The Nutritional Benefits of Pasture-Raised Animals

- MAY 15, 2018 -

Presented by

Collette Lentz, MS

Hosted by

FACT
Food Animal Concerns Trust
Introductions

Food Animal Concerns Trust (FACT) is a national nonprofit organization that advocates for the safe and humane production of meat, milk, and eggs.

Larissa McKenna
Humane Farming Program Director
Email: lmckenna@foodanimalconcerns.org
Website: foodanimalconcernstrust.org/farmer

FACT’s services for livestock and poultry farmers include:

- Fund-a-Farmer Grants
- Conference scholarships
- Free webinars
- Humane Farming Mentorship Program
The Nutritional Benefits of Pasture-Raised Animals

Collette Lentz, M.S. Applied Nutrition
May 15th, 2018

Pictures from Food Animal Concerns Trust Fund-a-Farmer Grant recipients
• Introduction
• Background on the differences between ruminants and non-ruminants
• Pasture-raised label definition
• Desired nutrient content in animal-derived foods
• Nutritional advantages of pasture-raised vs. conventionally-raised animals
• The connection between diet and human health
This presentation dives into humane farming in the context of the broader “good food” movement, a movement that opened up conversations about what and how Americans eat. This “good food” movement supports local, organic, and humanely-raised family farmed foods.1,2

The association between humane animal production and human nutrition was evaluated. A literature review was conducted (studies mainly from 2000s but studies ranged from 1984 to 2017) and the findings are summarized in this presentation.

Five main food-producing animals were assessed: beef cattle raised for meat/beef, dairy cows raised for dairy products such as milk, broiler chickens raised for meat, laying hens raised for eggs, and swine/pigs raised for meat/pork.

Areas included in research: the nutritional composition differences for animals raised on different feeds (e.g. 100% grass-fed vs. grain-fed beef and dairy), and the nutritional differences between organic and conventional production of the five main animals.

The information provided in this presentation is based on the current available literature, and is meant to inform and empower individuals with a better understanding of the nutritional benefits of pasture-raised animals. The superior nutritional content of pastured animal products provides a new perspective and justification for supporting humane farming.
Ruminant Animals:

- Beef cattle raised for meat/beef and dairy cows raised for dairy products such as milk are examples of ruminant animals.\(^1\) Ruminants have a stomach with four compartments, in which the largest of the four compartments is called the rumen.\(^2\) Cows are known natural herbivores (only eats plants).\(^3\)
- The microorganisms in the rumen have a large and significant impact on the types of fatty acids leaving the rumen for absorption in the small intestine.\(^1,4,5\)
- A great portion of unsaturated fatty acids (UFAs) in the ruminant’s diet is converted to saturated fatty acids or UFAs with less double bonds such as monounsaturated fatty acids (MUFAs).\(^5-7\) At the same time, a portion of the UFAs still avoid breakdown in the rumen and end up in the beef or dairy product that you eat/drink.\(^5\)
Broiler chickens raised for meat, laying hens raised for egg production, and swine/pigs raised for pork are examples of non-ruminant animals. Non-ruminants, or monogastric animals, have a single or simple stomach with one chamber. Pigs and chickens are known natural omnivores (eat both plants and animals such as insects).

Dietary fatty acids are absorbed unchanged in the small intestine before incorporation into the tissue lipids (such as in the meat of an animal or in the egg produced from the chicken). Thus, dietary lipid sources have a more direct/predictable effect on pig and poultry products. Overall, pigs and poultry have relatively simple digestive system and absorb fatty acids in more or less the same proportion as found in diet.
WHAT DOES “PASTURE-RAISED” MEAN?

Labeling Definitions:¹,²

- No common government standard to meet “pasture-raised” claim on a food label
- There is currently no definition for “pasture” and no verification through on-farm inspections
- Dairy and eggs: The FDA has no common standard and does not require “pasture-raised” labeling to be verified (thus, claim is not meaningful)
- Meat and poultry: The USDA requires claim to be approved, and companies must explain and define the meaning of the claim
- Beef and dairy: “Pasture-raised” does NOT mean cows were 100% grass-fed. May be given supplemental grain in grazing season and winter months. (Look for third party verified labels or verified “grass-fed” claim instead)

Note: There are other independent, third parties that require access to pasture (i.e. where truly free-range chickens are raised outdoors on pasture). Many of these parties adhere to higher standards and employ a sustainable approach, such as the Animal Welfare Approved seal³
GUIDE TO FOOD LABELS: TRUST THESE LABELS

How Do You Know Which Food Labels to Trust?

- The following is a brief guide from Food Animal Concerns Trust (FACT) to help you make the most sustainable and humane choices possible at the grocery store. Overall, FACT recommends purchasing products that have third party verified labels.

 FACT recommends the following labels for beef, dairy, chicken meat, eggs, and pork products:

To read more about humane farming visit https://foodanimalconcernstrust.org/food-labels/
Organic production of meat/dairy/poultry/eggs are required to have 100% organic feed and access to outdoors.

Organic certification also has the following requirements:

- Produced without genetic engineering
- Managed organically from the last third of gestation (mammals) or second day of life (poultry)
- Allowed year-round access to outdoors except under specific conditions (e.g. inclement weather)
- Raised on certified organic land meeting all organic crop production standards
- Raised per animal health and welfare standards
- Fed 100% certified organic feed, except for trace minerals and vitamins used to meet animal’s nutritional requirements
- Managed without antibiotics, added growth hormones, mammalian or avian byproducts, or other prohibited feed ingredients.

Additionally, ruminants (such as beef cattle and dairy cows) must have free access to certified organic pasture for entire grazing season of at least 120 days. Diets must contain at least 30% dry matter from certified organic pasture, where the rest of the diet must be from certified organic agricultural products.
BAD FAT: Limit artificial/industrial produced trans fats, such as partially hydrogenated oils found in margarine and frozen pizza

Natural trans fats such as conjugated linoleic acid (CLA) are found in dairy products and meats in small quantities, and do not need to be eliminated.

• IN-BETWEEN FAT: Saturated fatty acids (SFAs) are common in meat and dairy products. It is generally recommended to limit intake and replace with unsaturated fats (good fats). (*debate around SFAs today)

Some saturated fats like stearic acid actually have no negative impact, whereas others such as lauric and myristic have negative health consequences.

GOOD FAT: Mainly from vegetables, nuts, seeds, and fish. There are two types: monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). There are two main types of PUFAs: omega-3 (ω-3) fatty acids and omega-6 (ω-6) fatty acids.

Good sources of MUFAs include olive oil, avocados, and nuts. Good sources of PUFAs include fatty fish, seeds, and nuts.

While both ω-3 and ω-6 are needed in the diet, a lower ratio of ω-6 to ω-3 is generally desirable.
Studies show that products from ruminants, such as beef and milk, have higher saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Ruminants also have more natural trans fats, such as conjugated linoleic acid (CLA).

Products from non-ruminants, such as chicken meat, eggs, and pork, have a higher amount of polyunsaturated fats (PUFAs).

Trends shown below may differ slightly depending on the animal’s genetics, gender, age, specific type of meat (i.e. muscles), and breed, along with management practices, geographical location, and feedstuffs.
Food-Producing Animals:¹,²

- Omega-3 fatty acids are a specific type of PUFA, a good fat. Omega-6 fatty acids are another type of PUFA. While both are generally considered healthy fats, studies show that a lower ratio of omega-6 to omega-3 in the diet is more desirable as it reduces risk of many chronic diseases. Increasing omega-3 content and/or potentially lowering omega-6 content would improve this ratio.

Want to increase omega-3

Want to reduce omega-6 to omega-3 ratio
• In addition to fat, animal food products are good sources of a variety of other nutrients, such as vitamins (including vitamin E and vitamin D), minerals (such as iron), and many other important nutrients, including antioxidants, carotenoids and polyphenols. Additionally, some natural trans-fats such as conjugated linoleic acid (CLA) have been shown to have health benefits.

• The following is a list of general recommendations on the various nutrients to increase and decrease in one’s diet, respectively. This holds true specifically for the animal food products discussed in this presentation, as well as other food items in one’s diet.

Increase in Diet:
- Increase healthy fats MUFA and PUFA, especially omega-3
- Increase vitamins such as vitamin E and vitamin D
- Increase minerals such as iron
- Increase other important nutrients, such as antioxidants, carotenoids, and polyphenols

Decrease in Diet:
- Lower omega-6 to omega-3 ratio is generally desired
- Replace SFA with MUFA or PUFA
- If total fat is too high in diet, lower fat content
GOAL: MAXIMIZE NUTRITIONAL QUALITY OF FOOD ANIMALS

Improving Nutrient Content:

- In some cases other foods may provide a better nutrient profile compared to beef, milk, chicken, eggs, or pork. For instance, salmon contains lower SFA and improved PUFA content compared to beef.\(^1,2\) Additionally, some fruits and vegetables may contain a higher vitamin content. However, there are many reasons why these alternative food options are not chosen, including cost, food access and availability, and taste.\(^1,3\)
- It is important to realize that beef, milk, chicken, eggs, and pork provide value as versatile sources of nutrients. For example, simply advocating for the U.S. population to decrease beef and milk in order to lower SFA ignores the potential benefits of these foods.\(^3\)
- Altering fatty acid composition along with other nutrients in animal food products will improve consumer’s diets and maximize potential nutritional benefits. Meat, poultry, dairy, and eggs make up about 30% of the U.S. daily caloric intake, and over 40% of the U.S. fat intake.\(^4\) Thus, significant improvements can be made to improve the American diet and health by changing/improving these animal food products.
• Changing the diet of animals provides an effective method to improve the nutrient composition of the food product. Forages (edible parts of plants other than grain)\(^1\) including pasture/grass are good sources of omega-3 PUFA whereas concentrates (mixtures of grains) and grains/cereals such as corn and wheat are mainly omega-6 PUFA with a small amount of omega-3.\(^2,3\) While there can be variation in nutritional quality of animal feed due to maturity and variety,\(^2,3\) the physiology of digestion and absorption for food-producing animals suggests that forages/pasture will lead to more nutritious food products.

• Although other factors such as breed and gender may change, they are likely to be of smaller value from a nutritional perspective.\(^2\)

Pasture/grass is found to be the more nutritious animal feed as it has an increased amount of healthier fat and an improved omega-6 to omega-3 fat ratio.
IMPROVING NUTRIENTS

CONT’D - IMPROVING NUTRIENT COMPOSITION OF ANIMAL-DERIVED FOODS

Improved Nutrient Content:

- Food animals that are humanely raised are provided higher quality feed, such as inclusion of more pasture and less grain through access to the outdoors, compared to animals raised conventionally.1-3 As discussed, this leads to improved nutrient composition of the food product.

- Organic production of meat/dairy/poultry/eggs are required to have 100% organic feed and access to outdoors. Outdoor access generally provides increased dietary intake of forages/pasture. Some animals, such as beef cattle and dairy cows are required to have a certain percentage of diet come from pasture.4,5

- Even for animals that are only fed 100% organic feed from cereal sources, such as corn and soybeans, studies have shown organic crop production to be more nutritious compared to conventionally grown crops, such as higher antioxidant content.6 Studies suggest that the type of animal feed (e.g. grain/concentrate vs. pasture/forage) is a major driver for the differences observed between conventional and organic production systems.6-9

[1] https://foodanimalconcernstrust.org/what-is-a-humane-farm

...Continued from previous slide
Improved Animal Feed for Humanely Raised Animals:¹⁻³

- Food animals that are humanely raised are provided higher quality feed, such as inclusion of more pasture and less grain through access to the outdoors, compared to animals raised conventionally.¹⁻³

<table>
<thead>
<tr>
<th>Ruminant Animals:</th>
<th>Non-Ruminant Animals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventionally Raised:</td>
<td>Conventionally Raised:</td>
</tr>
<tr>
<td>More Humanely Raised:</td>
<td>More Humanely Raised:</td>
</tr>
</tbody>
</table>

- Beef Cattle
- Dairy Cows
- Broiler Chickens (Meat)
- Laying Hens (Eggs)
- Swine/Pigs (Pork)
Vitamin D is needed for calcium and phosphorous metabolism, which helps build bones and keeps bones strong and healthy. Without sufficient vitamin D, bones can become brittle or thin. Vitamin D helps prevent osteomalacia, the softening of bones, and protects against osteoporosis in older adults. This vitamin also has other roles in the body, including reduction of inflammation.

Iron is needed for blood production. Iron is found mainly in the red blood cells called hemoglobin that can be found in your blood and in muscle cells called myoglobin. Hemoglobin is needed for transferring oxygen in blood from the lungs to the other parts of the body. Without enough dietary iron, the body can't make enough healthy oxygen-carrying red blood cells and preventing iron deficiency anemia.

Antioxidants are substances that may prevent/delay some types of cell damage. The body relies primarily on antioxidants in the diet for its antioxidant needs. Additionally, there are other nutrients that act as antioxidants, such as glutathione (a protein that is known to have antioxidant properties). Antioxidants may help prevent development of some chronic diseases, such as type 2 diabetes and heart disease.

Eating more “good” fats and avoiding harmful “bad” fats has been shown to be necessary and beneficial for health. Omega-3 is a type of polyunsaturated fatty acid (PUFA), a good fat. Omega-3 fatty acids have been shown to promote heart health. They may prevent even treat heart disease and stroke, along with reducing blood pressure, raising HDL (good cholesterol), and lowering triglycerides to prevent lethal heart rhythms from arising. Some studies link omega-3s to other health improvements, such as reducing risk of dementia.

Iron is needed for blood production. Iron is found mainly in the red blood cells called hemoglobin that can be found in your blood and in muscle cells called myoglobin. Hemoglobin is needed for transferring oxygen in blood from the lungs to the other parts of the body. Without enough dietary iron, the body can't make enough healthy oxygen-carrying red blood cells and preventing iron deficiency anemia.

Antioxidants are substances that may prevent/delay some types of cell damage. The body relies primarily on antioxidants in the diet for its antioxidant needs. Additionally, there are other nutrients that act as antioxidants, such as glutathione (a protein that is known to have antioxidant properties). Antioxidants may help prevent development of some chronic diseases, such as type 2 diabetes and heart disease.

BLOOD CHOLESTEROL

LDL cholesterol (“bad” cholesterol) is the main source of cholesterol buildup and blockage in arteries. HDL-cholesterol (“good” cholesterol) helps remove cholesterol from arteries. LDL is known to increase risk of heart disease/stroke whereas HDL helps protect you. Some saturated fats are known to raise cholesterol whereas others have no impact. It is generally recommended to replace saturated fats (SFAs) in diet with unsaturated fats (such as polyunsaturated fatty acids (PUFAs)) to reduce risk of cardiovascular disease events such as heart attacks and deaths.

The nutrients in foods (or lack thereof) affect the body in numerous ways. There is a clear link between good nutrition and a healthy weight and reduced risk of chronic diseases, such as type 2 diabetes and heart disease.
Beef cattle raised more humanely have been found to potentially have more vitamin E and β-carotene and higher glutathione antioxidants in the final beef product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Beef cattle raised more humanely have been found to have potentially more conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA, another fat which is converted to CLA in the human body) in the final beef product. CLA has been shown to potentially lower cancer risk.

Beef cattle raised more humanely have been found to have a potentially improved saturated fatty acid profile in the final beef product, in which there are less saturated fatty acids that raise blood cholesterol levels. A healthier/lower blood cholesterol has been shown to be beneficial in reducing risk of heart disease and stroke.

Beef cattle raised conventionally = typically fed a diet with grain/concentrate (e.g. corn, soybeans, etc) in an indoor setting. Beef cattle raised humanely = fed a natural diet consisting of more pasture/grass with access to outdoors.

The pasture/grass provides a more nutritious feed for the cattle. If the cattle are fed a higher quality diet, does this translate to a higher quality, more nutritious beef product that you can find in the grocery store? Let’s see what the literature states...

Humanely raised beef: Overall, the literature supports that beef cattle raised humanely with a diet that consists of more pasture/grass results in an improved nutrient quality of the beef product. When beef cattle’s diet is switched from grain to grass, positive nutrient changes in the beef product can occur in just 30-60 days.

What about organic beef?: Organic production of beef requires the diet to be 100% organic with some portion of the diet including pasture. Studies show that organic beef is more nutritious than conventional beef, primarily due to the improved quality of the diet fed to the cattle (e.g. more pasture instead of grain).
Comparing Omega-3 Levels in Beef:

100g (about 3.5 oz) ribeye steak – Lean meat

To reach the same amount of omega-3 fatty acids in grass-fed beef, one would need to eat 2.6x as much grain-fed beef

From grass-fed beef:\(^1,2\)
- \(\checkmark\) 84mg of \(\omega-3\) fatty acids
- \(\checkmark\) 1.7 \(\omega-6\) to \(\omega-3\) ratio

Approx. 80% reduction compared to grain-fed

From grain-fed beef:\(^1,2\)
- \(\times\) 32mg of \(\omega-3\) fatty acids
- \(\times\) 9.9 \(\omega-6\) to \(\omega-3\) ratio

Approx. 160% increase compared to grain-fed
Dairy cows raised more humanely have been found to have potentially more vitamin E and \(\beta\)-carotene antioxidants in the final dairy product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Dairy cows raised more humanely have been found to have more healthy, omega-3 fats in the final dairy product. These fats have been shown to potentially reduce heart disease.

Dairy cows raised more humanely have been found to have potentially more conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA, another fat which is converted to CLA in the human body) in the final dairy product. CLA has been shown to potentially lower cancer risk.

Dairy cows raised more humanely have been found to have potentially lower saturated fat content and a potentially improved saturated fatty acid profile in the final dairy product, in which there are less saturated fatty acids that raise blood cholesterol levels. A healthier/lower blood cholesterol has been shown to be beneficial in reducing risk of heart disease and stroke.

Dairy cows raised conventionally = typically fed a diet with more grain/concentrate (e.g. corn, soybeans, etc) in an indoor setting. Dairy cows raised humanely = fed a natural diet consisting of more pasture/grass/forage (edible parts of plants other than grain) with access to outdoors.

The pasture/grass/forage provides a more nutritious feed for the cows. If the cows are fed a higher quality diet, does this translate to a higher quality, more nutritious dairy product that you can find in the grocery store? Let’s see what the literature states…

Humanely raised dairy: Overall, the literature supports that dairy cows raised humanely with a diet that consists of more pasture/forage/grass results in an improved nutrient quality of the dairy product.\(^1\)\(^-\)\(^6\) When the dairy cow’s diet is switched from grain to grass, positive nutrient changes in the dairy product can occur in just 1 month.\(^7\)\(^,\)\(^8\)

What about organic dairy?: Organic production of dairy requires the diet to be 100% organic with some portion of the diet including pasture. Studies show that organic dairy is more nutritious than conventional dairy, primarily due to the improved quality of the diet fed to the cows (e.g. more pasture instead of grain).\(^9\)\(^,\)\(^10\)
Broiler chickens raised more humanely have been found to have potentially more vitamin E and β-carotene antioxidants in the final chicken meat product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Broiler chickens raised more humanely have been found to have more healthy, omega-3 fats in the final chicken meat product. These fats have been shown to potentially reduce heart disease.

HEART HEALTH
Broiler chickens raised more humanely have been found to have more healthy, omega-3 fats in the final chicken meat product. These fats have been shown to potentially reduce heart disease.

OXYGEN IN BLOOD
Broiler chickens raised more humanely have been found to have an increased iron content in the final chicken meat product. Iron is needed for making enough healthy oxygen-carrying red blood cells and preventing anemia.

OBESITY/DISEASE
Broiler chickens raised more humanely have been found to have a potentially lower ω-6 to ω-3 ratio in the final chicken meat product. A lower ratio has been shown to reduce the risk of obesity and other chronic diseases of high prevalence in the U.S.

Broiler chickens raised conventionally = typically fed a diet with more grain/concentrate in an indoor setting. Broiler chickens raised humanely = fed a natural diet with access to outdoors (e.g. free-range, pasture-raised).

The pasture/grass/forage (edible parts of plants other than grain) provides a more nutritious feed for the chickens. If the chickens are fed a higher quality diet, does this translate to a higher quality, more nutritious meat product that you can find in the grocery store? Let’s see what the literature states...

Humanely raised broiler chickens: Overall, the literature supports that broiler chickens raised humanely with a diet that consists of more pasture/forage/grass results in an improved nutrient quality of the chicken meat product.1-8

What about organic broiler chickens?: Organic production of broiler chickens requires the diet to be 100% organic with access to the outdoors (e.g. free-range). Studies show that organic chicken meat is more nutritious than conventional chicken meat, primarily due to the improved quality of the diet fed to the chickens (e.g. more pasture instead of grain).9
Laying hens raised more humanely have been found to have more β-carotene, lutein, and zeaxanthin antioxidants, along with potentially more vitamin E antioxidant in the final egg product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Laying hens raised more humanely have been found to have more healthy, omega-3 fats in the final egg product. These fats have been shown to potentially reduce heart disease.

Improved Nutritional Quality for Humanely Raised Laying Hens & Impact on Human Health:

HEART HEALTH
Laying hens raised more humanely have been found to have more healthy, omega-3 fats in the final egg product. These fats have been shown to potentially reduce heart disease.

OBESITY/DISEASE
Laying hens raised more humanely have been found to have a lower ω-6 to ω-3 ratio in the final egg product. A lower ratio has been shown to reduce the risk of obesity and other chronic diseases of high prevalence in the U.S.

BONE HEALTH
Laying hens raised more humanely have been found to have an increased vitamin D content in the final egg product. Adequate vitamin D intake has been shown to lower the risk of bones becoming too brittle or thin and to help prevent osteoporosis.

ANTIOXIDANTS/DISEASE
Laying hens raised more humanely have been found to have more β-carotene, lutein, and zeaxanthin antioxidants, along with potentially more vitamin E antioxidant in the final egg product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Humanely raised laying hens: Overall, the literature supports that laying hens raised humanely with a diet that consists of more pasture/forage/grass results in an improved nutrient quality of the egg product.1-9

What about organic laying hens?: Organic production of laying hens requires the diet to be 100% organic with access to the outdoors (e.g. free-range, cage-free). Studies show that organic eggs are more nutritious than conventional eggs, primarily due to the improved quality of the diet fed to the hens (e.g. more pasture instead of grain).10-15
Swine raised more humanely have been found to have potentially more vitamin E and polyphenol antioxidants in the final pork product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Swine raised more humanely have been found to have more healthy, omega-3 fats in the final pork product. These fats have been shown to potentially reduce heart disease.

HEART HEALTH
Swine raised more humanely have been found to have more healthy, omega-3 fats in the final pork product. These fats have been shown to potentially reduce heart disease.

OXYGEN IN BLOOD
Swine raised more humanely have been found to have a potentially increased amount of iron in the final pork product. Iron is needed for making enough healthy oxygen-carrying red blood cells and preventing anemia.

OBESITY/DISEASE
Swine raised more humanely have been found to have a lower ω-6 to ω-3 ratio in the final pork product. A lower ratio has been shown to reduce the risk of obesity and other chronic diseases of high prevalence in the U.S.

ANTIOXIDANTS/DISEASE
Swine raised more humanely have been found to have potentially more vitamin E and polyphenol antioxidants in the final pork product. Antioxidants have been found to potentially reduce the risk of some chronic diseases, such as heart disease and cancer.

Humanely raised swine: Overall, the literature supports that swine/pigs raised humanely with a diet that consists of more pasture/forage/grass results in an improved nutrient quality of the pork product.1-7 When the pig’s diet is switched from grain to grass, positive nutrient changes in the pork product can occur in just 40 days.8,9

What about organic swine?: Organic production of swine requires the diet to be 100% organic with access to the outdoors (e.g. free-range). Studies show that organic pork is more nutritious than conventional pork, primarily due to the improved quality of the diet fed to the swine/pigs (e.g. more pasture instead of grain).10-13
Food animals that are humanely raised are provided higher quality feed, such as inclusion of more pasture and less grain through access to the outdoors, compared to animals raised conventionally. Studies show that higher quality feed in the diets of beef cattle, dairy cows, broiler chickens, laying hens, and swine result in a more nutritious beef, dairy, meat, egg, and pork product, respectively. Nutritional improvements in these food products are observed for 1) animals that are humanely produced with more pasture/forage in the feed and 2) in the organic production of these animals.

May be able to provide nutrient and/or health claims on product labels/advertisements. For example, grass-fed steak/ground beef may carry the following health claim: “Supportive but not conclusive research shows that consumption of EPA and DHA omega-3 fatty acids may reduce the risk of coronary heart disease”, or may inform consumer outside Nutrition Facts label that product contains certain amount of omega-3 fatty acids. Visit for more information: https://www.fda.gov/Food/LabelingNutrition/ucm111447.htm

The dietary/nutritional benefits of meat, poultry, and eggs from animals raised humanely may result in improved human health. Remember: Educated consumers to shop humanely at the grocery store! Humanely raised animals can provide nutritional benefits to you and your family!
Questions & Answers
Please type your Q’s into the chat bar!
Connect with FACT!

Upcoming *free* webinars
May 30: Creating a Forage Chain for Your Livestock
Register @ foodanimalconcernstrust.org/webinars/

Grants, Scholarships, Mentorship & More!
Sign up for emails @ foodanimalconcernstrust.org/farmer/

Join us on social media
REFERENCES

PRIMARY SOURCES FOR EACH SLIDE

Slide 5:
1. http://americanhistory.si.edu/food/resetting-table/%E2%80%9Cgood-food%E2%80%9D-movement
2. https://www.farmaid.org/blog/the-good-food-movement

Slide 6:

Slide 7:

Slide 8:

Slide 10:

Slide 11:
6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808858/

Slide 12:
Graph created from: http://www.sciencedirect.com/science/article/pii/S1871141309002674
(PUFAs=omega-3 fatty acids + omega-6 fatty acids reported)

Slide 13:
Graph created from: http://www.sciencedirect.com/science/article/pii/S1871141309002674

Slide 14:
REFERENCES

Slide 14:
7. http://ajcn.nutrition.org/content/79/5/727.full

Slide 15:

Slide 16:
1. http://forages.oregonstate.edu/nfgc/eo/onlineforagecurriculum/instructormaterials/availabletopics/introduction/defineforages

Slide 17:
2. https://foodanimalconcernstrust.org/food-labels/
5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808858/
7. https://www.healthline.com/nutrition/conjugated-linoleic-acid
10. https://www.hsph.harvard.edu/nutritionsource/omega-3-fats/
11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808858/
12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808858/
REFERENCES

CONT’D - PRIMARY SOURCES FOR EACH SLIDE

Slide 19:
18. http://ajcn.nutrition.org/content/81/1/215S.full
22. https://www.hsph.harvard.edu/nutritionsource/antioxidants/
25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705341/
29. https://my.clevelandclinic.org/health/articles/the-role-of-vitamin-d-in-your-health

Slide 20:

Slide 21:

Slide 22:

Slide 23:
REFERENCES

CONT’D - PRIMARY SOURCES FOR EACH SLIDE

Slide 23:

Slide 24:

Slide 25:
5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494374/

Slide 26:
2. https://www.fda.gov/Food/LabelingNutrition/ucm111447.htm
REFERENCES
(Pictures)

CONT’D - PICTURE SOURCES
(order of appearance)

https://www.motherearthnews.com/homesteading-and-livestock/grass-fed-beef-
zmaz09amzraw
https://www.omahasteaks.com/recipe/blackened-ribeye-horseradish (ribeye is primarily
Longissimus dorsi
http://www.beefissuesquarterly.com/CMDocs/BeefResearch/PE/Beef_Muscle_Common_Nam-
es.pdf)
https://www.healthyeating.org/Milk-Dairy/Nutrients-in-Milk-Cheese-Yogurt
http://www.kalonasupernatural.com/grass-fed-dairy-farms-good-for-you-and-the-
environment/
https://www.lifesambrosia.com/grilled-asian-chicken-recipe/
https://www.upc-online.org/broiler/images/shed1.jpg
https://www.motherearthnews.com/homesteading-and-livestock/raising-chickens-for-meat-
zma09jjzraw
http://www.extracrispy.com/food/2087/this-is-the-trick-to-making-perfect-sunny-side-up-eggs
http://www.blackberrycreek.org/chickens-used-for-eggs.html
https://vitalfarms.com/pasture-raised-eggs/
temperature-for-cooking-pork/