 −
𝑑+1

2𝑁
) 

16  Of course in reality such a number would need to be rounded up or down to a full number of days.  
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of testing over a set of individuals so as to maximally reduce R’. Then, using the last 

displayed formula, the optimal allocation of a given amount of testing should choose 𝑁𝑘  ∝

  1/ √𝑝𝑘 The amount of testing allocated to higher risk individuals is naturally higher, but 

not proportionately so. 

Appendix 3: Romer’s analysis of testing 

We now explain -why we think there is a mistake in the way in which Romer calculates φ, 

the proportion of the infectious population which is isolated. We then present our attempt 

to understand how and why he made his error.  

A.2.1 Romer’s analysis 

Romer assumes random testing of the whole population. In his calculations, he lets t be the 

proportion of the population tested each day, i.e. the probability that each person is tested 

each day. He supposed that t = 0. 07. 

Romer allows for false negatives in tests.  He lets n be the proportion of false negatives. 

Romer assumes that this proportion is 0.3.  

Romer lets l be the number of days that each person who tests positive is placed in 

isolation. He assumes l = 14.  

Romer then computes φ, the proportion of the infectious population which is isolated, as 

follows.  He writes something similar to, but not the same as what we have called Equation 

1 in our paper. 

(1) φ = t(1 – n)l 

Just to be clear, this equation here comes directly from the slides which accompanied 

Romer’s talk17. We have no background on why he wrote down this equation, and we think 

that it is incorrect. We say this because in our paper above Equation (1) reads φ = t(1 – n)d. 

This has the variable d on the right-hand side, showing the number of days for which a 

person remains infections.   By contrast Equation (1) above has l on the right hand side the 

variable l which is the number of days that each person who tests positive is placed in 

isolation. The nature of what we think is Romer’s error is discussed immediately below.   

Since t = 0.07; (1 – n) = 0.7 and l = 14 Romer claims that φ = 0.69. This value of  φ = 0.69 

would, he says, produce his desired value for R’, since: 

R’ =  (1 – φ) R0 , or R’ =  (1 – 0.69)x2.5 ≈ (1 – 0.7)x2.5 = 0.75.  

Drawing on these calculations, Romer suggests that there should be testing of 7% of the 

population each day.  

Notice that, although Romer mentioned self-isolation of those who have symptoms in his 

lecture, there is no allowance for such an action in any of the calculations in his slides.  

                                                             
17  See minutes 16 to 20 of the Romer talk, and the accompanying slides.  
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A.2.2 Our Criticism 

It is helpful to try to understand how Romer made what we think is an error. 

To see most clearly, and simply, why his calculation cannot be right, imagine what would 

happen if there were to be double the amount of testing proposed by Romer, i.e. suppose 

that t = 0.14. Then, using his formula for φ we would get φ = t(1 – n)l = 0.14 times 0.7 times 

14  = 1.38; the person would be in isolation for more than all of the period of 14 days! So 

the equation must be wrong.  

How can we understand the inclusion of ‘l’, the number of days that an infected person is 

placed in isolation, on the right-hand side of this equation? One possibility is that the 

inclusion of ‘l’ is simply a mistake. Romer states that φ=t(1-n)l, but φ and t(1-n)l appear to 

be very different things. Because t(1-n) is equal to the probability that an infectious person 

is put into isolation on any day, it follows that t(1-n)l is equal to the expected length of 

isolation any infected person is likely to face, after one round of testing. But φ is the fraction 

of the infected population that are isolated -- which is clearly not the same thing as the 

expected length of isolation any infected person is likely to face, t(1-n)l. So it appears that 

stating φ=t(1-n)l is a mistake. 

  

Another possibility is to make a set of assumptions about Romer's set-up that bring the 

meaning of φ and t(1-n)l closer together. For instance, consider the following approach. 

First, interpret ‘l’ as the ‘number of days that an infected person is infectious’, rather than ‘is 

placed in isolation’. Secondly, define ‘Z’ as the number of infected people not in isolation. 

Thirdly, imagine there are ‘l’ periods where, in each period, a fraction t(1-n) of those 

infected people not in isolation, Z, are removed and put into isolation. And finally, assume 

that in each period the number of infected people not in isolation, Z, remains the same (i.e. 

the infected who are put into isolation are replaced with newly infected people). Then it 

follows that, after ‘l’, periods, t(1-n)l * Z people will be in isolation. Now, t(1-n)l is indeed 

equal to φ, the proportion of the infected population not in isolation who are put into 

isolation – but with two very significant caveats. First, it assumes that everyone who will be 

isolated over the ‘l’ days is isolated on the first day. And secondly, because Z is constant 

over time, it follows that φ may also be greater than one if t or l is large enough, or n is small 

enough – which, as shown before, is exactly the problem with Romer’s analysis.18  

 

 

                                                             
18  Intuitively, the problem here is that you are taking a fraction t(1-n) of the infected population not in 
isolation, Z, and putting them into isolation in each period, but because I replenishes over time, if you isolate a 
large enough proportion of Z,  t(1-n), enough times, l, then you will end up with more infected people in 
isolation, t(1-n)l * Z, than there are infected people not in isolation, Z. 


